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Abstract

Ebola viruses (EBOVs) have been identified as an emerging threat in recent year
as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for
EBOVs remains a top priority because a mere progress has been made in this
regard. Another reason is the lack of antiviral drug and licensed vaccine although
there is a severe outbreak in Central Africa. In this study, we aimed to design an
epitope-based vaccine that can trigger a significant immune response as well as to
prognosticate inhibitor that can bind with potential drug target sites using
various immunoinformatics and docking simulation tools. The capacity to induce
both humoral and cell-mediated immunity by T cell and B cell was checked for
the selected protein. The peptide region spanning 9 amino acids from 42 to 50
and the sequence TLASIGTAF were found as the most potential B and T cell
epitopes, respectively. This peptide could interact with 12 HLAs and showed
high population coverage up to 80.99%. Using molecular docking, the epitope
was further appraised for binding against HLA molecules to verify the binding
cleft interaction. In addition with this, the allergenicity of the epitopes was also
evaluated. In the post-therapeutic strategy, docking study of predicted 3D
structure identified suitable therapeutic inhibitor against targeted protein.
However, this computational epitope-based peptide vaccine designing and target
site prediction against EBOVs open up a new horizon which may be the
prospective way in Ebola viruses research; the results require validation by in vitro
and in vivo experiments.

Introduction

The curse of Ebola virus is not new; it is almost several
decades older, but now the disasters caused by Ebola virus
is severe than ever, and it may become even worse if we
do not pay proper attention. Ebola viruses (EBOVs)
belong to the Filoviridae family and are negative-strand
RNA, non-segmented, enveloped viruses. They are
responsible for causing fatal haemorrhagic fever in human
and non-human primates with a fatality rate up to 90%
[1, 2].

Ebola virus infection in human is characterized by an
immediate onset of flu-like illness, followed a preliminary
incubation period of 2–21 days. After this initial period of
infection, the sign and symptoms of the disease became
prominent which include nausea, anorexia, chest pain,
vomiting, neurological complications, cough, oedema,
postural hypotension and mucosal haemorrhage [3]. Trans-
mission of EBOVs occurs among human and non-human

primate such as chimpanzees or gorillas through direct
contact with infected bodily fluids, blood, from an infected
person or animal; even the intentional release of EBOVs
may also cause mucosal infection by aerosol dispersion
[4–6].

Up to now, five different strains of EBOV have been
identified: Sudan (SEBOV); Ivory Coast; Zaire (ZEBOV);
Reston and the most recently identified strain Bundibugyo
[7]. Among them, SEBOV and ZEBOV are considered as
the most commonly occurring infections with the highest
number of deaths. The most current occurrence of Ebola
virus reported in Guinea in December 2013 [8, 9] and
afterwards spread to Liberia, Sierra Leone and Nigeria [10].
The unpredictable size and scale of this current outbreak
has the capability to destabilize already delicate economies
and health care. Wild-type Filovirus infection is considered
to be the most deadly one having mortality rate as high as
90% in human cases only [11]. This high mortality rates,
deficiency of treatment and vaccination make Ebola virus a
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potential public enemy and a category of biothreat
pathogen [12].

Several attempts have been made to develop effective
vaccine against Ebola virus due to its reoccurrence and
deadly nature.

An ideal vaccine which initiates both humoral and cell-
mediated immune response is essential to completely
eradicate the chance of re-infection. Vaccine design
methods based on T cell epitope can be characterized as
the recognition of immune-dominant epitopes of the virus
and synthesizing it to be utilized as vaccines to induce
effective immune response [13]. These assessments enhance
the possibility of an ideal vaccine candidate. Computer-
based prediction tools reduce the number of validation
experiments and time for epitope prediction [14]. There are
a number of epitope prediction tools now available on the
Web, and bioinformatics-based prediction of CTL epitopes
has gained huge popularity in drug design and develop-
ment activity.

