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Abstract

Recent work in several model organisms has revealed that apoptotic cells are able to stimulate neighboring surviving cells
to undergo additional proliferation, a phenomenon termed apoptosis-induced proliferation. This process depends critically
on apoptotic caspases such as Dronc, the Caspase-9 ortholog in Drosophila, and may have important implications for
tumorigenesis. While it is known that Dronc can induce the activity of Jun N-terminal kinase (JNK) for apoptosis-induced
proliferation, the mechanistic details of this activation are largely unknown. It is also controversial if JNK activity occurs in
dying or in surviving cells. Signaling molecules of the Wnt and BMP families have been implicated in apoptosis-induced
proliferation, but it is unclear if they are the only ones. To address these questions, we have developed an efficient assay for
screening and identification of genes that regulate or mediate apoptosis-induced proliferation. We have identified a subset
of genes acting upstream of JNK activity including Rho1. We also demonstrate that JNK activation occurs both in apoptotic
cells as well as in neighboring surviving cells. In a genetic screen, we identified signaling by the EGFR pathway as important
for apoptosis-induced proliferation acting downstream of JNK signaling. These data underscore the importance of genetic
screening and promise an improved understanding of the mechanisms of apoptosis-induced proliferation.
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Introduction

Apoptosis is the major form of programmed cell death. It is used

during development and under stress conditions to remove excess,

unwanted or damaged cells. Deregulated apoptosis can give rise to

malignancies including cancer and neurodegeneration [1]. A

central step for the execution of apoptosis is the activation of

caspases, a family of cysteine-proteases that are ubiquitously

expressed as inactive zymogens [2]. There are two different types

of caspases. Initiator caspases are activated by incorporation into

multimeric complexes such as the apoptosome [3] in response to

developmental signals, cellular stress and injury. The initiator

caspase complex cleaves and activates effector caspases which then

proteolytically process a large number of cellular proteins inducing

the death of the cell.

Caspases are very well conserved in the animal kingdom. Of the

seven caspases in Drosophila, only the initiator caspase Dronc and

the two effector caspases DrICE and Dcp-1 have been implicated

in apoptosis in imaginal discs [4–12]. Caspases are negatively

regulated by inhibitor of apoptosis proteins (IAP) which directly

bind to processed caspases and inhibit their activity [13]. Drosophila

IAP1 (Diap1) binds to and inhibits Dronc, DrICE and Dcp-1

[14,15]. In cells committed to die, IAP-antagonists such as Reaper,

Hid and Grim [16–18] promote ubiquitin-mediated degradation

of Diap1, thus releasing Dronc, DrICE and Dcp-1 from Diap1

inhibition [19–23]. Dronc associates with the scaffolding protein

Ark (Apaf-1 related killer) to form the apoptosome which triggers

activation of DrICE and Dcp-1.

Developing organisms have the ability to compensate for

massive apoptotic cell loss by inducing compensatory proliferation.

For example, developing Drosophila imaginal discs can form a

normal-sized and patterned organ even after more than 50% of

their cells have been killed by X-ray treatment due to compen-

satory proliferation [24]. Surprisingly, work in Drosophila, and later

in hydra, Xenopus, planarians, newt and mice, has revealed that

apoptotic caspases may be the driving force for compensatory
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proliferation in apoptotic tissue [12,25–35] (reviewed in [36–38]).

Because this regenerative proliferation requires apoptotic caspases,

it has been termed Apoptosis-induced Proliferation, henceforth

referred to as AiP [38,39].

There are two commonly used experimental models that study

AiP in larval imaginal discs, usually wing and eye discs in Drosophila.

The first type of model takes advantage of the fact that another

caspase inhibitor, the P35 protein from Baculovirus, specifically

inhibits the effector caspases DrICE and Dcp-1, but not the initiator

caspase Dronc [14,40,41]. Therefore, induction of apoptosis in p35-

expressing cells triggers the apoptotic pathway down to Dronc, but

cannot execute cell death because of inhibition of effector caspases by

P35. These cells are referred to as ‘undead’ cells. Consequently,

Dronc is functional in ‘undead’ tissues and can fulfill non-apoptotic

roles including AiP which triggers overgrowth [12,25–28] which may

be relevant for tumorigenesis. More, recently, P35-independent

models of AiP have been described [42–44]. In these models,

apoptosis is temporally induced followed by analysis of the events

leading to replacement of the dying tissue. Because they mimic the

conditions of normal regenerative growth, we referred to them as

‘genuine’ AiP models [45].

Much of what we know about AiP came from studies of

‘undead’ cells. In ‘undead’ cells, Dronc activates p53 and the

stress-kinase JNK, encoded by basket (bsk) in Drosophila [12,25–

27,46,47]. JNK activity is both necessary and sufficient to induce

AiP, and it may do this by expression of the Wnt family members

wingless (wg) and the TGFb/BMP-family member decapentaplegic

(dpp), both of which are potent mitogens [26,27,42,43,48–51].

There are similarities and differences between the ‘undead’ and

‘genuine’ models. Both models involve JNK signaling, but the

location of JNK activity appears to be different. While it is believed

that under p35-expressing conditions, JNK activity occurs only in

‘undead’ cells [27], this is less clear in the ‘genuine’AiP model.

Initially, it was reported that JNK is activated only in neighboring

surviving cells [43]. More recently, it was shown that JNK is

activated in both apoptotic and neighboring, surviving cells [44].

The role of Wg and Dpp in both models is also unclear. wg is not

induced in all ‘undead’ cells and concern has been raised about the

involvement of wg and dpp in ‘genuine’ AiP [26,44,46] suggesting

that other signaling pathways are also critical for AiP.

There are many other open questions in the field. For example,

although it is well established that Dronc can stimulate JNK

activity, the molecular mechanism of this interaction is not known.

Furthermore, while JNK is best characterized for its ability to

induce apoptosis [52], it is not always known how JNK induces

proliferation [50,53]. For example, while in wing imaginal discs,

JNK stimulates proliferation through activation of Yorkie, the

downstream target of the Hippo growth control pathway, this does

not appear to be a mechanism in eye imaginal discs [54,55], the

preferred model of this study (see below). This question is also

relevant for understanding of tumorigenesis, as for example death

receptor signaling by Fas (CD95) can promote tumor growth

through JNK-induced proliferation [56]. These considerations

stress the necessity of a convenient genetic screening system to

identify the genes and mechanisms involved in AiP.

Here, we present and test the feasibility of ‘undead’ and

‘genuine’ genetic models of AiP in eye imaginal discs. We identify

additional components in the JNK pathway that mediate the

activation of JNK by Dronc. We show that JNK activation occurs

in dying cells as well as in neighboring surviving cells depending on

the conditions used. We report the results of a pilot screen using

the ‘undead’ AiP model that led to the identification of Spi/EGFR

signaling as essential component for AiP. Finally, we demonstrate

that Spi is at least partially required for regeneration in a ‘genuine’

AiP model of the eye disc.

