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ABSTRACT The saprotrophic ascomycete Xylaria hypoxylon is a widespread wood-
decaying fungus on deciduous trees. Here, we report its draft genome sequence.
The genome assembly has a size of 42.8 Mbp and a G�C content of 47.1% and in-
cludes 11,038 predicted genes.

Xylaria hypoxylon (carbon antlers) is the type species of the genus Xylaria already
described by Carl Linnaeus (1, 2). It is very common on tree stumps or woody

material of broad-leaved trees buried in the soil and is widely distributed in northern
temperate Europe and western North America (1). In fruiting bodies and cultures of this
fungus, several secondary metabolites and proteins with potential for application in
biotechnology or medicine have been found (3). Thus, the structures of succinic acid
derivatives (4), melleins (5), xylarone and its derivatives (6), and new tetralone deriva-
tives (7) were elucidated and showed promising biological activities. Furthermore,
lectins with hemagglutinating, antiproliferative, and antimitogenic activities were
found (8). Moreover, it was shown that X. hypoxylon is able to degrade and mineralize
lignin to some extent in lignocellulose-based solid-state cultures (9).

Overall, the presented genome can help in identifying enzymes of ecological and
biotechnological relevance, in assisting the identification of biosynthetic clusters, and
in comparing genomic data of the important ascomycetous order Xylariales.

X. hypoxylon DSM 108379 (ribosomal cistron; GenBank accession number
MK577428) was collected on rotting stumps of Fagus sylvatica (50°24=12.5�N,
11°32=58.2�E, Jägersruh-Gemäßgrund-Mulschwitzen, Bad Lobenstein, Germany). The
fungus was cultured in liquid whey-protein glucose medium (2.5%) for biomass pro-
duction. Genomic DNA was extracted using a standard cetyltrimethylammonium bro-
mide (CTAB)-based protocol. Genome sequencing was performed using the Ion Torrent
Personal Genome Machine (PGM) platform (Ion PGM sequencing 200 kit version 2, 318
v2 Chip, and Ion Xpress Plus 200-bp fragment library kit; Thermo Fisher, Darmstadt,
Germany). The resulting reads were filtered for quality, using Geneious R11 (trim 3= end;
error probability limit, 0.05) (10) and length (160- to 270-bp reads were included). A
total of 4.7 million reads of an average of 230 bp were de novo assembled using MIRA
4.0 (11), and a second step with Geneious R11 was used to filter out duplicate contigs.
The assembly consists of 635 contigs with a total length of 42.8 Mbp (maximum contig
size, 582,987 bp). The assembly was verified using QUAST v4.5 (12) and has an N50 value
of 122,761 bp and a G�C content of 47.1%. The completeness of the assembly was
assessed using BUSCO v3 (predictor, Aspergillus nidulans; fungal data set, Ascomycota_
odb9) and has a completeness of 96.0% (13). Gene prediction was performed using
AUGUSTUS v3.2.2 (predictor, Aspergillus nidulans) (14) and resulted in 11,038 protein-
coding genes. Genes were annotated with Blast2GO v5.2.2 (BioBam, Valencia, Spain)
and dbCAN (HMMdb v7; E value � 1E�15, coverage � 0.35) (15). Altogether, 678
carbohydrate-related enzymes and modules (among them were 140 enzymes with
auxiliary activity) were identified.

Citation Büttner E, Liers C, Hofrichter M,
Gebauer AM, Kellner H. 2019. Draft genome
sequence of Xylaria hypoxylon DSM 108379, a
ubiquitous fungus on hardwood. Microbiol
Resour Announc 8:e00845-19. https://doi.org/
10.1128/MRA.00845-19.

Editor Jason E. Stajich, University of California,
Riverside

Copyright © 2019 Büttner et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Enrico Büttner,
enrico.buettner@tu-dresden.de.

Received 15 July 2019
Accepted 9 October 2019
Published 31 October 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 44 e00845-19 mra.asm.org 1

https://www.ncbi.nlm.nih.gov/nuccore/MK577428
https://doi.org/10.1128/MRA.00845-19
https://doi.org/10.1128/MRA.00845-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:enrico.buettner@tu-dresden.de
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00845-19&domain=pdf&date_stamp=2019-10-31
https://mra.asm.org


Enzymes involved in the oxidative degradation of lignocellulose and the conversion
of aromatics such as cellobiose dehydrogenase, laccases/oxidases, dye-decolorizing
peroxidases, and heme-thiolate peroxidases/peroxygenases were manually annotated
and are available in GenPept (accession numbers shown in Table 1). Secondary me-
tabolite biosynthetic gene clusters (BGCs) were predicted using antiSMASH v4.1.0 (16).
A total of 53 BGCs were identified, including BGCs for the production of 27 polyketides,
19 nonribosomal peptides, and seven terpenes.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number SKBN00000000. The version de-
scribed in this paper is the first version, SKBN01000000. The Sequence Read Archive
(SRA) accession number is SRR8662833. The associated BioProject accession number is
PRJNA525368.
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