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The process of intercellular communication seems to have been a highly conserved

evolutionary process. Higher eukaryotes use several means of intercellular

communication to address both the changing physiological demands of the body

and to fight against diseases. In recent years, there has been an increasing interest in

understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can

function as normal paracrine mediators of intercellular communication, but can also elicit

disease progression and may be used for innovative therapies. Over the last decade, a

large body of evidence has accumulated to show that cells use cytoplasmic extensions

comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells

at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a

different means of communication to classical gap junctions or cell fusions; since they

are characterized by long distance bridging that transfers cytoplasmic organelles and

intracellular vesicles between cells and represent the process of heteroplasmy. The role

of EVs in cell communication is relatively well-understood, but how TNTs fit into this

process is just emerging. The aim of this review is to describe the relationship between

TNTs and EVs, and to discuss the synergies between these two crucial processes in

the context of normal cellular cross-talk, physiological roles, modulation of immune

responses, development of diseases, and their combinatory effects in tissue repair.

At the present time this review appears to be the first summary of the implications of

the overlapping roles of TNTs and EVs. We believe that a better appreciation of these

parallel processes will improve our understanding on how these nanoscale conduits can

be utilized as novel tools for targeted therapies.

Keywords: extracellular vesicles, exosomes, tunneling nanotubes, heteroplasmy, neurodegenerative diseases,

viral infections, tumor progression, therapies

INTRODUCTION

Intercellular communication and the exchange of biological information between cells and organs
is considered one of the sophisticated means of cellular coordination which modern eukaryotes
have evolved to meet the needs of body physiology (Lai, 2004; Beckstead et al., 2006; Raft and
Groves, 2015). Cells use different means of biological communication and signal transduction
constituting direct physical contact between cells such as receptor-mediated interaction or
cellular junctions between neighboring cells. Receptor-mediated cellular interactions are facilitated
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by certain transmembrane proteins and cell adhesion molecules
such as integrins, tetraspanins, and cadherins (Hynes, 1992;
Weber et al., 2011; Andreu and Yanez-Mo, 2014). The direct
coupling of the cytoplasm of two cells through gap junctions
(GJs) and concomitant transport of cytoplasmic material is
also considered essential process in cellular cross-talk and is
important for maintaining tissue homeostasis, development, and
cellular differentiation (Schiller et al., 2001; Lim et al., 2011;
Greco and Rameshwar, 2013; Munoz et al., 2013).

In the absence of direct physical contact, cells may convey
biological messages in paracrine fashion through secreted factors
such as cytokines, chemokines, and secreted growth factors
(Sun et al., 2012; Tsuji and Kitamura, 2015). Therefore, the
collateral effects of cells are not only reliant on direct cell-to-cell
contact, but also to their transient paracrine actions through the
release of a combination of trophic factors (Nawaz et al., 2016b).
It is increasingly recognized that cells have evolved advanced
forms of direct contact based communication and paracrine
secreted factors. These include; (i) long range intercellular
cytoplasmic bridges known as tunneling nanotubes (TNTs),
and (ii) cell-derived nanovesicles known as extracellular vesicles
(EVs). This review will illuminate biochemical, physiological,
and pathological synergies between TNTs and EVs for their
contribution in cellular communication and various pathological
states.

BIOGENESIS AND PHYSICOCHEMICAL
ASPECTS OF EVS AND TNTS

Cells secrete heterogeneous population of nanovesicles that
differ in their origins, modes of biogenesis, morphologies and
sizes. International Society for Extracellular Vesicles (ISEV)
has designated a generalized term extracellular vesicles (EVs)
to represent heterogeneous populations of vesicles (Mateescu
et al., 2017). Based on their biogenesis and release pathways
(Nawaz et al., 2014), EV populations are classified into exosomes
(40–120 nm) which originate from endocytic pathway, and
microvesicles or ectosomes (100–1,000 nm) that shed directly
from the plasma membrane. Recently, larger membrane derived
vesicles known as large oncosomes (1–10µm diameter) have
also been reported as discrete class of EVs (Di Vizio et al.,
2012; Minciacchi et al., 2015). Moreover, the apoptotic bodies
are occasionally considered as a part of nanovesicles which are
produced by indiscriminate apoptotic disintegration and are
designated as apoptotic vesicles. Each subtype of EVs undergoes
distinct biogenesis pathway where several factors participate in
biosynthesis, sorting, and maturation of various populations of
EVs and their secretion into extracellular milieu (for detailed
mechanisms see Nawaz et al., 2014).

