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Abstract

Tissue engineering repair of annulus fibrosus (AF) defects has the potential to prevent

disability and pain from intervertebral disc (IVD) herniation and its progression to

degeneration. Clinical translation of AF repair methods requires assessment in long-

term large animal models. An ovine AF injury model was developed using cervical spi-

nal levels and a biopsy-type AF defect to assess composite tissue engineering repair

in 1-month and 12-month studies. The repair used a fibrin hydrogel crosslinked with

genipin (FibGen) to seal defects, poly(trimethylene carbonate) (PTMC) scaffolds to

replace lost AF tissue, and polyurethane membranes to prevent herniation. In the

1-month study, PTMC scaffolds sealed with FibGen herniated with polyurethane

membranes. When applied alone, FibGen integrated with the surrounding AF tissue

without herniation, showing promise for long-term studies. The 12-month long-term

study used only FibGen which showed fibrous healing, biomaterial resorption and no

obvious hydrogel-related complications. However, the 2 mm biopsy punch injury con-

dition also exhibited fibrotic healing at 12 months. Both untreated and FibGen

treated groups showed equivalency with no detectable differences in histological

grades of proteoglycans, cellular morphology, IVD structure and blood vessel forma-

tion, biomechanical properties including torque range and axial range of motion,
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Pfirrmann grade, IVD height, and quantitative scores of vertebral body changes from

clinical computed tomography. The biopsy-type injury caused endplate defects with a

high prevalence of osteophytes in all groups and no nucleus herniation, indicating

that the biopsy-type injury requires further refinement, such as reduction to a slit-

type defect that could penetrate the full depth of the AF without damaging the

endplate. Results demonstrate translational feasibility of FibGen for AF repair to seal

AF defects, although future study with a more refined injury model is required to

validate the efficacy of FibGen before translation.
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annulus fibrosus, intervertebral disc, intervertebral disc herniation, ovine in vivo model, tissue

engineering

1 | INTRODUCTION

Defects of the intervertebral disc (IVD), which include injuries to the

annulus fibrosus (AF) and herniation, are highly associated with dis-

abling back and neck pain.1,2 Extrusion of nucleus pulposus or AF tis-

sue as an IVD herniation is a known and specific cause of pain and

disability.3 Surgery can relieve disability from the neuropathy but does

not repair the AF. The urgent clinical need for AF repair stems from

the risk of reherniation following discectomy surgery, with

reherniation rate as high as 27% for defects larger than 6 mm, and an

average rate of 15%.4 Unrepaired AF defects can also lead to progres-

sion of IVD degeneration as an additional source of pain and disability.

Developing AF repair strategies is therefore a research priority, and

the use of large animal models of AF injury and repair is necessary to

accelerate translation of AF repair strategies. The present work

describes progress toward establishing and translating AF repair

models using a short-term (1-month) and long term (12-month) ovine

model of AF injury.