Conventional vaccines are usually prepared based on
either attenuated or inactivated whole pathogen. This
approach has a number of limitations, but among them,
safety is the most fundamental problem, because pathogens
that are utilized for vaccination may revert to its patho-
genic form and can cause infection. Moreover, genetic
variation of these pathogens all over the globe may results
in reduced efficiency of these vaccines in different parts of
the world. But vaccine designing methodology such as
DNA vaccines and epitope-based vaccines have the capa-
bility to overcome these obstacles for the development of
vaccine that can initiate more effective, specific, strong and
long-lasting immune response with minimal cost and side
effects [15]. The method of epitope-based vaccine devel-
opment has been reported against rhinovirus [16], dengue
virus [17], human coronaviruses [18], chikungunya virus
[19] and Saint Louis encephalitis virus [20]. Although,
most the epitope-based vaccines are developed based on B
cell epitopes, the potentiality of T cell epitope-based
vaccine is also promising because CD8+ T cell can induce a
more effective immune response of the host cell to the
infected T cells [21].

Various potential vaccine candidates that are developed
based on the EBOV-GP have been successfully exhibited
protection in non-human primates: Ebola virus-like parti-
cles [22]; a replication-deficient adenovirus expressing the
EBOV-GP [23–25]; a replication-competent vesicular
stomatitis virus expressing EBOV-GP [26, 27]; and a
recombinant paramyxovirus expressing EBOV-GP [28].

Many Ebola vaccine candidates had been developed in
the decade prior to 2014 [29], but none has yet been
approved for clinical use in humans. Two vaccine candi-
dates currently being tested in humans are the ChAd3-
ZEBOV vaccine, being developed by GlaxoSmithKline, in
collaboration with the United States National Institute of
Allergy and Infectious Diseases, and the rVSV-ZEBOV

vaccine, being developed by New Link Genetics and Merck
Vaccines USA, in collaboration with the Public Health
Agency of Canada. Both vaccines have shown to be safe and
efficacious in animals [30–32].

In our present study, we attempted to recognize major
immunogenic epitopes on Ebola viral proteins and predict
a vaccine as well as effective inhibitor binding sites.
Simultaneously, we also performed a genomewide search to
recognize the most suitable drug target site and simulated
inhibition of the target site by a predicted inhibitor
molecule by utilizing bioinformatics tools. The study will
enhance further future laboratory-based attempts develop-
ing effective treatment and prevention of Ebola virus
infection.

Materials and methods

The flow chart representing the overall procedures of
peptide vaccine development and target site depiction for
Ebola virus is illustrated in Fig. 1.

Epitope-based vaccine design

From the complete proteome of EBOVs, the amino acid
sequences were retrieved using UniProt Knowledge Base
(UniProtKB) database in FASTA format excluding the
variable region. UniProtKB can be defined as the exclusive
protein sequence and annotation information server which
provide functional information about proteins with accu-
racy and consistency. A number of non-structural proteins
(NSP) were expelled from this selection. Then, analyses of
the sequences were conducted to study antigenicity,
solvent-accessible regions, surface accessibility, flexibility
and MHC class-I binding sites [33, 34].

Proteins were submitted in the VaxiJen v2.0 server
which was utilized for the prediction of effective antigens
and subunit vaccines using defaults parameter [35]. Plain
sequence format was uploaded, and virus was chosen as
target organism. All antigenic proteins were then sorted
out accordingly their relevant score in an excel file. Only
one antigenic protein having the highest antigenicity score
was selected to carry out further the evaluation.