EVs are composed of lipid bilayer which primarily include
sphingolipids, cholesterol and ceramide components and appear
to have round shape or cup shaped morphology when
observed under scanning electron microscopy. EVs are best
characterized by the presence of integrins and tetraspanins on
their surface such as CD9, CD63, CD81, and the cytoplasmic
heat shock protein HSP70, and other proteins characteristic

of EV components such as GAPDH, Tsg101 and Alix
(Keerthikumar et al., 2016). These molecules usually serve as
EV detection markers. Additionally, EVs surface may contain
major histocompatibility complexes (MHC) such as MHC-I and
MHC-II and adhesion molecules. Collectively these molecules
define characteristic composition of EV populations. However,
the biomolecular contents such as nucleic acids proteins, and
lipids encapsulated within EVs differ greatly between individual
EV subtypes or between EVs obtained from various sources
depending on type and state of secreting cell.

TNTs are actin-based transient cytoplasmic extensions which
are stretched between cells in the form of open ended
nanotubular channels (50–200 nm) discovered by Rustom
and colleagues (Rustom et al., 2004). Like EVs, TNTs also
represent subtypes and heterogeneous morphological structures
(Austefjord et al., 2014; Benard et al., 2015). However,
biosynthesis of TNTs differs from EVs and is attributed to f-
actin polymerization (Gungor-Ordueri et al., 2015; Osteikoetxea-
Molnar et al., 2016). The regulatory pathways of TNT formation
and endosomal trafficking are overlapped, both involving the
components of exocyst complex which regulates vesicular
transport from Golgi apparatus to the plasma membrane
(Kimura et al., 2013, 2016; Schiller et al., 2013a; Martin-Urdiroz
et al., 2016). M-sec, part of the exocyst complex interacts with
Ras-related protein-A (RalA, small GTPase) and is required for
TNT formation (Hase et al., 2009; Zhao and Guo, 2009). M-Sec
in cooperation with RalA and the exocyst complex serves as key
factor for the formation of functional TNTs and therefore M-Sec
is considered TNT marker (Ohno et al., 2010).

Other studies demonstrate that formation of some TNTs
might be actinomyosin-dependent (Gurke et al., 2008b;
Bukoreshtliev et al., 2009). Perhaps not surprising, motor
proteins are required for the generation of some forms of TNTs.
For instance, myosin10 (Myo10) is required for TNT formation
from filapodia, where the overexpression of Myo10 results in
increased TNT formation and vesicle transfer between cells
(Gousset et al., 2013). Elevation of Eps8 (an actin regulatory
protein) inhibits the extension of filopodia in neurons and
increases TNT formation as well as intercellular vesicle transfer
(Delage et al., 2016). Several other mechanisms and molecular
basis of TNT formation have been recently described elsewhere
(Kimura et al., 2012; Ranzinger et al., 2014; Desir et al., 2016;
Weng et al., 2016). A recent study has revealed the presence
of actin-like filaments in a subpopulation of EVs, indicating
that some EVs may possess an intrinsic capacity to move (so
called motile EVs; Cvjetkovic et al., 2017). Altogether, these
observations indicate that cells may use motor proteins as
component of both TNTs and EVs for shipping their cargo.

TNTS AND EVS: SYNERGIES IN CARGO
TRANSFER AND INTERCELLULAR
COMMUNICATION

EVs are currently gaining intensive focus of interest in
understanding their role in intercellular communication and
dissemination of bioactive cargo. However, the communication
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assisted via TNTs is less well-known, and indeed it is an
interesting area of research. Interestingly, EVs are implicated in
transporting biomolecules bidirectionally (Nawaz et al., 2016b),
same do the TNTs (Lou et al., 2012). Both EVs and TNTs could
facilitate long range communication between cells. EVs transport
biological material in paracrine fashion i.e., secreted from one
cell and transported to other cell, whereas TNTs transport
biological material through cytoplasmic bridges between cells
located at long distance (Figure 1; Onfelt et al., 2005; Gurke
et al., 2008a; Zani and Edelman, 2010; Zhang, 2011; Wang
and Gerdes, 2012; Valente et al., 2015; Fykerud et al., 2016).
Therefore, TNTs serve a unique way of rapid communication
between long distance cells in the form of direct cellular conduits
and thus, are considered distinct from other mediators of cell-
cell communication or paracrine secreted factors (Frei et al.,
2015).