Ovine IVDs are a popular IVD pathology model5–9 due to their

size, and the biochemical, cellular, and mechanical environment. Lum-

bar ovine IVDs are approximately 1/3 the size of human IVDs,10 and

capture the diffusion limited nutrient and oxygen transport environ-

ment observed in human IVDs.11,12 As in human,13 ovine nucleus

pulposus cells do not express a notochordal phenotype during skeletal

maturity.14 Intradiscal pressures up to 3.5 MPa have been observed in

the lumbar IVDs of sheep,15 suggesting the model provides rigorous

mechanical loading. Ovine lumbar and cervical spine levels have been

used because of their biomechanical similarities with human IVDs, and

the larger IVD height of sheep cervical spine levels makes them an

attractive model for evaluating spinal implants.16

Annular closure devices include sutures, such as the

unavailable Xclose Tissue Repair System (Anulex Technologies,

Minnetonka, Minnesota) and the similar but available AnchorKnot,

(Anchor Orthopedics, Mississauga, Ontario, Canada),17 and a mesh

barrier which anchors to the vertebral body called Barricaid

(Intrinsic Therapeutics, Woburn, Massachusetts). The Barricaid is

under current clinical investigation with promising results including

decreased disability, increased IVD height and reduced rate of

recurrent IVD herniation, but had a higher frequency of endplate

complications at 218) and 3 years.19 In addition to mechanical

repairs, there are a range of AF replacement materials including

electrospun poly-e-caprolactone20,21 and hyaluronic acid with poly-

ethylene22 (material properties reviewed in Reference 23). Void

filling biomaterials which can be injected with or without cells,

such as collagen,24 were recently reviewed in Reference 25. While

many biomaterials exist for AF repair, those with regulatory

approval can be further improved, and those that are not approved

need further validation. Due to the high clinical need, AF repair

remains an active area of research (reviewed in26,27), and this

study uses a preclinical large animal model to evaluate multiple

biomaterial repair strategies for AF repair. Fibrin crosslinked with

genipin (FibGen) is an adhesive hydrogel optimized for AF repair

by tuning its formulation to match the shear modulus of human

AF.28 Previous in vitro studies reported a reduction of IVD height

loss in a bovine AF defect organ culture model29 and low hernia-

tion risk in ex vivo mechanical testing of the bovine IVD.30 A poly-

trimethylene carbonate (PTMC) based porous scaffold showed the

ability to immediately restore the IVD height after implantation in

an AF defect of a bovine loaded organ culture model,31 and offers

potential for delivery of bioactive factors and cells. A polyurethane

(PU) membrane sutured onto the AF was used to prevent hernia-

tion of this PTMC scaffold, which remained in place within the AF

defect for 2 weeks in an organ culture bioreactor system under

mechanical load.31 The success of FibGen adhesive, PTMC scaf-

fold, and the PU membrane in prior ex vivo testing motivate their

in vivo use in a large animal model as an important next step in

translation for an AF repair strategy.

The purposes of this in vivo study were (a) to perform a 1-month

screening study to evaluate the feasibility of FibGen, PU membrane,

and PTMC as a composite strategy for AF repair in vivo; and (b) to

perform a 12-month long-term study of biopsy punch AF injury and

to evaluate the performance of FibGen. The 1-month screening study

compared the histological appearance of injured cervical IVDs treated

with three different composite repair strategies: injectable FibGen
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only, FibGen with membrane, and FibGen with scaffold and mem-

brane. The long-term study compared histological appearance, degen-

eration using Pfirrmann grade, IVD height, vertebral body changes

using computed tomography (CT), and biomechanical behavior of

untreated and FibGen treated injured cervical IVDs.

2 | MATERIALS AND METHODS

2.1 | Animals and pre-op care

The studies were approved by the relevant Swiss authorities

(Cantonal authorities in Graubünden, Switzerland; Permission #

40/2014). Four skeletally mature female Swiss White Alpine sheep

(age range: 2-4 years old, weight range 51.5-63 kg) were enrolled in

the screening study; while 10 sheep (age range: 3-5 years old,

weight range 74-89 kg) were enrolled in the long-term study. Prior

to the start of the study, the animals were acclimatized for 2 weeks

at the Association for Assessment and Accreditation of Laboratory

Animal Care International (AAALAC) approved facility. During this

time, they were group housed under a 12 hours dark/ light cycle

and fed with hay, mineral lick, and hand-fed grain to gain familiarity

with caregivers. Before the surgery, the sheep were assessed to be

in good health based on a complete physical clinical assessment by

a veterinarian.

2.2 | Preclinical model overview

2.2.1 | Screening study

In each sheep (four animals), a 2 mm annular defect was created with

a biopsy punch in four cervical levels: C2-C3, C3-C4, C4-C5, and

C5-C6. IVDs in the Injured group were not repaired (n = 4). The biopsy

punch injury was used because it is repeatable, clinically relevant and

has precedent in the literature.31,32 IVDs in the treatment groups

were repaired by either injection of FibGen (n = 4), injection of FibGen

and suture of PU membrane onto the defect (n = 4), or implantation

of PTMC scaffold with sealing by FibGen and suturing of PU mem-

brane (n = 4) (Figure 1G). Treatments were rotated systematically by

level (C2-C5) to avoid potential level bias. Long-term study: In each

sheep (10 animals), a 2 mm annular injury was created with a biopsy

punch in three cervical levels: C2-C3, C3-C4, and C4-C5. IVDs at

levels C5-C6 and C6-C7 were used as intact controls (termed Intact

group, n = 20). In each sheep, one cervical IVD (from C2-C5) which

had an annular defect was not repaired (termed Injured group, n = 10).

Immediately after annular injury creation, two cervical IVDs (from

C2-C5) were repaired with an injection of FibGen (termed FibGen

group, n = 20) (Figure 1H). Assignment to Injured or FibGen groups

was rotated systematically by level to avoid potential level bias such

that Injured group had 3 C2-C3, 4 C3-C4, and 3 C4-C5 and the

FibGen group had 7 C2-C3, 6 C3-C4, and 7 C4-C5.

F IGURE 1 Surgical approach and study design of the long-term study. A, Surgical approach was guided radiographically using a C-arm. B, The
intervertebral disc was exposed with an anterolateral approach. C, Radiograph of C2-C7 demonstrating convexity of the inferior endplate. D, The
three cervical (C2-C5) IVDs of 10 animals were injured with a biopsy punch and two were repaired with FibGen. E, The exposed intervertebral
IVD was injured with a 2 mm diameter biopsy punch. F, The FibGen repair was delivered with a mixing tip syringe. G, All Injured untreated
(n = 10) and FibGen repaired levels (n = 20) from 10 animals were subjected to computed tomography and magnetic resonance imaging and were
evenly distributed to histological or biomechanical analysis
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2.3 | Surgical intervention