Constant predictions of CTL epitopes are very essential
for designing coherent vaccine. For this purpose, NetCTL-
1.2 [36], an internet-based server devised for identifying
human CTL epitopes in a target protein was used. The total
score was then calculated by summing up the values of
TAP transport efficiency, proteasomal cleavage and MHC-I
molecules binding affinity. For our present study, we set
the parameter at 0.5 which have sensitivity and specificity
of 0.89 and 0.94, respectively. Five highest score contain-
ing epitopes were selected for further dry laboratory
experimentation. IC50 values to determine the binding
affinity of peptide with MHC-I molecules [37] were
calculated by utilizing the stabilized matrix base method
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(SMM) [38]. For both frequent and non-frequent allele,
peptide length was defaulted at 9 amino acids prior to
prediction. For further validation, we only selected the
alleles with less than 200 nm binding affinity IC50. To
calculate the processing score, TAP score, proteasomal
cleavage score and MHC-I binding affinity, an additional
IEDB analysis resource tool was also used. We also
implemented the SMM tool to predict these scores for
every single selected peptide [39].

Epitope conservancy prediction for each epitopes was
calculated using the IEDB analysis resource [40].

Using IEDB population coverage tool, population
coverage for individual epitope was calculated. Every
epitope and their MHC-I molecules were added, and
population coverage area was also selected earlier before
submission [40].

AllerHunter, an online server, was implemented to
predict the allergenicity of the selected epitope. This server
predicts allergenicity utilizing a combinational prediction
method, where combined allergenicity assessment proto-
cols of the Food & Agriculture Organization (FAO) and
World Health Organization (WHO) were followed with
the support vector machines (SVM)-pairwise sequence
similarity. AllerHunter predict both allergen and non-
allergens with high specificity which contributes Aller-
Hunter to be a very comprehensive tool for allergen cross-

reactivity prediction [41, 42]. To make stronger the
AllerHunter prediction, allergenicity was also checked by
another online tool named AllerTop 2.0 (http://www.ddg-
pharmfac.net/AllerTOP/).

The highest conserve TLASIGTAF epitope was sub-
mitted to PEP-FOLD [43] server to conduct docking
simulation study which provided 5 probable 3D structures.
The best model was taken to study the interactions with
HLAs.

A docking analysis is conducted to ensure the interac-
tion between HLA molecules and our targeted epitope by
implementing AutoDockVina [44]. We retrieved 3LKM (a
crystal structure of HLA-B*3501) from the RCSB database
to perform docking analysis [45]. Before performing the
docking analysis, the NP418 epitope of influenza, which
form a complex with the HLA-B*3501 binding groove
[46], was eliminated by utilizing Discovery Studio [47].
First docking study between predicted epitope and
prepared HLA-B*3501 was performed followed by influ-
enza NP418 epitope and prepared HLA-B*3501.

B cell epitope prediction tools of IEDB were used to
predict linear B cell epitopes based on the highest
immunogenic protein sequence. The most important
properties for predicting B cell epitopes are flexibility,
antigenicity, surface accessibility, hydrophilicity and linear
epitope predictions [48]. We analysed the flexibility,

Figure 1 Graphical representation of Peptide vaccine design and target site depiction against Ebola viruses.
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antigenicity, surface accessibility, hydrophilicity and linear
epitope predictions of our selected highest antigenic
protein using the Karplus and Schulz flexibility prediction
[49], Kolaskar and Tongaonkar antigenicity scale [50],
Emini surface accessibility prediction [51], Parker hydro-
philicity prediction [52] and Bepipred linear epitope
prediction algorithms [53], respectively, of IEDB analysis
resource. A number of wet laboratory studies stated that
the antigenic portion was located in beta-turn regions of a
protein [54]. Chou and Fasman beta-turn [55] prediction
method was utilized for analysing that region.

Target site analysis

For the assessment of different physiological and chemical
characteristics of the selected protein, several tools such as
ProtParam [56] and self-optimized prediction method with
alignment (SOPMA) of Expasy server were utilized.
Isoelectric point (pI), molecular weight, amino acid
composition, grand average hydropathicity (GRAVY),
estimated half-life, extinction coefficient [57], instability
index [58] and aliphatic index [59] of the protein were
calculated using default parameters through ProtParam.
Properties such as solvent accessibility, globular regions,
transmembrane helices, random coil, bend region and
coiled-coil region were anticipated by SOPMA.