Results

The ey.hid-p35 model

eyeless (ey) is a regulatory gene for eye development and is

expressed during the growth phase of eye imaginal discs [57]. With

the move of the morphogenetic furrow (MF) in 3rd instar larvae, ey

expression ceases in and posterior to the MF [57]. Therefore, co-

expression of hid and p35 during the growth phase of the eye disc

using ey-Gal4 (referred to as ey.hid-p35) may provide a convenient

model to induce AiP. Correspondingly, in eye imaginal discs, the

anterior portion of the eye disc is overgrown compared to controls

forming an expanded head capsule due to increased cell proliferation

[29] (Figure 1A,B,C,D). Additional ocelli and bristles are observed

(Figure 1D, arrow). The anterior overgrowth is at the expense of

posterior tissue (Figure 1A,B) which specifies the retina. As a result,

eyes are smaller than wild-type and often absent (Figure 1E,F). In eye

discs, we use ELAV labeling which labels photoreceptor neurons, as

a marker to assess the extent of anterior overgrowth and distortion of

the eye disc (Figure 1B,G). We refer to these phenotypes as AiP

phenotypes. The small eye tissue is likely due to the expansion of Wg

expression anterior to the MF (Figure 1G,H) which is an inhibitor of

MF progression [58]. We also observed anterior expansion of dpp-

lacZ expression [29]. Finally, expression of the JNK marker puc-lacZ

and TRE-dsRed [59] are strongly expanded anterior to the MF

(Figure 1I,J; Suppl. Figure S1). Therefore, known markers of AiP are

induced in the ey.hid-p35 model which therefore may represent a

convenient AiP model for genetic screening.

The ey.hid-p35 model requires the apoptosome
components dronc and ark, but is independent of
effector caspases

To test the feasibility of the ey.hid-p35 model for genetic

screening, we first examined if mutants and RNA interference

Author Summary

Work in recent years has revealed that apoptotic caspases
not only induce apoptosis, but also have non-apoptotic
functions. One of these functions is apoptosis-induced
proliferation, a relatively recently discovered phenomenon
by which apoptotic cells induce proliferation of surviving
neighboring cells. This phenomenon may have important
implications for stem cell activity, tissue regeneration and
tumorigenesis. Here, we describe the development of a
genetic model of apoptosis-induced proliferation and the
use of this model for convenient and unbiased genetic
screening to identify genes involved in the process. We
tested mutants of our RNAi transgenic lines targeting the
core components of the apoptotic pathway and of JNK
signaling, a known mediator of apoptosis-induced prolif-
eration. These assays demonstrate the feasibility of the
system for systematic genetic screening and identified
several new genes upstream of JNK that are involved in
apoptosis-induced proliferation. Finally, we tested the
model in a pilot screen for chromosome arm 2L and
identified spi, the EGF ligand in flies, as important for
apoptosis-induced proliferation. We confirmed the in-
volvement of EGF in a genuine apoptosis-induced regen-
eration system. These data underscore the importance of
genetic screening and promise an improved understand-
ing of the mechanisms of apoptosis-induced proliferation
and regeneration.

Genetic Models of Apoptosis-Induced Proliferation
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(RNAi) of caspases and ark genetically modify the AiP phenotype.

Heterozygosity of dronc and dronc RNAi strongly suppressed the

AiP phenotype (Figure 2A,B). Under these conditions, more than

95% of the flies display completely normal eye and head

morphology. Heterozygosity of the apoptosome component ark

also suppresses the AiP phenotype to a similar extend (Figure 2C).

Therefore, these data demonstrate that the ey.hid-p35 model is

sensitive to genetic alterations and extend previous findings that

AiP not only requires dronc, but also ark, i.e. a functional

apoptosome.

Because this type of AiP is dependent on effector caspase

inhibition by P35, it was inferred that it does not require effector

caspases [25,27,28]. However, it was recently suggested that

despite P35 inhibition, effector caspases may still be active at low

levels in ‘undead’ cells [60]. This low level effector caspase

activity may be insufficient to induce apoptosis, but sufficient to

trigger non-apoptotic functions such as invasive behavior of

‘undead’ cells [60]. To test this possibility for AiP, we further

reduced DrICE and Dcp-1 activity by double RNAi due to the

redundancy of these two effector caspases [8]. However, in

contrast to the invasive behavior of ‘undead’ cells [60], the AiP

phenotype was not suppressed by dcp-1;drICE double RNAi

(Figure 2D). The RNAi stocks used are functional as dcp-1;drICE

double RNAi suppresses hid activity in a different apoptotic

model, GMR-hid (Suppl. Figure S2). In summary, the overgrowth

of the ey.hid-p35 model is dependent on the apoptosome

Figure 1. The ey.hid-p35 model induces hyperplastic overgrowth and displays markers of apoptosis-induced proliferation. In this
and the following figures, anterior is to the left. White dotted lines indicate the anterior portion of the eye imaginal discs. ELAV labels photoreceptor
neurons and is used to mark the developing eye field posterior to the morphogenetic furrow (MF). (A,A9) An ey.p35 control eye disc labeled with
PH3 as proliferation marker (red in A; grey in A9) and ELAV (green in A). (B,B9) An ey.hid-p35 experimental disc labeled with PH3 (red in B; grey in B9)
and ELAV (green in B). Please note the increase in size of the region anterior to the MF at the expense of the posterior region (green). (C,D,E,F) Dorsal
views of heads (C,D) and eyes (E,F) of ey.p35 control (C,E) and ey.hid-p35 experimental flies (D,F). Enlarged head cuticle with additional ocelli and
bristles (arrows) is observed in ey.hid-p35 flies (D), while eyes are reduced in size (F). (G,G9,H,H9) Increased expansion of wg expression (wg-lacZ, red
in G,H; grey in G9,H9) in ey.hid-p35 discs (H, arrow) compared to ey.p35 control discs (G). (I,I9) In ey.p35 control discs, puc-lacZ expression (b-Gal; red
in I, gray in I9) as marker of Bsk/JNK activity is low anterior to the MF and induced posterior to the MF. (J,J9) puc-lacZ expression (b-Gal; red in J, gray in
J9) as marker of Bsk/JNK activity is strongly induced anterior to the MF in ey.hid-p35 eye discs (arrows). Note the reduction in the posterior eye field
as visualized by ELAV labeling (green).
doi:10.1371/journal.pgen.1004131.g001

Genetic Models of Apoptosis-Induced Proliferation
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components Dronc and Ark, but independent of effector

caspases.

Identification of JNK pathway components involved in
AiP

It is unknown how the apoptosome induces JNK activity for

AiP. To obtain further insight into this question, we tested

components of the JNK pathway in a pilot RNAi screen for

modification of the ey.hid-p35 model. As expected, RNAi

targeting bsk, the JNK ortholog in Drosophila, completely suppresses

the AiP phenotypes in more than 90% of the flies (Figure 2E,F,G).