After sedation with Detomidine (0.04 mg/kg intramuscular [IM], Domo-

sedan, Pfizer AG) in the stable, anesthesia was induced using intravenous

Midazolam (0.2 mg/kg IV, Midazolam Sintetica, Sintetica SA) and Keta-

mine (4 mg/ kg IV, Ketasol-100, Graeub AG). Animals were intubated,

and anesthesia was maintained with isoflurane-oxygen (1.5-1.8% V/V in

0.6-1 L/min oxygen, Isofluran, Baxter, Baxter AG). Preoperative analgesia

consisted of Carprofen (1.4 mg/kg IV, Rimadyl Rind, Pfizer AG) and intra-

operatively Fentanyl (5 μg/kg/h IV, Sintenyl, Sintetica) was infused. For

antibiotic prophylaxis Ceftiofur (2.2 mg/kg, Excenel, Zoetis) was given

perioperatively and every 24 hours for 5 days post op.

For the surgery, the sheep were placed in dorsal recumbency and,

under aseptic technique, the cervical levels were exposed through a ven-

tral approach from the right side.32 A longitudinal incision and blunt prep-

aration between the sternocleidoideus and longus colli muscles/carotid

sheath (lateral) and the trachea (medial) exposed the anterior aspect of

the IVD (C2/3-C6/C7). After confirmation of the correct level with the C-

arm X-ray (Figure 1A), IVDs from C2-C5 (C2-C6 for the screening study)

(Figure 1C,D) were then subjected to an anterolateral 2 mm diameter

biopsy punch injury approximately 4 mm deep (Figure 1B,E). The

wound was closed in three layers (fascia, subcutaneous and intracutane-

ous suture, all Monocryl 3-0 [Ethicon, Somerville, New Jersey]) and was

covered with a spray bandage and a stent (rolled cotton swabs, fixation

with Ethilon 2-0 [Ethicon, Somerville, New Jersey]).

Postoperative analgesia consisted of Buprenorphine (0.05 mg/kg

IM every 8 hour for 3 days), Carprofen (1.4 mg/kg SC every third days

for 5 days, Rimadyl Rind Pfizer AG) as well as Fentanyl (2 μg/kg/h for

72 hours, Durogesic Matrix patches, cutaneous). Animals were housed

in groups of two sheep first and then in larger groups of up to five

sheep under the same conditions as listed above. Animal welfare was

assessed using a score sheet twice daily for 3 days, daily for four addi-

tional days, and then once weekly.

2.4 | AF repair

FibGen was prepared freshly prior to surgery by dissolving fibrinogen

(Sigma-Aldrich) in filtered (12 μm) Phosphate Buffered Saline (PBS) at

140 mg/mL. The mixture was exposed to ultraviolet light for 1 hour.

Thrombin (40 μL of 1000 U/mL) (Sigma-Aldrich, Buchs, Switzerland)

was added to 226.8 μL of PBS. Genipin (Wako Chemicals USA Inc.,

Richmond, Virginia) dissolved in dimethyl sulfoxide (20.25 μL of

6 mg/mL) was added to the thrombin/PBS. The fibrinogen (0.8

vol. fraction) and thrombin/PBS/genipin (0.2 vol. fraction) were con-

comitantly injected with a 4:1 dual barrel syringe (Pearson Dental,

Sylmar, California) to completely fill the annular defect (Figure 1F).

Screening Study: PTMC scaffolds and PU films used for the screening

study were prepared as described elsewhere.31 For the FibGen repair

(n = 4), FibGen was injected as described above. For the FibGen +

membrane repair (n = 4), FibGen was injected into the defect which

was sealed by suturing a PU film onto the surrounding AF tissue

(4-point suture) using a 4-0 Prolene (Ethicon, Somerville, New Jersey).

For the FibGen + membrane + scaffold repair (n = 4), a conical PTMC

scaffold of 2 mm (outer side) and 3 mm (inner side) in diameter and

4 mm length was press-fit into the AF defect and filled with FibGen

hydrogel. The defect was then covered with a PU film sutured onto

the surrounding AF tissue as outlined above.

2.5 | In vivo clinical CT

In the long-term study, in vivo computed tomography (CT) scans of

the cervical IVDs (C2-C7) were acquired at a resolution of 0.63 mm

using 130 kV potential, an exposure of 180 mAs and a slice thick-

ness of 1 mm (SOMATOM Emotion 6, Siemens, Germany) right after

surgery and consecutively every 3 months until 12 months. The

scans were performed under general anesthesia using the same pro-

tocol as above. Each cervical IVD was scored from 0 to 4 based on

bone formation by a blinded veterinarian. A score of 0 indicated nor-

mal appearance of vertebral bones, 1 indicated slight roughening,

2 indicated small osteophyte, 3 indicated larger osteophyte, and

4 indicated large new bone formation bridging the IVD space

(Figure S1).