For functional analysis of this protein, a specialized tool
PFP from Kihara Bioinformatics Laboratory (http://kiha-
ralab.org/web/pfp.php) was used. The retrieved amino acid
sequence in FASTA format was used as input data.
GlobPlot 2.3 (http://globplot.embl.de/) was used for the
prediction of disease-causing regions.

Modeller 9.14 through HHpred was implemented for
predicting the three-dimensional (3D) structure of the
selected protein [60, 61]. FASTA format data were
submitted, and intensive modelling option was selected
to yield protein model. ModRefiner [62] was used to refine
homology predicted protein structure. In our current
study, refinement was performed for several times to get
better minimized protein energy. Lastly, the protein was
visualized by Swiss-PDB Viewer [63]. For the assessment of
accuracy and stereochemical properties of the predicted
model, PROCHECK was performed by Ramachandran
plot analysis [64] utilizing ‘protein structure and model
assessment tools’ of SWISS-MODEL workspace. Refined
PDB format of the protein was submitted, and 2.5 �A
resolution value was selected. Protein structure assessment
and 3D profiling of the predicted protein and model
quality estimation were performed by ERRAT [56] and
QMEAN [65], respectively. All the parameters were kept
default for the above evaluation tools.

Active site analysis gives a clear perception about the
docking simulation study. The active binding sites of the
protein were searched accordingly to the structural asso-
ciation of template and the model construct with CASTp

(computed atlas of surface topography of proteins) [66]
server. This was utilized to identify and determine the
binding sites, surface structural pockets, internal cavities of
proteins and active sites, area, shape and volume of every
pocket. The measurement of the hydrophobicity of desired
protein sequences also represents many biophysical conse-
quences, for example protein–protein or protein–ligand
binding which play an important role in drug design.
Discovery Studio 4.0 client (http://accelrys.com/products/
discovery-studio/) has been employed in this regard.

Result

Epitope-based peptide vaccine design

As a result of our query for Ebola virus structural and non-
structural protein, 282 hits are generated in total. All the
proteins were assessed by VaxiJen server. The capability of
each protein sequence to initiate an immune response is
indicated by the overall score produced by the specific
protein sequence using VaxiJen server. The protein
sequence having the UniprotKB ID: K4G1K7 achieved
the highest score of 0.7024 in VaxiJen analysis among all
the query proteins. The protein itself is named as the L
protein comprising of 128 amino acids which is also known
as RNA-dependent RNA polymerase. In our present study,
we have selected this protein to carry out further analysis.

NetCTL server was utilized to predict the T cell
epitopes of the protein. The first 5 epitopes VEIKTGFKL,
GFKLRSAVM, ARVAASLAK, TSACGIFLK and TLA-
SIGTAF were selected according to the highest combina-
torial score. Based on the IEDB MHC class-1 binding
prediction tool, the previously selected epitopes were found
to be identified by a range of MHC class-1 molecule. In
this study, we opted for the selection of the MHC-I
molecules with coupled IC50 value less than 200 nm (IC50

<200), this ensured the selection of the MHC-I molecules
(Table 1) for which the selected epitopes showed higher
affinity. MHC-I processing efficiency tool of IEDB gener-
ates an overall score for every epitope accordingly their
proteasomal cleavage efficiency, TAP transport efficiency
and MHC-I binding efficiency combined. The combined
score represented the potentiality of the peptides for
presentation, the higher the score, the better they are, and
this is the most crucial step for initiating a successful
immune response. The scores obtained from IEDB MHC-I
binding analysis and processing tools are summarized in
Table 1. Identification of epitopes by HLA molecules
combined with effective determines the intensity of
immune response. So, a peptide recognized by the highest
number of HLA alleles possesses the highest potentiality to
initiate a strong immune response. Among the 5 epitopes
studied, one epitope has interacted with higher number of
HLA alleles than the other epitopes. The 9-mer epitope
TLASIGTAF showed affinity for highest 12 MHC-I
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molecules including HLA-C*03:03, HLA-A*32:07, HLA-
B*27:20, HLA-A*68:23, HLA-C*14:02, HLA-B*15:01,
HLA-B*15:02 (0.47) HLA-A*02:50, HLA-B*15:03,
HLA-A*02:02, HLA-A*32:15 and HLA-A*32:01.