Downstream of JNK, RNAi knockdown of the components of the

AP1 transcription factor, jun-related antigen (jra) and the Fos ortholog

kayak (kay), also suppressed the ey.hid-p35 AiP phenotypes,

although to a lesser extent (Figure 2F,G) suggesting that they are

at least partially required for AiP.

To identify upstream components in the JNK pathway involved

in AiP, we tested RNAi lines targeting all known components in

the JNK pathway [52]. Interestingly, only a subset of them were

found to suppress the AiP phenotypes (Figure 2F,G). This includes

Figure 2. Modification of the ey.hid-p35 phenotype by JNK pathway components. (A–E) dronc (A) and ark (C) heterozygosity strongly
suppresses the ey.hid-p35 phenotype (compare to Figure 1D). RNAi targeting dronc (B) and bsk (E) also strongly suppresses it. Double RNAi targeting
dcp-1 and drICE (D) has no effect. (F) Results of the suppression of ey.hid-p35 using RNAi targeting components of the Bsk/JNK pathway in
Drosophila. Only select members of the Bsk/JNK pathway (dTraf2, Rho1, dTAK1, dMKK4, Bsk and to a weaker extent hep, Jra and kay) show suppression.
Each RNAi analysis was repeated at least twice with scoring more than 50 ey.hid-p35/dsRNA adult flies. (G) Schematic summary of the suppression
analysis of the Bsk/JNK pathway. Pathway components highlighted in red show RNAi-mediated suppression and are thus required for ey.hid-p35-
induced proliferation. (H–J) The GMR.eiger-induced eye ablation phenotype (H) is strongly suppressed by dTRAF2 RNAi (I), but not by Rho1 RNAi (J).
(K) GMR-Gal4 driven RNAi targeting Rho1 does not cause an eye ablation phenotype. This control experiment shows that failure of Rho1 RNAi to
suppress GMR.eiger (J) is not due to a secondary effect.
doi:10.1371/journal.pgen.1004131.g002
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the JNKKK dTak1 and the JNKKs hemipterous (hep) and MKK4

(Figure 2F,G). The non-redundant functions of hep and MKK4 for

AiP is puzzling, but has been previously reported in different

contexts [61,62]. Further upstream in the JNK signaling pathway,

we only identified Traf2 (also known as Traf6) as AiP suppressor

(Figure 2F,G). Another regulator of JNK signaling, the small

GTPase Rho1 [63–66], was also identified as AiP suppressor. In

contrast, the two ligand/receptor systems known to activate JNK,

Eiger/Wengen and Pvf/PVR, do not suppress AiP (Figure 2F,G).

The RNAi lines against these genes are functional as shown in

Suppl. Figure S3 and in [67–69].

Theoretically, it is possible that the suppression of AiP by these

RNAi transgenes is an indirect result of suppression of apoptosis,

as observed in the case of dronc and ark mutants or RNAi

(Figure 2B,C; Suppl. Figure S4B). To exclude this possibility, we

labeled ey.hid-p35 eye imaginal discs expressing these RNAi

constructs with cleaved Caspase-3 (Cas3*) antibody, a marker of

Dronc activity [70], and ELAV antibody to evaluate rescue of disc

morphology. Despite the rescue of disc morphology, Cas3*

labeling is not significantly suppressed by these RNAi constructs

(Suppl. Figure S4C–H) suggesting that the suppression of the AiP

phenotype by reducing JNK activity is not due to suppression of

caspase activity.

Because Rho1 is the least well characterized regulatory

component in the JNK pathway, we examined the effect of Rho1

knockdown on JNK activity in the AiP model. Loss of Rho1

suppresses puc-lacZ in ey.hid-p35 eye discs (Suppl. Figure S5A,B).

Rho1 RNAi also suppresses the AiP marker Wg (Suppl. Figure

S5C,D). These data show that Rho1 acts genetically upstream of

JNK in the AiP model consistent with previous reports [63–66].

To further place Rho1 into the AiP pathway and to relate it to

Traf2, we examined the ability of Rho1 and Traf2 to suppress GMR-

eiger, a known inducer of JNK activity causing a strong eye ablation

phenotype (Figure 2H) [71,72]. Interestingly, while Traf2 knock-

down effectively suppresses GMR-eiger as reported [73], Rho1 RNAi

does not (Figure 2I,J). It is possible that Rho1 RNAi disrupts eye

development by itself and that may be the reason for the failure to

suppress GMR-eiger. However, Rho1 RNAi does not disrupt eye

development (Figure 2K). These observations suggest that the role

of Rho1 for JNK activation is independent of Eiger which is also

consistent with the observation that Eiger knockdown does not

suppress AiP (Figure 2F,G). Furthermore, these data raise the

possibility that Traf2 serves as an integration point of both Eiger

signaling and AiP for JNK activation. For these reasons, we place

Rho1 upstream of Traf2 in the AiP pathway (Figure 2G), but there

may also be other ways by which Rho1 controls JNK activation.

Activation of JNK signaling in ‘undead’/dying cells and
neighboring, surviving cells

The lack of a requirement of Eiger/Wengen and Pvf/PVR in

our AiP model (Figure 2F,G) may suggest that activation of JNK

occurs in dying cells. However, conflicting data have been

reported about the location of JNK activity in various AiP models.

Initially, JNK signaling was observed in ‘undead’ cells [27]. In a

p35-independent regeneration model, it was reported that JNK

signaling occurs only in neighboring surviving cells [43]. More

recently, JNK activity was reported to be both in dying and

neighboring surviving cells [44]. While there are experimental

differences between these studies, none of them used a mosaic

approach to determine the location of JNK activation. Therefore,

to clarify this issue, we re-examined both ‘undead’ and ‘genuine’

AiP models for location of JNK activity.

In a mosaic ‘undead’ model, we expressed hid and p35 in clones

in eye and wing discs using a FLP-out approach and analyzed puc-

lacZ expression as JNK reporter. GFP was used to mark hid/p35-

expressing clones. Using this approach, puc-lacZ is predominantly

expressed in hid/p35 expressing cells (Figure 3A,B; arrows).

However, we also noted a few examples where puc-lacZ was

expressed in GFP2 tissue (Figure 3A,B; arrowheads). These

observations suggest that JNK activation occurs largely in ‘undead’

cells, but also in neighboring, normal cells.