2.6 | Euthanasia and sample harvest

The animals of the screening study were euthanized after 1 month,

while the animals of the long-term study were euthanized after

12 months by an overdose of pentobarbital (7.5 g IV, Esconarkon),

and the cervical spine was harvested. Musculature and posterior ele-

ments were removed and vertebrae (C2-C7) were bisected trans-

versely using a butcher saw. Screening Study: Injured IVDs treated

with FibGen (n = 4), FibGen and PU (n = 4), PTMC with FibGen and

PU (n = 4), and untreated injured IVDs (n = 4) were fixed in ethanol

and processed for histology. Long-term Study: For biomechanical ana-

lyses, Injured (n = 5) and FibGen (n = 10) repaired motion segments

were isolated with a transverse cut through the adjacent vertebra,

relieved of posterior elements including facet joints, sealed in plastic,

wrapped in saline soaked tissue paper, and frozen at −20�C. For histo-

logical analyses, Injured (n = 5), Intact (n = 10) and FibGen (n = 10)

repaired IVDs were fixed in ethanol (Figure 1G).

2.7 | MRI

MRI was acquired directly after harvesting with a 1.5 T MRI scanner

(Philips Medical Systems, Intera), using a sense-body imaging coil with

sagittal projections and T2-weighted (TR = 2000, TE = i*20 ms, i = 1,

2…8) sequences with a 320 × 320 mm field of view, 8 mm slice thick-

ness, 8.8 mm slice spacing. Three blinded board-certified orthopedic

surgeons assessed the Pfirrmann grade of each cervical IVD. Disc and

vertebral body height was measured by tracing a spline along the car-

tilaginous endplate with FIJI33 and calculating the Euclidean distance

between the dorsal, central and ventral parts of the spline with a
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custom Matlab script. Central disc height is presented. Disc height

index was calculated by normalizing the sum of the IVD heights with

the sum of the inferior vertebral body heights.34

2.8 | Biomechanical testing

Motion segments were thawed overnight at 4�C after which the ver-

tebral bodies were embedded in polymethylmethacrylate (Suter

TABLE 1 Biomechanical parameters for Injured and FibGen
samples including axial compliance and tensile stiffness. Data are
presented as mean ± SD

Parameter Injured FibGen P value

Axial compressive

compliance (μm/N)

1.22 ± 0.15 1.18 ± 0.14 .47

Axial tensile compliance (μm/N) 5.34 ± 1.21 4.80 ± 0.80 .49

2� tensile stiffness (Nmm/�) 535 ± 392 565 ± 199 .44

4� tensile stiffness (Nmm/�) 1055 ± 578 1217 ± 288 .67

F IGURE 2 Histological findings 1 month after surgery in screening study. A-D, Untreated annulus fibrosus (AF) defects (Injured group)
demonstrated discontinuous tissue (clefts, black arrow) and blood vessels (red circle); E-H, FibGen treated IVDs demonstrated discontinuous
tissue, (clefts, black arrow), blood vessels (red circle), and endplate damage (yellow circle); I-L, FibGen with membrane repair showed displaced
membrane (m), discontinuous tissue (black arrow), blood vessels (red circle) and endplate damage (yellow circle). M-P, FibGen with membrane and
scaffold had discontinuous tissue (black arrow), displaced scaffold (s) and membrane (m). Overview microphotographs of thick-sections of sheep
cervical intervertebral IVDs (nondecalcified, resin-embedded, Safranin O-Fast Green-stained material; scale bar: 2 mm; image orientation:
left = ventral, bottom = caudal)
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Kunstoffe AG, Fraubrunnen, Switzerland) and fixed to the servo