Conserved epitopes can give a more successful immu-
nization; therefore, better conservancy of an epitope is
expected. Epitope conservancy analysis exposed (Table 1)
the epitope ARVAASLAK to be 76.00% conserved
whereas epitope TLASIGTAF scored 76.60%. Other three
epitopes VEIKTGFKL, GFKLRSAVM and TSACGIFLK
showed 74.47%, 72.34% and 70.21% conservancy, respec-
tively.

For every epitope, the MHC-I binders that were
recognized as optimum were then selected for the popu-
lation coverage analysis. Identified optimum MHC-I
binders for each epitopes were considered for the popula-
tion coverage analysis of the epitopes. The epitopes
indicated that 59.30% coverage in West Africa along
with 55.93% and 60.89% coverage in Central Africa and
North Africa, respectively. In some recently Ebola virus-
infected area such as Uganda, Sudan and Mali, the epitopes
revealed 61.84%, 69.09% and 52.56% population cover-
age, respectively. The population coverage analysis of the
selected epitopes is tabulated in Table 2.

The query sequence does not meet the standard set by
the FAO/WHO evaluation scheme for cross-reactive
allergen prediction. As a result, the query sequence is
considered as a non-allergen by the FAO/WHO evaluation
scheme. AllerHunter revealed the query sequence as a non-
allergen with score of 0.02. (SE = 94.4%, SP = 70.3%) in
contrast, AllerTop 1.0 disclosed our selected sequence as
probable allergen. The probability to be food and inhalant
was 33.3.

Table 1 Most potential 5 T cell epitopes with interacting MHC-I alleles,

total processing score and epitope conservancy result..

Epitope

Interacting MHC-I allele with

an affinity <.200 (total score of

proteasome score, TAP score,

MHC score, processing score

and MHC-I binding)

Epitope conservancy

analysis result (%)

VEIKTGFKL HLA-A*02:17 (0.74) 74.47

HLA-A*02:50 (0.48)

HLA-B*40:01 (0.23)

HLA-A*32:07 (0.20)

HLA-B*27:20 (0.09)

HLA-C*03:03 (0.06)

HLA-C*12:03 (0.05)

HLA-B*40:13 (�0.02)

HLA-B*15:02 (�0.04)

HLA-A*68:23 (�0.07)

GFKLRSAVM HLA-C*12:03 (0.34) 72.34

HLA-A*68:23 (0.05)

HLA-A*32:07 (0.03)

HLA-B*27:20 (0.02)

HLA-C*03:03 (�0.33)

HLA-A*02:17 (�0.49)

HLA-C*14:02 (�0.60)

HLA-A*32:15 (�0.77)

HLA-B*40:13 (�0.98)

ARVAASLAK HLA-B*27:20 (0.64) 76.24

HLA-C*03:03 (�0.23)

HLA-C*12:03 (�0.38)

HLA-A*32:07 (�0.75)

HLA-A*68:23 (�0.76)

HLA-C*14:02 (�0.84)

HLA-B*27:05 (�1.03)

TSACGIFLK HLA-B*27:20 (0.25) 70.21

HLA-A*11:01 (�0.10)

HLA-A*68:01 (�0.16)

HLA-A*32:07 (�0.44)

HLA-C*03:03 (�0.51)

HLA-B*40:13 (�0.56)

HLA-A*68:23 (�0.75)