To address this question in a ‘genuine’ (p35-independent) AiP

model, we repeated the experiments by Bergantinos et al. (2010)

[43] in wing imaginal discs. These authors reported JNK activity

in neighboring surviving cells only. We induced hid in a temporally

and spatially controlled manner using ptc-Gal4 and tub-Gal80ts

(ptcts.hid) by temperature shifts for various times. In control

experiments, just expressing GFP in the ptc domain does not affect

the puc-lacZ pattern (Figure 3C,C90). However, when hid expression

was induced, depending on the conditions, different results were

obtained regarding the location of JNK activity. In response to a

short pulse (6 hours) of hid expression followed by a 6 hours

recovery period (ts6hR6h), an elevation of puc-lacZ activity was

detected in dying cells and neighboring, surviving cells (Figure 3E0,

E90; dying cells containing puc-lacZ are highlighted by arrows,

while surviving cells are marked by arrowheads). This JNK activity

was induced during the recovery period, because immediately

after hid induction (ts6hR0h), no alteration of puc-lacZ expression

was detected (Figure 3D90). However, when hid expression was

induced for a long period (16 hours) followed by 6 hours recovery

(ts16hRh), puc-lacZ was strongly down-regulated in dying cells,

likely as a result of apoptosis in these cells. Nevertheless,

upregulation of puc-lacZ was detected in neighboring surviving

cells (Figure 3F0, arrowheads). This result is consistent with

Bergantinos et al. (2010) [43]. However, the upregulation of puc-

lacZ still occurred in GFP+ cells (Figure 3F00,F900), i.e. in the ptc

domain which had been exposed to hid 6 hours earlier, but have

survived for unknown reasons. Similar results were observed in

Figure 3E: the surviving cells inducing puc-lacZ are located in the

GFP+ region, i.e. in the ptc domain (Figure 3E00,E900; arrowheads).

Thus, it is not clear whether JNK activity in surviving cells is

induced autonomously in response to hid expression, or by a

signaling event from the dying Cas3*-positive cells. In any case,

these data show that both in ‘undead’ and ‘genuine’ AiP models,

JNK activity can be detected in ‘undead’/dying cells as well as in

neighboring, surviving cells.

Identification of spi as AiP suppressor
A systematic mutagenesis screen for genes involved in AiP has

not been performed to date due to absence of a convenient

screening assay. However, the data presented in Figure 2

demonstrate that suppression of ey.hid-p35-induced AiP provides

a convenient assay for genetic screening. Therefore, as proof of

principle, we screened a total of 106 chromosomal deficiencies

deleting segments on the left arm of chromosome 2 (2L) for

modification of the AiP phenotype and identified four chromo-

somal segments as dominant AiP suppressors and seven deficien-

cies as dominant AiP enhancers (Table 1; Suppl. Table S1),

validating the deficiency approach. Enhancers display an even

stronger AiP phenotype with severely overgrown head cuticle and

strong semi-lethality.

To identify the genes in the deficiencies that dominantly cause

the suppression of AiP, we tested available mutants and UAS-

RNAi stocks against all genes that map to these deficiencies. This

approach has been completed for Df(2L)ED1303 (Table 1) and led

to the identification of spitz (spi) as a potential regulator of AiP

(compare Figure 4C–F,I with Figure 4A,B). spi encodes the EGF

ortholog in Drosophila [74]. Therefore, our deficiency screen raises

Genetic Models of Apoptosis-Induced Proliferation
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Figure 3. Location of Bsk/JNK signaling in ‘undead’ and ‘genuine’ AiP models. puc-lacZ was used as JNK activity marker. hid expressing
areas are marked by GFP. Arrows indicate JNK activity in ‘undead’/dying cells, while arrowheads mark JNK activity in surviving cells. A double arrow in
(C–F) marks the ptc domain. (A,B) Location of JNK signaling in ‘undead’ AiP models by mosaic analysis. Clones expressing hid and p35 were induced
by FLP-out technology. In eye (A) and wing (B) imaginal discs, puc-lacZ expression is mostly induced in hid/p35-expressing clones (arrows in A9, A0,A90,
B9, B0,B90). However, a few examples of puc-lacZ expression are noted in cells outside of hid/p35-expressing clones (arrowheads). (C–F) Location of JNK
activity in a ‘genuine’ AiP model in wing imaginal discs. hid expression was under control of ptc-Gal4 and tub-Gal80ts (ptcts.hid). A temperature shift
(ts) to 30uC for the indicated amount of time during 3rd larval instar induced hid expression. After the indicated recovery period (R), discs were labeled
for GFP (to visualize the ptc domain), Cas3* (the death domain) and b-Gal (puc-lacZ, i.e. JNK activation). The ptc domain is outlined by white, dotted
lines. Note that the death domain does not completely overlap with the ptc domain (see for example E9,E900 and F9,F900). (C–C900) A control disc just
expressing GFP under the experimental conditions to visualize the normal puc-lacZ pattern (b-Gal) pattern. (D–D900) An experimental disc that was
dissected immediately after a 6 hours pulse of hid expression without recovery (ts6hR0h). While caspase activity has been induced (D9), the puc-lacZ
pattern is mostly unaffected (D90). (E–E900) An experimental disc that was allowed to recover for 6 hours after a 6 hours pulse of hid expression
(ts6hR6h). puc-lacZ (b-Gal) expression is induced in many cells both inside (arrows) and outside (arrowheads) of the death domain (E0,E90). However,
these cells are present in the ptc domain (GFP; E00,E900). (F–F900) An experimental disc that was allowed to recover for 6 hours after a pulse of hid
expression for 16 hours (ts16hR6h). Although apoptosis is now strongly induced (F9), it is not detectable in the entire ptc domain (GFP; F900)
suggesting that some cells can escape hid-induced cell death. puc-lacZ (b-Gal) is strongly reduced in dying cells (F90). Nevertheless, there is an
increase of puc-lacZ expression in cells outside of the death domain (F0; arrowheads). However, these cells reside in the ptc expression domain
(F00,F900). Genotypes: (A,B) hs-FLP/UAS-hid; UAS-p35/act.y+.Gal4 UAS-GFP; puc-lacZ/+. (C) ptc-Gal4 tub-Gal80ts/+; UAS-GFP/puc-lacZ. (D–F) UAS-hid/+ ;
ptc-Gal4 tub-Gal80ts/+; UAS-GFP/puc-lacZ.
doi:10.1371/journal.pgen.1004131.g003

Genetic Models of Apoptosis-Induced Proliferation

PLOS Genetics | www.plosgenetics.org 6 January 2014 | Volume 10 | Issue 1 | e1004131



the hypothesis that the EGFR pathway regulates AiP. Consistent-

ly, heterozygosity of Egfr suppresses the ey.hid-p35 phenotype in

eye discs (compare Figure 4G–I with Figure 4A,B). We also found

that Egfr RNAi suppresses an AiP model in wing imaginal discs

(nub.hid-p35) (Suppl. Figure S6). Downstream of EGFR, mutant

alleles of the Drosophila orthologs of Ras (Dras) and MAPK (rolled

(rl)) act as dominant suppressors of ey.hid-p35 (Figure 4I)

suggesting that MAPK activity is required for AiP. These data

imply that EGFR/Ras/MAPK signaling is essential for AiP in

both eye and wing discs. These findings are exciting giving the

controversy of the role of Wg and Dpp for AiP (see Introduction)

[26,46].