hydraulic system (MiniBionix II 858, MTS Systems Corp., Eden Prairie,

Minnesota) using custom holders and an X-Y table to eliminate shear

forces. Each specimen was subjected to cyclic sinusoidal axial loading

between 100 N to −250 N at three frequencies: 0.1, 1, and 2 Hz. The

compressive load corresponded to intradiscal pressure of 1.1 MPa in

Merino sheep.15 Then, each specimen was subjected to torsional load-

ing at two rotations: first ±2�, then ±4� at three frequencies: 0.1,

1, and 2 Hz. The rotation was informed by the limits of human physio-

logical motion which are ±4�.36 The number of cycles were: 20 cycles

for 0.1 Hz, 30 cycles for 1 Hz, and 100 cycles for 2 Hz. However, at

1 and 2 Hz, the mechanical test system did not adequately control to

the target tensile loads of 100 N or target compressive loads of

250 N, so only 0.1 Hz loading was analyzed. Parameters were mea-

sured on the 20th cycle of the 0.1 Hz loading. Machine data of axial

load, axial displacement, torque and torsional angle were continuously

recorded at 128 Hz. Intact biomechanical data from C2 to C5 were

taken from previously published data acquired using the same test

protocol and same age and type of sheep.32

The torque range was calculated as the total torque developed

between ±2� and ± 4�. The axial range of motion was calculated as

the total displacement between the common maximum and minimum

loads, 97 N and −224 N, respectively. The torsional stiffness was cal-

culated as the slope of the linear fit of the maximal 20% of the torque-

rotation curve. The axial compliance was calculated as the slope of the

maximal 20% of the axial force-displacement curve. The neutral zone

length and stiffness were calculated as the average of both loading

directions using the double sigmoid model.36

2.9 | Histological analysis

Motion segments were fixed in 70% ethanol and embedded in

methyl-methacrylate. Mid-sagittal sections (300 μm wide) were sta-

ined with Safranin O/Fast Green. Long-term Study: Safranin O/Fast

Green stained sections from FibGen and Injured intervertebral IVDs

were graded by three observers using a six category grading scheme

adapted from Shu et al. (Table 1).38 The categories were (a) proteogly-

can depletion; (b) IVD structure/lesion morphology; (c) cellular mor-

phology; (d) blood vessel ingrowth; (e) cell influx into lesion; and (f)

cleft formation. The sum score was calculated by summing grades

across categories. All sections were graded by three blinded

F IGURE 3 Histological findings 12 months after surgery in long-term study. A-D, Intact samples showed highly aligned AF lamellae. E-H,
Injured specimens had discontinuous AF tissue (arrow), blood vessels (red circle), and endplate disruption. I-L, FibGen repaired specimens showed
discontinuous AF tissue (arrow), blood vessels and endplate disruption. Overview microphotographs of thick-sections of sheep cervical
intervertebral IVDs (nondecalcified, resin-embedded, Safranin O-Fast Green-stained material; scale bar: 2 mm; image orientation: left = ventral,
bottom = caudal)
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observers. Biopsy tissue was collected and underwent von Kossa

staining for mineralization.

2.10 | Statistical analysis

Differences between FibGen and Injured biomechanical response

were assessed with nonparametric T test using Prism version 7 for

Windows (GraphPad Software, La Jolla, California). Differences in

Pfirrmann grade and histology grades were assessed with nonpara-

metric two-way ANOVA for grader and treatment, differences in clini-

cal CT score were assessed with two-way nonparametric ANOVA for

treatment and time, differences in disc height index and disc height

was assessed with nonparametric one way ANOVA for treatment, all

with nonparametric post hoc treatment comparisons, using R for Win-

dows (The R Foundation for Statistical Computing,39). In box plots,

whiskers represent 1.5* interquartile range and the hinges span the

first and third quartiles whereas in scatter plots, bars represent the

median and interquartile range. Statistically important difference was

identified with P < .05. We calculated the average measures intraclass

coefficient to measure interjudge reliability for the histology scores

using a two way mixed model which is for random samples and fixed

judges. Here, the intraclass coefficient is reliability of the average of

these three judge's rating, with 1 indicated high agreement and 0 indi-

cating no agreement.40

3 | RESULTS

3.1 | Animals

All animals recovered well from the surgical intervention. However, in

the screening study, two animals had wound dehiscence which healed

uneventfully after treatment (wound care with debridement). These

animals and one animal that developed a seroma were treated with

prolonged antibiotic coverage extending two additional weeks. In the

long-term (12 months) study, no complications occurred. One animal

continuously lost weight over the duration of the study and a chronic

parasitic infestation (liver flukes) was identified post mortem. No

abnormal clinical behavior was observed during the entire duration of

the study in all animals.

3.2 | Histological analysis

3.2.1 | Screening study

The outcome of the 1-month screening study was assessed qualita-

tively by light microscopy using Safranin-O/Fast Green stained sec-

tions (Figure 2). In untreated AF defects, clefts of different dimensions

and orientations were observed adjacent to the lesion site; further-

more, brownish stained blood vessels were found in most samples

F IGURE 4 Semiquantified histological findings after 12 months. A, No difference in proteoglycan grade, defined by Safranin O-Fast Green
staining intensity, was detected between Injured and FibGen groups. B, A trend of difference in the structure grade, defined by propagation of
lesion into NP, was detected between Injured and FibGen groups (P = .06). C, No difference in the cellular morphology, defined by presence of
rounded chondrocytes, was detected between Injured and FibGen groups. D, No difference in blood vessel ingrowth was detected between Injured
and FibGen groups. E, No difference in cleft grade, defined by radial cleft area, was detected between Injured and FibGen groups. F, No difference
in cleft grade, defined by radial cleft area, was detected between Injured and FibGen groups. G, No difference in sum score was detected between
Injured and FibGen groups. For all categories, a grade of 0 indicated no changes while a grade of 4 indicated most severe changes
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with AF defects (Figure 2A-D). In FibGen treated defects, large clefts

were noted in 1/4 cases, while presence of vessels was also identified

similar to the untreated defects (Figure 2E-H). Sealing of the

FibGen treated defect with a PU film sutured onto the AF tissue

did not influence the histological outcome; in fact, there were

signs of displacement of the PU membrane in most cases

(Figure 2I-L). Similarly, the PTMC scaffold did not remain stable in

the defect but was dislocated in most cases (Figure 2M-P). In all

treatment groups, discontinuation of the endplate was evident.