HLA-C*12:03 (�0.81)

HLA-C*07:01 (�0.95)

HLA-A*03:01 (�1.11)

TLASIGTAF HLA-C*03:03 (1.32) 76.60

HLA-A*32:07 (0.94)

HLA-B*27:20 (0.83)

HLA-A*68:23 (0.67)

HLA-C*14:02 (0.56)

HLA-B*15:01 (0.49)

HLA-B*15:02 (0.47)

HLA-A*02:50 (0.43)

HLA-B*15:03 (0.42)

HLA-A*02:02 (0.27)

HLA-A*32:15 (0.23)

HLA-A*32:01 (0.20)

Table 2 Population coverage calculated by epitopes..

Population Coverage (%)a Average hitb PC90c

East Asia 65.78 2.04 0.29

South-East Asia 69.00 1.54 0.32

Europe 77.57 2.08 0.45

West Africa 59.30 0.93 0.25

Central Africa 55.93 1.00 0.23

North Africa 60.89 1.25 0.26

North America 65.19 1.46 0.29

United States 65.86 1.48 0.29

Australia 65.43 1.73 0.29

Papua New Guinea 70.24 1.81 0.34

Pakistan 69.75 1.44 0.33

Philippines 70.95 1.72 0.34

Germany 80.99 2.19 0.53

Uganda 61.84 1.25 0.26

Sudan 69.09 1.70 0.32

Mali 52.56 0.97 0.21

United States Asian 71.42 1.87 0.35

United States Caucasoid 78.29 2.05% 0.46

United States Polynesian 72.57 2.88 0.36

aProjected population coverage.
bAverage number of epitope hits/HLA combinations recognized by the

population.
cMinimum number of epitope hits/HLA combinations recognized by 90%

of the population.
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By evaluating the five initially chosen epitopes, it was
found that the epitope ‘TLASIGTAF’ was the most ideal
one as a vaccine candidate than other epitopes by
considering its overall epitope conservancy, population
coverage and by the affinity for highest number of HLA
molecules.

AutoDockVina predicted the binding mode for the
epitope TLASIGTAF with HLA molecules. To conduct
further analysis, we first retrieved HLA-B*3501 attached
with influenza NP418 epitope crystal structure. After that
docking simulation was performed with NP418 epitope
eliminated HLA molecule. The binding energy of pre-
dicted epitope with HLA-B*3501 receptor was found to be
�6.2 kcal/mol. The binding energy of influenza NP418
epitope was then compared to HLA-B*3501 epitope which
was �7.6 kcal/mol. The 3D structures shown in Fig. 2 of
HLA and Epitope are visualized and captured with Pymol
molecular graphics system (Version 1.5.0.3).

The query protein was evaluated to identify B cell
epitopes by various online tools available in IEDB.
Kolaskar and Tongaonkar antigenicity prediction tool
evaluated the protein for B cell epitopes analysing the
physicochemical properties of the amino acids and their
profusion in recognized B cell epitopes. The tool provided
a result predicting an average antigenic propensity value of
1.043 for the protein with the maximum value of 1.214
and minimum of 0.915. The tool was tagged with the
targeted value of 0.920 to scan for antigenically potent
regions, and about all regions showed desired B cell epitope
properties. Surface accessibility of B cell epitopes is
essential because hydrophilic regions are usually exposed
on the surface and likely to initiate B cell immune
response. The Emini surface accessibility prediction and
Parker hydrophilicity prediction tools were utilized. The
highest surface accessible region was from 39 to 52 amino
acid sequences. On the other hand, the most hydrophilic
region was between 42 and 50 amino acid sequences. The

beta-turns in a protein are usually surface accessible and
exhibit hydrophilic nature. Chou and Fasman beta-turn
prediction was performed for the protein to find the beta-
turn regions in the query protein as beta-turns have an
important consequence in initiating antigenicity. Gener-
ated outcomes recognized regions from 23 to 29, 41 to 51
and 87 to 100 with constant predicted B-turn region.