To further characterize the involvement of Spi/EGFR signaling

for AiP, we took advantage of the spi01068 allele which is an

enhancer trap insertion of lacZ into the spi gene (spi-lacZ) and can

serve as a reporter for spi expression [75]. This analysis is

complicated by the fact that this spi allele itself is a dominant

suppressor of AiP: about 75% of the ey.hid-p35/spi01068 flies show

a weak AiP phenotype, while 25% are not suppressed and still

show a moderately strong AiP phenotype (Figure 4E,F,I). Consis-

tently, in about 25% of ey.hid-p35 eye discs (n = 28), we observed

a strong induction of b-Gal labeling compared to control discs

(Figure 5A,B). This percentage corresponds to the number of

heterozygous spi01068 flies which display a moderately strong AiP

phenotype (Figure 4I). The remaining 75% of ey.hid-p35 eye discs

heterozygous for spi01068 show a normalization of disc morphology

as visualized by ELAV labeling and spi-lacZ expression (Figure 5C).

In addition, we found that a target gene of the EGFR pathway,

kekkon-1(kek) [76] is induced during AiP (Figure 5D,E,F).

To determine the position of Spi/EGFR signaling in the AiP

pathway, we performed epistasis experiments between spi and bsk.

Heterozygosity of spi1 dominantly suppresses the adult AiP

phenotype of ey.hid-p35 (Figure 4C,D,I). This suppression can also

be visualized by the normalization of the ELAV pattern in ey.hid-

p35 eye imaginal discs (Figure 5G, compare to Figure 1J). However,

despite the normalization of the ELAV pattern, puc-lacZ expression

is not reduced in this genetic background (Figure 5G,G9) suggesting

that spi acts genetically downstream of bsk. This is further confirmed

by the reciprocal experiment in which bsk RNAi completely

normalizes the spi-lacZ pattern in ey.hid-p35 background

(Figure 5H). bsk RNAi also normalizes the kek-lacZ pattern in ey.

hid-p35 background (Figure 5I). These observations suggest that

Spi/EGFR signaling acts genetically downstream of bsk activity.

Because Spi is a secreted signaling molecule, these findings may

imply that EGFR activation occurs in cells adjacent to apoptotic,

JNK-activating cells. This assumption is directly confirmed by the

observation that kek-lacZ activity, a downstream marker of EGFR

signaling, and Cas3* labeling as apoptotic marker do not overlap

(Figure 5F, arrows). In summary, these data imply that spi

expression occurs downstream of Bsk/JNK activity and that EGFR

signaling acts in signal-receiving, proliferating cells.

Characterization of ‘genuine’ AiP in the eye imaginal disc:
the DEts.hid model

Finally, we tested if genes identified in the ‘undead’ (P35-

dependent) AiP model are also involved in ‘genuine’ (P35-

independent) regeneration in the eye disc. To accomplish this

we used a similar approach as previously described in wing discs

[42–44]. hid expression was spatially restricted to the dorsal half of

the eye disc by dorsal eye-Gal4 (DE-Gal4) [77] and controlled by

Gal80ts [78] by a transient temperature shift (ts) to 30uC for

12 hours (Figure 6E). We refer to this system as DEts.hid. This

model also induces GFP to label hid-expressing cells. Before and

after the temperature shift, animals were incubated at 18uC
(Figure 6E) to inhibit Gal4 activity and therefore hid and GFP

expression. Note that although GFP is expressed only during the

30uC pulse, it is a rather stable protein and can be detected in

control discs 72 h later (Figure 6D).

In experimental discs immediately after the 30uC pulse

(recovery 0 hours – R0 h), a strong apoptotic response is

detectable (Figure 6A9) which causes tissue loss and disruption of

the bilateral symmetry of the disc 24 hours later (R24 h). In

extreme cases, this treatment can result in ablation of the entire

dorsal half (Figure 6B, asterisk), but usually some dorsal tissue

remains. At that time, many cells are still Cas3*-positive

(Figure 6B). 72 hours after the temperature shift (R72 h), the disc

has fully recovered in shape and also has a normal photoreceptor

pattern as judged by ELAV labeling (Figure 6C). Cas3* activity is

no longer detectable. The recovery is the result of increased

proliferation in the dorsal half of the eye disc (compare Figure 6G0

to Figure 6F0; quantified in Figure 6H). The reduction of the GFP

signal in the dorsal part (Figure 6C,G9) compared to the control

disc (Figure 6D) suggests that most of the GFP+ cells have died and

have been replaced by new, GFP2, cells.

Interestingly, a group of apoptotic cells appears to migrate out of the

dorsal half into the center of the disc (Figure 6B; arrow). At R72 h,

only these cells still show strong GFP+-labeling (Figure 6C; arrow). This

‘escape’ response of these ‘genuine’ apoptotic cells is reminiscent of the

invasive behavior of ‘undead’ cells in wing discs which move out of the

Table 1. Deficiencies that modify the ey.hid-p35-induced AiP phenotype as suppressors or enhancers.

Suppressors of ey.hid-p35- induced Overgrowth Chromosomal Location
Enhancers of
ey.hid-p35-induced Overgrowth Chromosomal Location

Df(2L)C144, Df(2L)ED136 22F4-23A2 Df(2L)ED123 22D1-22D3

Df(2L)ED206, Df(2L)JS17 23C4-23C5 Df(2L)BSC6 26D3-26E1

Df(2L)Exel7014, Df(2L)BSC28 23C4-23C5 Df(2L)BSC6 26D3-26E1

Df(2L)BSC31 23E5-23F3 Df(2L)ED508 28C1-28C4

Df(2L)TW137 ? Df(2L)ED611 29B4-29C3

Df(2L)ED1303, Df(2L)ED1272 37F2-38A2 Df(2L)Exel7048 31E3-31F4

Df(2L)ED1050 35C1-35D1

Df(2L)Exel7080 38F5-39A2

The indicated chromosomal location is the smallest overlap of overlapping deficiencies. Df(2L)TW137 is marked with a ‘‘?’’ because other overlapping deficiencies do not
suppress AiP (see Suppl. Table S1) indicating that the Df(2L)TW137 chromosome carries a suppressor mutation independent of the deficiency.
doi:10.1371/journal.pgen.1004131.t001
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‘undead’ domain [60]. What makes these cells move is unknown, but

an interesting avenue for further research in the future.

Requirement of bsk and spi for regeneration in the
‘genuine’ AiP model DEts.hid

Because JNK activity is essential for ‘undead’ AiP (Figure 2E),

we examined a requirement of bsk in the ‘genuine’ (P35-

independent) DEts.hid model. First, we examined if JNK activity

is induced in the DEts.hid model. Consistent with the ‘genuine’

AiP models in the wing [42–44], this was indeed observed.