EVs transport a repertoire of bioactive molecules such as
lipids, proteins, and nucleic acids comprising genomic and
mitochondrial DNA, mRNAs, miRNAs, and other ncRNAs
(Fatima and Nawaz, 2015, 2017b). However, unlike EVs the
TNTs are better known for shipping whole organelles by
direct tubular connections between cells, such as mitochondria,
lysosomes and Golgi vesicles (Rustom et al., 2002, 2004;
Gerdes et al., 2007; Gurke et al., 2008b; Plotnikov et al., 2008;
Wang and Gerdes, 2015; Han et al., 2016; Jackson et al.,
2016; Torralba et al., 2016). The thicker subset of TNTs may

range up to 0.7 microns (Onfelt et al., 2004; Benard et al.,
2015), which is more favorable for the transport of larger
organelles and lysosomal vesicles (Onfelt et al., 2006). TNTs also
transport cytosolic Ca2+ and electrical signals to neighboring
cells (Wang et al., 2010; Smith et al., 2011; Lock et al.,
2016).

TNTs and EVs may exhibit the phenomenon of trogocytosis
that is exchange of membrane fragments, for instance Fas-
L and MHC molecules (Luchetti et al., 2012; Fatima and
Nawaz, 2017a). In addition, TNTs may transport GM1/GM3

(gangliosides) containing vesicles, as well as intercellular
exchange of B7-2 (CD86) molecules and MHC-II which
represent novel pathways of intercellular communication and
immunoregulation (Osteikoetxea-Molnar et al., 2016). Although,
TNTs are characteristically known for organelle transfer however,
like EVs they could also transport proteins and signaling factors
(Gallagher and Benfey, 2005; Reichert et al., 2016; Zhang N.
et al., 2016), lipid droplets (Astanina et al., 2015), nucleic acids
such as miRNAs (Thayanithy et al., 2014b; Climent et al., 2015),
and double-stranded small interfering RNA (Antanaviciute et al.,
2014).

Increasing body of evidence clarifies that both TNTs and
EVs are observed from diverse cell types, including immune,
neuronal, stromal, cancer, and stem cells indicating their diverse
roles in various physiological and pathological conditions.
Organelle transport via TNTs generally represents the states

FIGURE 1 | Tunneling nanotubes and extracellular vesicle mediated intercellular communication and cargo transfer. Tunneling nanotubes transport cellular organelles

such as mitochondria and lysosomes, as well as viruses, viral genome, lipid droplets, intera-cellular vesicles and Ca2+ and electrical signals. Whereas, extracellular

vesicles (exosomes and microvesicles) transport nucleic acids, proteins and lipids between cells. EVs, Extracellular vesicles, inVs, intra-cellular vesicles i.e., Golgi

vesicles and lysosomal vesicles.
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of heteroplasmy, redox/metabolic homeostasis, and the
concomitant pathological conditions (will be discussed in next
sections). Similarly, molecular transport via EVs represents
phenotypic and functional changes in recipient cells. Therefore,
dissemination of various forms of cytoplasmic cargo mediated by
TNTs and EVs exhibits multifaceted roles in human physiology
and pathological states including immunomodulation, infectious
diseases, neurodegenerative disorders, cancer progression,
cellular homeostasis, and repair process that will be discussed in
sections below.

TNTS AND EVS: ROLES IN
IMMUNOREGULATION AND
INFLAMMATORY RESPONSES

Increasing body of evidence has demonstrated the contribution
of EVs in immunomodulation and inflammatory responses
both during normal physiology as well as pathological states
(Zitvogel et al, 1998; Buzas et al., 2014; Robbins and
Morelli, 2014; Nawaz et al., 2016a; Fatima and Nawaz,
2017a; Silva et al., 2017). However, the stimulatory roles of
TNTs in cellular immunity are only recently beginning to
be explored. TNTs have been shown to establish cytoplasmic
bridges between variety of immune cells including human
peripheral blood natural killer (NK) cells, EBV-transformed
B-cells and the macrophages (Onfelt et al., 2004). Indeed,
TNT formation in the context of immunity and inflammation
such as antigen presentation (MHC complexes) has been
widely reported in recent years (Chinnery et al., 2008; Schiller
et al., 2013b; Seyed-Razavi et al., 2013; Campana et al., 2015;
Osteikoetxea-Molnar et al., 2016). Arguably, such functional
connectivity between immune cells may circumvent host defense
against pathogens (Watkins and Salter, 2005; Zaccard et al.,
2016).