This damage was observed in 1-2 cases/group and was mainly

located on the caudal endplate. Long-term study: The outcome of

the main (12-month) study was assessed semiquantitatively using

Safranin-O/Fast Green stained sections (Figure 3). The Intact

group demonstrated highly aligned AF lamella, and intense

Safranin-O staining in the NP and inner AF. The cancellous bone

had uniform trabeculae distally. The Injured (Figure 3E-H) and

FibGen (Figure 3I-L) groups showed increased trabecular bone density

and an uneven endplate surface, suggesting bone remodeling. The

Injured (Figure 3E-H) and FibGen (Figure 3I-L) groups also had discon-

tinuous AF tissue and brownish staining which may be indicative of

intradiscal blood vessels. The frequency of positive von Kossa stain

indicating mineralization in tissue removed during injury creation was

3/10 (30%) for Injury group and 4/20 (20%) for the FibGen group.

Sagittal sections from FibGen (n = 10 from 10 animals) and

Injured (n = 5 from 5 animals) groups were graded for (a) proteoglycan

depletion; (b) IVD structure/lesion morphology; (c) cellular morphol-

ogy; (d) blood vessel ingrowth; (e) cell influx into lesion; and (f) cleft

formation (Figure 4, Table S1). No differences were detected between

the Injured and FibGen treated groups for any category (Figure 4A-E)

nor the sum score (Figure 4F), although FibGen had a statistical trend

of higher structure/lesion grade (P = .06) (Figure 4B). Few FibGen and

Injured IVDs had cellular influx and new blood vessel formation in

response to the biopsy punch injury (Figure 5), with positive histology

scores for 2/5 Injured and 2/10 FibGen IVDs (Figure 4E). The

intraclass coefficients for each category were: (a) proteoglycan deple-

tion, 0.78; (b) IVD structure/lesion morphology, 0.79; (c) cellular mor-

phology, 0.68; (d) blood vessel ingrowth, 0.68; (e) cell influx into

lesion, 2e-7; and (f) cleft formation, 0.20.

3.3 | In vivo clinical CT imaging

The Injured and FibGen groups showed an increase in clinical CT

score compared to 0-month baseline (Figure 6A). All samples had a

score of 0 at 0 months, indicating no bone formation (Figure 6B). For

the FibGen group, the score was significantly higher at 3 months

(P = .01), 6 months (P = .005), 9 months (P = 3.1 × 10−5) and

12 months (P = 5.8 × 10−5). In the Injured group, the score was signifi-

cantly higher at 9 months (P = .02) and 12 months (P = .01), with a

trend of significance at 6 months (P = .07). When comparing between

groups at each timepoint, the Intact group had lower score at 3, 6,

9, and 12 months, compared to the Injured (P = .006, 5.4 × 10−5,

5.4 × 10−5, 0.00019) and FibGen groups (P = .0003, 5.4 × 10−5,

5.4 × 10−5, 6.7 × 10−5). 3D reconstructions from biomechanics speci-

mens, which underwent microtomography in addition to the clinical

CT, demonstrate increased bone formation with increased clinical CT

score (Figure S1).

3.4 | MRI

The Pfirrmann grade of the Injured (P < .001) and FibGen (P < .001,)

groups were lower than the Intact samples, and no difference was

detected between Injured and FibGen specimens (P = .46) (Figure 7A,

D). The IVD height of Intact group was less than that of Injured

(P < .002) and FibGen (P < .001) groups (Figure 7B). The disc height

index, which is disc height normalized by the inferior vertebral body

height, was higher for Intact samples compared to FibGen (P < .002)

and Injured (P < .002) (Figure 7C).

3.5 | Biomechanical analysis

No differences were detected for torsional or axial biomechanical

behavior of FibGen and Injured IVDs, as seen in representative

torque-rotation and force-displacement curves from Injured (level

C2-C3) and FibGen (level C3-C4) treated IVDs (Figure 8A,F). Previous

results suggest intact IVDs from C2 to C3 and C3 to C4 have compa-

rable mechanical behavior.32 There were no detected differences in

torque range (Figure 8B,D), neutral zone length (Figure 8C,E), axial

range of motion (Figure 8G), axial neutral zone length (Figure 8H), tor-

sion stiffness nor axial compliance (Table 1).

4 | DISCUSSION

This study applied an ovine cervical IVD biopsy injury model to evalu-

ate the in vivo response of multiple AF repair methods. An 1-month

screening study evaluated multiple composite AF repair strategies for

their herniation risk using histological evaluation as output. The long-

term 12-month study evaluated effects of AF injury and FibGen repair

on IVD and vertebral body structure and function using CT, MRI, his-

tology, and biomechanical assessments.