TRE-dsRed as marker of JNK activity [59] peaked at 6 h after

recovery (R6 h) and is still detectable at R12 h (Suppl. Figure

S7B,C). It is mostly gone after 24 h recovery (Suppl. Figure S7D).

TRE-dsRed is confined to the GFP+ area, i.e. in the death domain

(Suppl. Figure S7B,C).

Second, we determined if bsk is genetically required for tissue

regeneration in the DEts.hid model. We used the photoreceptor

pattern (ELAV) as a marker to reveal disc outline and thus assess

the degree of regeneration. Control discs (DEts.hid) at R72 h had

completely regenerated (Figure 7A; n = 30). However, if bsk was

inactivated by RNAi during the apoptosis-inducing phase

(Figure 6E), about 35% (9 of 25 discs) of the discs show incomplete

regeneration (Figure 7B). The incomplete regeneration after bsk

RNAi is weak, presumably because the 12 h down-regulation of

bsk during the temperature shift is not sufficient to completely

remove Bsk activity. It is also possible that Bsk is resynthesized

quickly during the recovery period. Nevertheless, the incomplete

regeneration after bsk RNAi suggests that Bsk is at least partially

required for tissue regeneration after DEts.hid-induced tissue loss.

Next, we examined whether Spi/EGFR signaling is activated in

the DEts.hid model. spi-lacZ expression is induced in the ablated

GFP-expressing dorsal domain of the disc compared to controls

(Figure 7F,F9,G,G9). kek-lacZ as EGFR signaling marker is also

strongly induced in the dorsal domain compared to controls

(Figure 7H,H9,I,I9; arrow).

To determine if spi is genetically required in the DEts.hid

regeneration assay, we inactivated it by RNAi during the 30uC
temperature shift, following the protocol in Figure 6E. In a control

experiment, because spi is required for photoreceptor differenti-

ation posterior to the morphogenetic furrow [79,80], we tested if a

12 h spi RNAi treatment followed by 72 h recovery (R72 h) affects

normal photoreceptor differentiation. However, eye discs treated

in this way have a normal ELAV pattern (Figure 7C,C9; n = 20).

After this control experiment, we tested for a genetic requirement

of spi for regeneration of lost tissue due to hid expression.

Strikingly, the regeneration response as judged by ELAV labeling

was partially impaired when spi was inactivated by RNAi during

hid induction (Figure 7D,D9; arrow). All experimental discs (n = 30)

showed incomplete regeneration. The regeneration is only weakly

affected, likely because spi is inactivated by RNAi only during the

30uC pulse during hid expression (Figure 6E) and is likely restored

soon after reducing the temperature to 18uC. Nevertheless, in a

heterozygous spi condition, the discs also incompletely regenerated

after DEts.hid treatment (Figure 7E,E9; N = 20). In summary,

because spi RNAi and spi heterozygosity cause a partial failure to

regenerate, these data imply a requirement of spi for regeneration

in the ‘genuine’ DEts.hid AiP model. Furthermore, these data

support the notion that genetic screening using the simpler

‘undead’ AiP model can lead to identification of genes that may

also have important roles for regeneration in ‘genuine’ AiP.

Discussion

Apoptosis-induced proliferation (AiP) appears to be a mecha-

nism by which developing organisms replace dying cells under

stress conditions and initiate regenerative responses (reviewed by

[37,45]). In this paper, we described two AiP models in the

developing Drosophila eye. The ‘undead’ ey.hid-p35 model

generates a hyperplastic overgrowth phenotype. To date this is

the only known phenotype that provides a robust and convenient

assay for genetic screening and identification of novel regulators of

Figure 4. Suppression of ey.hid-p35 by spi and Egfr inactiva-
tion. The hyperplastic phenotype of ey.hid-p35 flies can be grouped in
three categories, severe, moderate and weak. Flies were scored as
severe when the head cuticle was strongly overgrown without
discernible patterning and eyes were absent or strongly reduced in
size. A moderate phenotype was scored when the head cuticle was
overgrown, but recognizably patterned with duplicated ocelli and
bristles. A weak phenotype was scored when size of head cuticle and
eyes was almost normal with very few ectopic ocelli or bristles
occasionally observed. (A–H) Representative pictures of ey.hid-p35 fly
head cuticles scored in different categories. Completely suppressed ey.
hid-p35 phenotype (wild-type-like head cuticles) by spi or Egfr
heterozygotes are not shown here. Arrows indicate ectopic ocelli or
bristles. (A,B) About 50% of ey.hid-p35 flies show severe hyperplastic
overgrowth of the head cuticle (A), while the remaining 50% display a
moderate phenotype (B). (C–H) Heterozygosity of spi1, spi01068 and Egfrf2

almost completely eliminated the severe overgrowth phenotype of ey.
hid-p35 flies and largely extends the population of flies with a weak
phenotype. (I) Summary of the suppression of the ey.hid-p35
overgrowth phenotype in spi, egfr, dRas and rolled (rl) heterozygous
condition. Pink indicates severe, orange indicates moderate and green
indicates weak phenotypes. Mutant alleles are indicated.
doi:10.1371/journal.pgen.1004131.g004
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Figure 5. Epistasis analysis of spi and bsk. Arrowheads indicate the morphogenetic furrow (MF) which separates the anterior (left) from the
posterior eye tissue visualized by ELAV labeling. (A) spi-lacZ pattern (b-Gal; red in A; gray in A9) in ey.p35 control discs. Note there is little expression
anterior to the MF. (B,C) Because the spi-lacZ allele (spi01068) is a suppressor of ey.hid-p35 adult overgrowth phenotype (Figure 4I), there is variation
in the b-Gal pattern. About 25% of the eye discs show strong induction of spi-lacZ in the anterior portion of the eye disc (B,B9; arrows) with a strong
reduction of the eye field (ELAV). The remaining 75% of the eye discs show a suppressed, largely normal b-Gal and ELAV pattern in ey.hid-p35 larvae
(C,C9). This ratio corresponds to the suppression of the adult overgrowth phenotype (Figure 4I). (D,E) Strong induction of kek-lacZ (b-Gal; red in D,E;
gray in D9,E9) in ey.hid-p35 eye discs (E; arrows) compared to ey.p35 control discs (D). (F,F9) kek-lacZ (b-Gal; red in F, gray in F9) is preferentially
induced in patches of tissue adjacent to areas with high levels of active caspases (arrows, Cas3* in green). (G,G9) Heterozygosity of spi normalizes the
eye field (ELAV, green), but does not suppress ectopic puc-lacZ expression (b-Gal; red in G, gray in G9) in ey.hid-p35 eye discs (arrows, compare to
Figure 1J). Dotted white lines outline the region anterior to the MF. (H,H9) Expression of bskRNAi in ey.hid-p35 discs normalizes the eye field (ELAV,
green) and suppresses ectopic increase of spi-lacZ expression (b-Gal; red in H, gray in H9). This pattern was observed in all experimental discs (n = 30).
(I,I9) Expression of bskRNAi in ey.hid-p35 discs normalizes the eye field (ELAV, green) and suppresses ectopic kek-lacZ expression (b-Gal; red in I, gray in
I9; compare to E). The analysis in G, H and I strongly suggests that spi acts genetically downstream of bsk.
doi:10.1371/journal.pgen.1004131.g005