Additionally, transfer of H-ras from B-cells to T-cells
indicates that TNTs may activate ras signaling and other
stimulatory effects in recipient cells suggesting their implications
for immunity (Rainy et al., 2013). TNTs between primary
cultures of patient derived human peritoneal mesothelial cells
may present pathophysiological conditions associated with
distribution of cholesterol levels andmay stimulate inflammatory
reactions (Ranzinger et al., 2011). Interestingly, senescence cells
communicate via TNTs to regulate their immune surveillance
by NK-cells and are thought to impact tumorigenesis and
tissue aging (Biran et al., 2015). In this context, EVs have also
been proposed to contribute in the processes of senescence
and aging (Lehmann et al., 2008; Patel et al., 2016; Urbanelli
et al., 2016; Eitan et al., 2017; Takahashi et al., 2017;
Prattichizzo et al., in press). Although, many of the biological
features are similar between EVs and TNTs (McCoy-Simandle
et al., 2016), however it remains unclear whether EVs and
TNTs act simultaneously and cooperatively during intercellular
communication in the context of immune regulation. However,
these are newly described modes of conveying immune
responses being different from classical theories of cellular
immunology.

RESEMBLANCE IN DISSEMINATION OF
DISEASE ASSOCIATED PATTERNS

Neurodegenerative Diseases
Both TNTs and EVs have been implicated in the spread
of misfolded protein aggregates between different cells of
central nervous system (CNS). For instance, Tau and other
prion-like proteins promote the formation of TNTs between
neurons and thus their own intercellular transfer via TNTs
which results in prion-like propagation of Tau assemblies and
propagation of neurodegenerative pathology (Figure 2A; Zhu
et al., 2015; Abounit et al., 2016b; Tardivel et al., 2016).
Astrocytes use intercellular transport by TNTs and EVs for
deliveringmitochondria and neuropathogenic protein aggregates
respectively and serve as mediators in the pathogenesis of
Alzheimer disease (Engel, 2014). Moreover, EVs and TNT-like
structure could supply the routes for the transfer of transactive
response DNA-binding protein of 43 kDa (TDP-43) aggregates,
whereas selective inhibition of their biosynthesis may interrupt
the progression of TDP-43 proteinopathy (Ding et al., 2015).
In fact, TDP-43 accumulation throughout the nervous system
represents the development of neurodegenerative diseases such
as amyotrophic lateral sclerosis and frontotemporal dementia
(Ding et al., 2015). It has been proposed that intercellular
dissemination of neuropathogenic proteins via TNTs could also
cause damage to mitochondrial and/or mitochondrial DNA
(mtDNA) in recipient cells and overall cellular degeneration
(Agnati et al., 2010).

Additionally, fibrillar α-synuclein (α-syn) aggregates in
lysosomal vesicles are transported between neurons via TNTs
indicating the role of TNTs and lysosomes in the progression of
synucleinopathies (Abounit et al., 2016a). TNT serve as conduits
for α-syn transfer between non-neuronal cells during Parkinson’s
disease (Dieriks et al., 2017). Similarly, prion-infected astrocytes
can disseminate prion (PrPSc) to neurons via TNTs and may
contribute to disease progression (Victoria et al., 2016). In a way
similar to viruses, the prions may highjack TNTs for spreading
infectious agents such as PrPSc in neuronal cells (Gousset
et al., 2009). Similar roles have been shown for EVs which
transport α-synuclein, β-amyloid, and PrPSc and contribute
in neurodegenerative diseases (Rajendran et al., 2006; Alvarez-
Erviti et al., 2011; Bellingham et al., 2012; Guo et al., 2016; Loov
et al., 2016; Vella et al., 2016).