Flexible regions on the query protein can be recognized
using Karplus Schulz flexibility prediction tool. The
regions from 13 to 20, 39 to 51, 96 to 102 and 115 to
121 are considerably the most favourable region in the
flexibility prediction analysis. Linear B cell epitopes were
determined by utilizing Bepipred, a machine learning
process based on hidden Markov model. The region from
38 to 55 is also the most favourable region in Bepipred
linear epitope prediction.

After cross-processing all the data obtained from the
previous B cell epitope prediction tools, the region from 42
to 50 amino acids is found to be the best capable region for
inducing B cell response. The overall result of B cell
epitope analysis was represented in Figure S1.

Target site analysis

Structural features and function of protein are interrelated.
ProtParam generated results provided 43.28 instability
index (II), 90.78 aliphatic index and negative GRAVY
(grand average hydropathy) of 0.120 for the protein.
SOPMA calculated the secondary structural features of the
protein and reported that the protein is dominated by
alpha-helix 38.28%, consisting random coils and extended
strands formed 23.44% and 23.44% of the protein,
respectively. Lastly, it showed beta-turns constituting
14.84%. The parameters calculated by both the tools are
shown in Tables S1 and S2, respectively.

The functions of protein under study were predicted by
PFP from Kihara Bioinformatics Laboratory, which uses

A B

Figure 2 Docking simulation analysis revealed by AutodockVina. (A) 3D structure of our predicted epitope, ‘TLASIGTAF’ and (B) visualization of

docking results of ‘TLASIGTAF’ with HLAB*3501.
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references from Gene Ontology. These are shown in
Table S3. The result from GlobPlot 2.3 was used to
identify three disease-causing regions (Figure S2).

A 3D structure of the Ebola L protein was predicted
utilizing Modeller 9.11. Modeller generated model was
refined with ModRefiner to acquire a more stereochemi-
cally precise model. Refined model demonstrated that most
of the residues of the protein (>90%) is in the most
favoured region. The refined model was utilized to perform
subsequent analysis. A Swiss-PDB generated view of the
3D model is displayed in Figure S3. The predicted model
in our present study was validated to determine its accuracy
comparing it with high-resolution models with a various
structure of validation tools. PROCHECK conducted an
overall analysis of the model and generated the Ramachan-
dran plot shown in Figure S4 and Table S4. Other
verification tool QMEAN generated an environmental
profile graph for a given protein and perform a verification
of protein model, respectively.

The active sites of the EBOVs L protein are shown in
Fig. 3 identified from CASTp server. The measured
outcome indicated that amino acid position 4–60 is
predicted to be conserved with the active site. The server
predicted the best active site with an area of 232.7 and
formed with 224.9 amino acid residues. For facilitating
the drug discovery against Ebola viruses, the hydropho-
bicity has been depicted in Figure S5, which stands
strong hydrophobicity in nature of our desired protein
sequence.

Discussion

T cell epitope-based vaccination is a distinctive approach.
Despite the fact that antibody memory response can be
easily avoided by antigenic drift over the period of time,
cell-mediated immunity frequently elicits enduring
immunity [32]. A significant number of time and

money has already been spent on EBOVs-vaccine design,
however, with very little achievement to show for it. We
believe that, although some of the steps forward made in
this regard have brought in the promises in clinical
trials, this standpoint is very worth trying and
attempting.

To be a good peptide epitope, a particular sequence
has to posses some key properties. Firstly, the epitope
has to be fairly well conserved among EBOVs proteome.
Additionally, the epitope must have the qualities that
make sure processivity. Moreover, the processed peptide
has to be able relate with MHC alleles with high
affinity. Lastly, the interacting MHC allele has to
generally confirm good population coverage. The pre-
dicted T cell epitope fulfilled all the criteria mentioned
above.