Figure 6. Characterization of ‘genuine’ AiP in the eye imaginal disc: the DEts.hid model. hid expression was under control of dorsal eye-
(DE-)Gal4 and tub-Gal80ts (DEts.hid). A temperature shift (ts) to 30uC for 12 h during 2nd larval stage induced hid expression (E). After the indicated
recovery period (R), discs were labeled for GFP (to visualize the DE expression domain), Cas3* (the death domain) and ELAV (to outline the shape of
the disc). (A–C) DEts.hid experimental discs. hid expression induces a strong apoptotic response (A) causing strong tissue loss after 24 h recovery in
some discs (panel B; R24 h, asterisk). After 72 h recovery (R72 h), the disc has fully recovered and has a normal photoreceptor pattern as judged by
ELAV labeling (C). Please note the strong reduction of GFP intensity which suggests that most of the GFP+ cells have been replaced by new GFP2

cells. Arrows highlight a patch of cells that are moving to the center of the disc. (D) A control disc 72 h after DEts-induced GFP expression. Please note
that GFP is a very stable protein that can still be detected 72 h after synthesis. (E) The protocol of the DEts.hid-induced tissue ablation followed by
recovery periods. (F,F9,F0,G,G9,G0) PH3-labeling of control (DEts.GFP; F,F0) and experimental discs (DEts.hid; G,G0). GFP marks the outline of the DE
domain (F9,G9). (H) Quantification of the number of PH3-positive cells in dorsal and ventral compartments of control (F) and experimental discs (G).
n = 40 for each genotype.
doi:10.1371/journal.pgen.1004131.g006
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AiP. In contrast, we have not identified a similar robust and

convenient phenotype that would allow direct screening for genes

involved in ‘genuine’ (p35-independent) AiP and regeneration.

Nevertheless, we developed the DEts.hid model to verify genes

identified in the ‘undead’ screen as being involved in ‘genuine’ AiP

and regeneration.

Although the use of p35 to keep dying cells in an ‘undead’

condition may be considered as unphysiological and artificial, to

date all genes identified under p35-expressing conditions such as

JNK, Wg and Spi, were also found to be involved in AiP in p35-

independent models [42,43] (this study). Furthermore, cancer cells

may resemble ‘undead’ cells. They often initiate, but cannot execute

the apoptotic program due to genetic loss or inactivation of effector

caspases or other apoptotic components [81–84]. Such ‘undead’

cancer cells may contribute to tumor growth. Therefore, our p35-

expressing AiP model could provide insights into new regulators of

AiP as well as how impaired apoptosis may promote tumor growth.

Apoptotic caspases play a critical role for AiP. In Drosophila, the

initiator caspase Dronc is required for activation of JNK activity

which triggers AiP. However, it is unknown how Dronc activates

JNK for AiP. Using RNAi, a specific subset of components in the

JNK pathway were identified as required for AiP. The most

upstream genes in the JNK pathway are Rho1 and Traf2. Traf2

appears to be an integration point for Eiger- and AiP-induced JNK

activation, the latter one being mediated through Rho1 (Figure 2G).

However, it is unknown how Dronc triggers Rho1 activation. It is

unlikely that Dronc proteolytically cleaves Rho1 for two reasons.

First, Rho1 does not contain a putative Dronc cleavage site [40,85].

Second, a proteolytic cleavage is likely to destroy Rho1; however,

our genetic analysis implies that Rho1 function is required for AiP

(Figure 2, Suppl. Figure S5). Therefore, it remains unknown how

Dronc triggers Rho1 and thus JNK activation.

Interestingly, extracellular signaling pathways (Eiger/Wengen

and Pvf/PVR) known to activate JNK [52] did not score as

Figure 7. Requirement of bsk and spi for complete regeneration in the ‘genuine’ AiP model DEts.hid. (A, A9) DEts.hid discs treated
following the protocol in Figure 6E fully recover after 72 h (R72H). n = 30. (A9) shows the ELAV-only channel. (B, B9) About 35% of DEts.hid discs
expressing UAS-bsk RNAi do not completely recover after 72 h. n = 25. The arrow in (B9) highlights the incomplete ELAV pattern on the dorsal half of
the disc indicating that the regeneration response was partially impaired by reduction of bsk activity. Please note that this disc has also been labeled
for GFP. (C, C9) A control eye disc expressing UAS-spi RNAi under DEts-control following the protocol in Figure 6E. After 72 h recovery, the obtained
ELAV pattern in the dorsal half of the eye disc is largely normal (red in C, gray in C9). n = 20. (D, D9) An experimental DEts.hid eye disc that was
simultaneously treated with spi RNAi. The arrow in (D9) highlights the incomplete ELAV pattern on the dorsal half of the disc indicating that the
regeneration response was partially impaired by reduction of spi activity. 30 out of 30 discs show incomplete regeneration. Please note that this disc
has also been labeled for GFP. (E, E9) An experimental DEts.hid eye disc that was heterozygous for spi01068. Similar to (D), the ELAV pattern is
incomplete on the dorsal half of the disc (E9, arrow). n = 20. (F, F9, G, G9) spi-lacZ pattern in control (DEts.GFP; red in F, grey in F9) and experimental
discs (DEts.hid; red in G, grey in G9) at 24 h after recovery. The arrow in (G9) points to the increased b-Gal pattern in the dorsal half of the disc. Blue is
Cas3*. (H, H9, I, I9) kek-lacZ pattern in control (DEts.GFP; red in H, grey in H9) and experimental discs (DEts.hid; red in I, grey in I9) at 30 h recovery. The
arrow in (I9) points to the increased b-Gal pattern in the dorsal half of the disc. Blue is Cas3*.
doi:10.1371/journal.pgen.1004131.g007
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suppressors of AiP, suggesting that Dronc may autonomously

activate JNK activity. This is also consistent with our observation

that JNK activity occurs largely in hid- and p35-expressing clones

(Figure 3). Nevertheless, it is also possible that a third extracellular

signal is generated by ‘undead’ cells in a Dronc-dependent manner

that triggers JNK activity in an autocrine and/or paracrine

manner. The observation that in both ‘undead’ and ‘genuine’ AiP

models JNK activity is also detectable in neighboring surviving

cells (Figure 3) may support such a mechanism. Further work is

necessary to reveal the exact mode of JNK activation by ‘undead’/

dying cells.