The 1-month screening determined the applicability and the per-

sistence of FibGen gel and PTMC scaffold within the AF defect since

these biomaterials had previously been shown to have beneficial

effects in an organ culture model of AF injury.31 This current study

showed dislocations of both the PTMC scaffold and the supporting

PU membrane 1 month after surgery. This finding may be attributed

to the more rigorous mechanical environment in the cervical IVD

in vivo15 compared to the merely axial simulated-physiological load

that was applied in prior organ culture studies on isolated bovine

IVDs.31 FibGen repair had no negative effects at 1 month and the PU

membrane was not necessary to prevent herniation. Consequently,

the subsequent long-term study focused on the application of FibGen

for repair of the AF defect.
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FibGen repair was delivered into the defect via injection, and the

effects of IVD repair were compared to unrepaired injured and intact

IVDs. Results demonstrated equivalency between FibGen and Injured

groups. No significant changes in biomechanical response were

observed between Injured and FibGen groups. Histologically, altered

AF fiber morphology and intradiscal vessel formation were observed

in the Injured and FibGen groups. Together, these results suggest

fibrotic healing was occurring within 12 months of the injury in

Injured and FibGen groups. While the biopsy defect resulted in disrup-

tion to AF morphology and vertebral bodies that remained at

12-months, the degeneration was relatively mild with no signs of

nucleus pulposus herniation or marked IVD height loss. Relatively high

variance in the biomechanical data could be attributed to vertebral

body morphology changes and osteophyte formation. A repeated

measures study design found a 5 to 10% reduction in axial range of

motion and torque range from an identical injury on ovine cervical

F IGURE 5 Cellular influx and response to injury. A, Injured IVD with endplate on right (stained red) demonstrates cleft formation (star),
greenish-stained collagen fiber formation (fibrosis), and low-grade blood vessel ingrowth (neovascularization, black arrowhead) along the defect
canal. B, Cells are present at blood vessels (black arrowhead) adjacent to defect (star). C, FibGen IVD had blood vessel ingrowth (black arrow
heads). D, Rounded cells are present (empty arrowheads) near blood vessels (black arrowheads). Ethanol-fixed, nondecalcified, resin-embedded,
SafraninO/Fast Green-stained thick-sections, scale bar A + C: 200 μm; B + D: 20 μm

F IGURE 6 Score of vertebra body changes using clinical computed tomography (CT) over 12 months. A, Before surgical intervention, all
specimens had normal vertebral bodies (score of 0). At 3, 6, 9, and 12 months, the Intact group had a lower score than both Injured and FibGen
groups. Compared to 0-month baseline, the FibGen group had a larger score at 3, 6, 9, and 12 months, while the Injured group had a higher score
at 9 and 12 months. B, The clinical CT scans were scored from 0 to 4 with 0 indicating normal vertebral bodies and 4 indicating vertebral bodies
with bone bridging the IVD space. *P < .05 compared to Injured and FibGen groups, #P < .05 compared to 0-month baseline
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samples.32 Here, we observed torque range values for Injured and

FibGen samples which were beyond the range of similarly aged level

matched intact samples,32 suggesting the high interspecimen variabil-

ity seen in this model may be due to fibrotic healing or boney

changes occurring in vivo. Interestingly, the Wilke group observed

decreased range of motion from nucleotomy after 12 weeks in vivo

in contrast to increased range of motion seen in vitro, suggesting an

in vivo stiffening process, such as the irregular bone formation seen

here.40 Evidence for healing in Injured and FibGen samples are simi-

lar to a previous ovine study with a similar sample size with punc-

ture and concentric tear injuries that exhibited significantly reduced

bending stiffness after 1 month, followed by an increase in stiffness

concurrent with lamellar thickening at 3, 6, 12, and 18 months.42

The relatively high variance in biomechanical properties and rela-

tively low sample size is a limitation of this study; the required sam-

ple size given an effect size of 0.3 and the observed SD (from 4�

torque range measurement) is 44 which was cost prohibitive for this

long-term in vivo study. Nevertheless, the Injured and FibGen had

nearly identical mean values providing little suggestion that a differ-

ence would be detected even with an increased sample size. One

limitation for this study was there was no fluid bath for these speci-

mens which is known to change the measured response, as

F IGURE 7 IVD height and Pfirrmann grade of MRI after 12 months. A, The Pfirrmann grade of the Intact group was higher than the Injured
and FibGen groups, indicating higher degeneration. B, The IVD height was lower in the Intact groups compared to Injured and FibGen groups. C,
The disc height index, which is IVD height normalized by inferior vertebral body height, was higher for the Intact group compared to Injured and
FibGen. D, Representative MRI of ovine cervical spine after 12 months