TNTs and EVs: Novel Routes of Viral
Infection
Although, TNTs are characteristic of facilitating the exchange of
organelles between cells, and pathogenic proteins from infected
cells to naïve cells; however it remains unclear whether the
viral genome is also transferred via TNTs and whether this
route of transfer could result in replication of viral genome
in the recipient cells. In this context, recent evidence show
that influenza virus potentially exploits TNT networks for
transferring viral proteins and the genome from infected to
naïve cells (Kumar et al., 2017). Authors argue that influenza
uses these networks for evading immune and antiviral defenses
and provide an explanation for the propagation of influenza
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FIGURE 2 | Roles of tunneling nanotubes and extracellular vesicles in pathogenesis of diseases. (A) TNTs and EVs transport neuropathogenic proteins and genetic

content between neurons, astrocytes and pericytes and result into neurodegenerative pathology such as tauopathies and synucleinopathies including Alzheimer and

Parkinson’s disease. (B) Viruses highjack both TNTs and EVs for the propagation of viral infection. Viral RNA/proteins are incorporated into EVs via endosomal pathway

and are transferred to unaffected naïve cells; whereas viruses may use direct transfer to naïve cells via TNTs. In both modes of propagation, the recipient cell may

undergo cell death or transformed into infected cell pathology further spreading the infection to other cells. TNTs, Tunneling nanotubes; EVs, Extracellular vesicles.
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infections and vaccine failures. It has been shown that the
icosahedral protein-rich membrane of virus could transform into
a tubular structure (i.e., TNT), whereby internal diameter of the
tube allows translocation of double-stranded DNA from one cell
to the other (Peralta et al., 2013).

A protein encoded by the herpes simplex virus NV1066
named as enhanced green fluorescent protein (eGFP) was
expressed in infected cells and transferred to uninfected recipient
cells via TNTs. Particularly, the increased fluorescent activity was
observed in recipient cells indicating the functional transmission
of NV1066 virus expressed eGFP from affected to naïve cells
(Ady et al., 2016). Moreover, following the viral thymidine
kinase mediated activation of ganciclovir; TNTs could potentially
mediate cell death as a form of direct cell-to-cell transfer. It
is a unique form of long-range bystander effect underlying
transmission of activated ganciclovir to nonvirus-infected cells.
To this particular interest, authors argue that TNTs could
be harnessed for the delivery of oncolytic viruses as well as
viral thymidine kinase activated drugs in order to amplify the
bystander effect between long distance cancer cells in a stroma-
rich tumor microenvironments (Ady et al., 2016).

Cellular and molecular mechanisms that facilitate HIV
infection in CNS could exploit the routes of intercellular
communication via TNT for spreading the infection within CNS
and may exhibit different forms of neuropathogenesis (Hazleton
et al., 2010; Malik and Eugenin, 2016). It has been shown
that HIV-infection of human macrophages induces the transient
formation of short and long range TNTs, where distinct HIV
vesicles are found to be localized in TNTs. This indicates that
HIV hijacks TNTs communication to spread the pathogenesis of
AIDS (Eugenin et al., 2009). Similarly, Retroviruses and Vaccinia
virus could establish filopodial and TNT bridges between cells
to spread the infection (Sherer and Mothes, 2008). TNTs
have also been shown to facilitate HIV-1 transmission from
activated T-cells to uninfected T-cells in a receptor-dependent
manner (Sowinski et al., 2008, 2011). Transmission of HIV-1 via
intercellular connections has been estimated far efficient than a
cell-free process, perhaps in part explaining the persistent viral
spread in the presence of neutralizing antibodies (Sowinski et al.,
2008; Kumar et al., 2017). The coordination of exocyst complex
and Nef protein (both are stimulators of TNT formation) is
involved in polarized targeting for intercellular transfer of viruses
and viral proteins (Mukerji et al., 2012; Hashimoto et al.,
2016).