Five prospective T cell epitopes were found in EBOVs L
protein, which cross-reacts with 23 HLA variants (11
HLA-A, 7 HLA-B and 5 HLA-C alleles). The predicted T
cell epitope, TLASIGTAF, is well conserved among the five
most probable epitopes selected from NetCTL T cell
epitope analysis. In epitope-based vaccine development, a
well-conserved epitope is expected to express a higher
protection across different strains. The conservancy of our
selected epitope is 76.60%, and consequently, it was
regarded as a universal epitope target.

Population coverage is another key factor in the
development of a peptide vaccine that measures the
percentage of people living in a given area to be potentially
responsive to the query epitopes.

The epitope was subjected to allergenicity analysis by
two online tools. AllerHunter pointed out it as non-
allergen although AllerTop 1.0 identified it as probable
allergen. Therefore, if an epitope vaccine was developed by
utilizing selected peptides, the probability of allergic
reactions is very low. There have another concern that
epitope design based on prediction might not effort in

A B

Figure 3 Ligand binding sites on the predicted 3D structure of RNA-dependent RNA polymerase. (A) Active site residues in the 3D structure. (B) Active

site cavity by Discovery Studio.
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reality. So, the selected epitope was subjected to in silico
docking simulation study. The docking analysis concluded
that our selected epitope can bind as competently as the
control considered in this regard.

EBOVs L protein was also searched for B cell epitopes
which can induce both primary and secondary immunity.
After cross-referencing several tools of IEDB generated
results, it was found that the most favourable region from
42 to 50 (PEEQEQSAE) as potent 9-mer B cell epitope.

In the post-therapeutic strategy, an insight was attained
from the primary and secondary structure analysis of the
protein from ProtParam and SOPMA tools. The L protein,
suggested by VaxiJen is found to be stable in vitro with
below 43.28 instability indexes, low GRAVY and higher
aliphatic index. The higher proportion of coiled region in
SOPMA analysis implicated stability of the selected
protein [59, 67, 68]. An algorithm, called PFP from
Kihara Bioinformatics Laboratory, and GlobPlot 2.3 was
used for functional characterization and disordered region
identification.

To assist future drug design and drug discovery, Ligand
binding sites and hydrophobicity analysis were performed.
Hydrophobicity impacts every aspect of drug design and
even delivery, as has been repeatedly pointed out over the
past century. Understanding and exploiting the hydropho-
bic effect in drug design, for example docking and target
structure prediction, will undoubtedly be more important
in the future [69].

Conclusion

Development of effective therapeutics for Ebola virus
remains a high priority, and considerable improvement has
been made over the last few years. However, we still need
to know a lot about the biology and pathogenesis of Ebola
virus infections to identify a suitable vaccine. Keeping
these facts in mind, in this present study, using compu-
tational and bioinformatics tools, we try to identify a novel
therapeutic vaccine besides target site study for the
treatment of Ebola virus with previously established
procedures. The B cell and T cell epitopes we identified
could be a breakthrough for the development for new
therapeutic and diagnostic tools. However, it is also
recommended that further in vivo and in vitro assessment of
this vaccine have to perform for the confirmation of this
study.
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Figure S1 B cell epitope identification of the most
antigenic protein, K4G1K7.

Figure S2 GlobPlot result presents the disease-causing
regions of RNA-dependent RNA polymerase.

Figure S3 Swiss-pdb generated structure of the EBOVs
RNA-dependent RNA polymerase.

Figure S4 Ramachandran plot analysis of K4G1K7.
Here, red region indicates favoured region, yellow region
for allowed, and light yellow shows generously allowed
region and white for disallowed region. Phi and Psi angels
determine torsion angels.

Figure S5 Hydrophobicity plot analysis of K4G1K7.
Table S1 Different physiochemical properties of Ebola

RNA-dependent RNA polymerase.
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of Ebola RNA-dependent RNA polymerase.
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