F IGURE 8 Biomechanical response of motion segments after 12 months. A, Representative torque rotation curves from Injured (level C2-C3)
and FibGen (level C3-C4) from the same animal. There were no detected differences between Injured and FibGen groups for B, ±2� torque range
(P = .59), C, ±2� neutral zone length (p = or D. ±4� torque range (P = .59) axial range of motion (P = .76) was detected between Injured and FibGen
samples. D, E, Torque rotation curves from the same specimens. F, No differences in ±4� neutral zone length were detected (P = .87)
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decreased water content due to osmotic loading reduces strain

energy density and modulus of AF tissue.42

Equivalent healing for FibGen and Injured are somewhat similar

to prior results for fibrin. Fibrin sealant (Biostat BIOLOGX, Spinal Res-

torations) showed promise to repair denucleated porcine IVDs after

12 weeks in vivo43 but then showed equivalency to saline injection in

a Phase III clinical trial which was applied to treat single-level dis-

cogenic back pain in humans.44,45 FibGen degrades much more slowly

than fibrin alone and we therefore expected FibGen to have greater

potential for improved performance for AF repair and biomechanical

restoration at 12 months. However, future testing in an injury model

with fewer endplate effects will be required to better challenge

FibGen and to test this concept.

In the long-term study, we observed irregular vertebral body bone

formation starting at 3 months in both injured groups with no differ-

ence between FibGen repaired and nonrepaired Injured group. The

boney changes were present at 3 months and did not worsen signifi-

cantly from the third month to the 12th month. This suggests a

3-month timepoint would be appropriate for capturing off-target

osteogenic changes with clinical CT which is a noninvasive nonde-

structive measurement. Potential causes of the vertebral body

changes were iatrogenic disruption of the endplate during surgery

from the biopsy punch, or remodeling of the endplate in response to

degeneration or material implantation. Other ovine models of AF

injury showed vertebral body changes including remodeling of the

endplate and osteophyte formation following annular injury,47,48

suggesting additional evidence for heterotopic ossification in ovine

in vivo models. Endplate changes were seen in response to scalpel

blade incisions suggesting remodeling from AF injury and more severe

IVD degeneration.47,48 Differences in cortical bone structure were

also present in an enzyme induced degeneration model,49 further

suggesting IVD health affects vertebral body morphology.

Histological results also demonstrated equivalency between

Injured and FibGen groups; however, there was also no evidence for

hydrogel related complications. We adopted a scoring scheme which

was sensitive to cell treated injured IVDs.38 Qualitatively, AF structure

appeared similar for FibGen and Injured, and there were no semiquan-

titative differences, suggesting that FibGen adhesive hydrogel was no

more effective at restoring the AF structure than the natural healing

process. Interestingly, intradiscal blood, blood vessels, and cellular

influx were observed which likely resulted from the AF injury.

Intradiscal hemosiderin can result from bleeding concurrent to IVD

injury and has been observed in the thoracic50 and lumbar spine.51 The

healthy IVD has minimal vascularization, but increased vascularization

is concurrent with degeneration52 and may result from AF disruption.53

Future studies in mouse could identify the phenotype and source of

cells at the injury site.53,54

Interestingly, we observed higher Pfirrmann grade in Intact samples,

which typically correlates with higher degeneration.56 We also observed

smaller disc height and larger disc height index for the Intact samples,

likely due to naturally reduced disc height but possibly due to adjacent

level effects. Previous observations of Merino sheep show less than

0.5 mm difference in average disc height between the cervical levels56

which is in contrast to the 1 mm difference observed here. Measuring

the disc height change longitudinally with higher resolution CT scanning

and further normalizing 12 month to 0 month measurements may more

accurately represent changes to disc height in each experimental group.

As a result, we conclude that intact samples must be controlled for level,

and while intact MRI output measurements are presented, the most rel-

evant comparisons are between Injured and FibGen groups which are

controlled for level effects.

5 | CONCLUSIONS

This study applied a composite AF repair strategy to a 2-mm diame-

ter biopsy punch injury in an in vivo ovine model to demonstrate

that the PTMC scaffold herniated within 1-month while FibGen did

not, motivating its further application for long-term repair. At

12 months, Injury and FibGen groups had equivalent fibrotic healing

responses with loss of AF fiber continuity, reduction of proteogly-

cans, formation of intradiscal vessels and similar biomechanical

responses. However, AF injury resulted in relatively mild degenera-

tion with high variation due to osteophyte formation and ossifica-

tion from punch-related endplate damage. Since there was no

evidence for hydrogel-related complications in any measurements,

we conclude that FibGen may warrant further evaluation, possibly

as a delivery vehicle for bioactive therapeutics, for improved healing

in a refined AF injury model, perhaps with AF scalpel injury through

the nucleus pulposus to minimize potential for endplate damage

during the surgical procedure.
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