Like their role in TNTs, viruses could also highjack EVs
for viral pathogenesis Figure 2B; Pegtel et al., 2010, 2011;
Schwab et al., 2015; Nolte-’t Hoen et al., 2016; Sadeghipour and
Mathias, 2017). In fact, viruses use EVs from their infected cells
for delivering viral-RNA to uninfected cells, and this delivery
is functional in recipient cells for the dissemination of viral
infection (Pegtel et al., 2010). Interestingly, physical and chemical
characteristics of biogenesis pathways of EVs resemble those
of retroviruses, whereby viruses exploit the endosomal pathway
for incorporating viral-RNA and viral-proteins into EVs being
generated from virus-infected cells (Pegtel et al., 2011; Nolte-’t
Hoen et al., 2016). Thus, viral factors from affected cells could
be disseminated to uninfected cells via EVs and exhibit enhanced

latent infection to surrounding cells (Schwab et al., 2015; Baglio
et al., 2016).

Resemblance in Cancer Progression
There is increased interest in understanding how EVs may
facilitate tumor progression, metastasis, and development of
resistance against therapies. However, the discovery of TNTs
sheds light on novel mechanisms for networking between cancer
cells and represents alternative way of transferring cellular
contents that confer cancer progression and/or resistance to
therapies. Several cancer cell types, in particular malignant
mesothelioma cells including primary malignant cells from
human patients have been extensively reported to exhibit efficient
way of communication by TNTs and implicated in dissemination
of oncogenic content (Lou et al., 2012; Ady et al., 2014;
Antanaviciute et al., 2014; Desir et al., 2016). Interestingly,
when mesothelioma cells were co-cultured with exogenous
mesothelioma-derived EVs, the cancer cells exhibited accelerated
rate of TNT formation indicating that EVs impact the TNT
formation (Thayanithy et al., 2014a).

Xenograft model of breast cancer using eGFP-expressing mice
showed that transferrin receptor is transferred from tumor cells
to stromal cells in-vivo and this process is strongly correlated with
an increased opposite transfer of eGFP from stromal to tumor
cells. This suggests that TNTs mediate complex intercellular
communication between stromal elements within tumor niche
(Burtey et al., 2015). Tumor stromal cross-talk could also be
explained from potential of TNTs in transferring oncogenic
miRNAs via direct connections between cells (Thayanithy et al.,
2014b). The similar mode of stromal cross-talk has been shown
by EVs (Fatima and Nawaz, 2015; Webber et al., 2015; Choi et al.,
2017). Although, EVs are implicated in the transfer of oncogenic
miRNAs between cells; however TNT-mediated transfer seems to
be distinct form of inter-cellular transfer.

TNTs between astrocytes and glioma cells facilitate transfer
of oncogenic material and alter the proliferation potential of
glioma cells (Zhang and Zhang, 2015). Interestingly, there has
been shown a positive correlation between TNT formation
and EV release in glioblastoma cells against cocaine in a
dose dependent manner (Carone et al., 2015). This indicates
the combined contribution of TNT and EVs in intercellular
communication and glial-neuronal plasticity and may participate
in the processes associated with cocaine addiction. Recently, it
has been reported that TNTs could transfer microsized particles,
which were produced by cancer cells in response to radio
therapy (Ware et al., 2015). Importantly, cancer cells may use
TNTs for developing resistance to therapies by transferring P-
glycoprotein and mitochondria (Pasquier et al., 2012, 2013). Like
TNTs, EVs have also been extensively demonstrated for their
roles in multidrug resistance owing to transfer of biomolecules
between cells that foster recipient cell properties to resist
chemo/radiotherapies (Fatima and Nawaz, 2017b).

Chemotherapies to acute myeloid leukemia (AML) such as
cytarabine and daunorubicin treatment has been shown to
inhibit TNT formation (Omsland et al., 2017). Interestingly,
daunorubicin was found to localize to lysosomes within TNTs
formed between AML cells indicating a novel function of TNTs
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as drug transporting devices. Similarly, primary B-cell precursor
acute lymphoblastic leukemia (BCP-ALL) cells communicate
with primary mesenchymal stromal cells (MSCs) via TNTs
which stimulates the secretion of prosurvival cytokines (Polak
et al., 2015). This indicates that TNT signaling is important
for the viability of patient-derived BCP-ALL cells. Moreover,
TNT guided signaling induces stroma-mediated prednisolone
resistance in B-cell precursor ALL cells. This is a novel
communication mechanism by which ALL cells modulate their
bone marrow microenvironment. The identification of TNT
signaling in ALL-MSC communication gives insight into the
pathobiology of ALL and opens new avenues to develop more
effective therapies that interfere with the leukemic niche.

TNTS AND EVS: IMPLICATIONS IN
REGENERATIVE/REPAIR PROCESSES

The transfer of mitochondrial or mtDNA between mammalian
cells including stem cells and mitochondria associated
bioenergetics are increasingly being considered more dynamic
process than previously thought (Spees et al., 2006; Rustom,
2016). MSCs are thought to transfer mitochondria to several
different cell types including epithelial cells, endothelial
cells, and cardiomyocytes (Plotnikov et al., 2008). In fact,
such transfer may have positive effects on maintaining
bioenergetics, enhancing cell survival, and ameliorating
organ functions in conditions when mitochondria in resident
cells are damaged and cells are facing oxidative stress. This
includes the conditions of ischemic reperfusion, hypoxic
or anaerobic conditions (Liu et al., 2014; Ham and Raju,
in press), distressed cardiomyocytes and cardiomyopathy
(Figeac et al., 2014; Yang et al., 2016; Zhang Y. et al., 2016),
vascular injury (Vallabhaneni et al., 2012), intervertebral disc
degeneration (Hu et al., 2015), corneal injury (Chinnery
et al., 2008; Jiang et al., 2016), airway injury and allergic
airway inflammation (Ahmad et al., 2014), acute lung
injury (Islam et al., 2012), and acute respiratory disease
(Jackson et al., 2016). As such, TNT-mediated intercellular
communication and mitochondria transfer between stem cells
and injured cells have multipotential ways to persevere cell
and organ integrity. Interestingly, EV-mediated intercellular
communication between stem cells and injured cells and
concomitant dissemination of prosurvival growth factors, and
angiogenic factors via EVs have been extensively implicated in
tissue repair and ameliorating organ function (Nawaz et al.,
2016b).

The contribution of TNTs in lysosomal transfer from
endothelial progenitor cells to stressed endothelial cells has been
attributed in reducing premature senescence and vasorelaxation
(Yasuda et al., 2011). This healing effect is preserved by
reconstituting lysosomal pool of stressed cells. Additionally,
multisystemic lysosomal storage disease (termed cystinosis)
could be repaired by TNT-mediated cross-correction (Naphade
et al., 2015). Therefore, transport of cystinosin-bearing lysosomes
into cystinosin-deficient cells via TNTs is a potential way of
repairing lysosomal disorders (Gaide Chevronnay et al., 2016).

TNT-mediated communication between MSCs and renal
tubular cells with extensive spontaneous intercellular exchange of
cytoplasmic material contributes to renal physiology (Plotnikov
et al., 2010; Domhan et al., 2011; de Cavanagh et al., 2014),
as has been shown by MSC-derived EVs (Grange et al., 2014;
Gu et al., 2016). Similarly, the regulation of TNTs between
neural stem cells and brain microvascular endothelial cells
could rescue brain function (Wang et al., 2016). TNTs facilitate
peripheral nerve regeneration through the regulation of neural
cell communications (Zhu et al., 2016), the same do EVs
(Ching and Kingham, 2015; Lopez-Leal and Court, 2016). It
has been reported that ribosome recruitment to axons occurs
via lateral transfer from glial cells, a mechanism that could
be part of development and a continuum of intercellular
communication systems including TNTs and EVs (Twiss and
Fainzilber, 2009).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

EVs are currently a focus of intensive interest in understanding
their role in intercellular communication, dissemination of
bioactive cargo, and their contribution in the progression of
various diseases. Albeit, TNTs are comparatively less described
nonetheless, they hold a great potential not only in studying
cellular communication but also their multifaceted roles in
disease progression and tissue repair. Given the fact that they
transport organelles and regulate cellular bioenergetics; TNTs
could be best exploited in treating organelle specific diseases in
particular those associated with mitochondrial and lysosomal
disorders.

Better understandings on the roles of nanotubes in tumor-
stromal cross-talk could help to identify new selective targets for
cancer therapeutics. Therefore, interfering with central routes of
intercellular cross-talk via these membranous cellular tubes and
EVs in separate or simultaneously could offer strong potential
to explore novel strategies for directed therapy. If we develop
mechanistic insights into the formation of TNTs and release of
EVs, modes of cargo transfer, and their functional consequences;
TNTs and EVs might one day be used as vectors of drug delivery
against multiple diseases.
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