In the ‘genuine’ (p35-independent) AiP model (ptcts.hid), JNK

activity is detectable in both dying and surviving cells. However,

the surviving cells with increased JNK activity are also present in

the ptc domain (Figure 3E,F) which was exposed to hid expression

during the temperature shift. JNK activity is also restricted to the

death domain in the DEts.hid model (Suppl. Figure S7).

Therefore, it is unclear whether a signaling mechanism from

dying cells induces JNK activity in surviving cells, or whether the

previous hid induction accounts for the JNK activity in surviving

cells. It is also unclear how these cells survive. Even after a 16 h

pulse of hid induction causing a strong apoptotic response in a

large fraction of cells in the ptc domain, some cells survive

(Figure 3F). They may receive survival signals from cells outside of

the ptc domain, but that needs to be determined. These are

interesting questions to be addressed in the future.

We have tested signaling pathways known to be involved in

growth control for modification of the ey.hid-p35 model. One

example is the Hippo/Warts/Yorkie pathway [86,87]. However,

neither mutants of this pathway nor transcriptional reporters (ex-

lacZ) scored positive in the ey.hid-p35 model (data not shown).

Therefore, at least in the eye disc, not every pathway involved in

growth control is also involved in AiP. These observations stressed

the necessity to perform unbiased genetic screens aimed at

identifying the genes and mechanisms involved in AiP.

Therefore, we performed a pilot screen for modifiers of the ey.

hid-p35 AiP model using deficiencies of chromosome arm 2L. We

identified four deficiencies as suppressors and three as enhancers

(Table 1). Identification of AiP enhancers implies that there is also

negative regulation of AiP. In one case we identified spi, encoding

the Drosophila EGF ortholog, as a suppressor of AiP suggesting an

involvement of EGFR signaling for AiP. This is further confirmed

by the strong transcriptional induction of spi and an EGFR target

gene, kekkon, in our AiP model. We also found that EGFR signaling

is involved in an ‘undead’ AiP model in the wing and – more

importantly – in the ‘genuine’ DEts.hid regeneration model in the

eye. The latter finding is crucial as it demonstrates that genes

identified in the ‘undead’ screen may be relevant players for

‘genuine’ regeneration in response to apoptotic tissue loss. An

involvement of EGFR and MAPK for regeneration is not

unprecedented. It was previously shown that EGF is one of a

few signals that stimulate hepatocyte proliferation during liver

regeneration in mammals [88,89]. In the Hydra regeneration

model, apoptosis-induced proliferation depends on MAPK acti-

vation [90]. Therefore, these findings and considerations validate

our screening approach using the ‘undead’ AiP model.

Identification of Spi/EGFR signaling as suppressor of AiP was

unexpected because EGFR signaling negatively regulates the

apoptotic activity of hid [91,92]. Thus, by reducing EGFR activity,

hid has increased apoptotic activity which is expected to induce

even more AiP. Therefore, the AiP phenotype should be enhanced

by heterozygosity of EGFR pathway components. However, the

identification of spi, Egfr, Dras and rl as suppressor of AiP suggests

that EGFR signaling is also required for AiP. One possibility to

explain these two opposing functions of EGFR (negative

regulation of hid and positive requirement for AiP) may be the

exclusive appearance of Cas3*-positive areas and areas with

EGFR activity (Figure 5F). Accordingly, while the Spi signal is

generated in Cas3*-positive, apoptotic areas, it signals to

neighboring Cas3*-negative, surviving areas to inactivate Hid

and promote proliferation.

The identification of Spi/EGFR signaling may help to resolve a

controversy about the signaling pathways involved in AiP. The

exact roles of Wg and Dpp for AiP are unclear [26,44,46] and

signaling by the EGFR pathway may contribute to the prolifer-

ative response in AiP.

Recently, a genetic screen has been reported aimed at

identification and characterization of genes required for compen-

satory growth [93]. These authors induced apoptosis conditionally

using a temperature-sensitive cell lethal mutant (sec5ts). Under

normal conditions, the ablated tissue is replaced by new tissue due

to compensatory proliferation. The authors then screened for

mutants that fail to renew the lost tissue [93]. This was done in a

clonal screen for chromosome arm 2L, the same chromosome arm

we screened in the deficiency screen in our model. However, the

genes identified in the sec5ts screen [93] do not map to the

deficiencies that we have identified in our analysis (Table 1).

Because it is unknown if sec5ts–induced compensatory proliferation

requires caspase activity in apoptotic cells [93], it is not clear if this

is a model of apoptosis-induced proliferation.

In summary, we have developed and tested the feasibility of the

ey.hid-p35 model for genetic screening. We are confident that this

model will close gaps in our understanding of AiP regulation under

p35-expressing conditions and in p35-independent regeneration.

Finally, it will have implications for the understanding of

tumorigenesis by ‘undead’ as well as ‘genuine’ apoptotic tumor

cells [94].

Materials and Methods

Fly stocks and genetics
The following mutants and transgenic stocks were used: droncI29;

arkG8; spi1; spi01068; Egfrf2; rasDC40b, rl10a, ey-Gal4; ptc-Gal4; DE-Gal4;

tub-Gal80ts; UAS-p35; UAS-hid; UAS-GFP; wg-lacZ; puc-lacZ; kek1-

lacZ; spi-lacZ = spi01068; TRE-dsRed; GMR-hid; GMR-Gal4 UAS-egr.

UAS-based RNAi stocks of the following genes were obtained

from various stock centers (VDRC, Bloomington and NIG) and

were tested for suppression of AiP: dronc, dcp-1, drICE; bsk, egr, wgn,

PVR, dTraf1, dTraf2, Rho1, msn, slpr, Tak1, dMekk1, dAsk1, hep,

dMkk4, Jra, kay, spi, Egfr. The exact genotype of ey.hid-p35 is UAS-

hid; ey-Gal4 UAS-p35/CyO,tub-Gal80. Expression of tub-Gal80 in this

stock suppresses the semi-lethality associated with ey-induced

expression of hid and p35.

Mosaic analysis
Larvae of the following genotype were heat shocked for 15min

at 37uC, raised at room temperature for 48 h before they were

analyzed at the late 3rd instar larval stage. Genotype: hs-FLP/UAS-

hid; UAS-p35/act.y+.Gal4 UAS-GFP; puc-lacZ/+.

Tissue ablation using ptcts.hid and DEts.hid
Larvae of genotype UAS-hid/+; ptc-Gal4 tub-Gal80ts/+; UAS-

GFP/+ (Figure 3) and UAS-hid/+; UAS-GFP/+; DE-Gal4 tub-

Gal80ts/+ (Figure 6) were raised at 18uC. hid expression was

induced by temporal temperature shift to 30uC for the indicated

amount of time (Figure 3) or for 12 hours (Figure 6E). After the

indicated recovery periods at 18uC, discs were dissected and

analyzed as indicated in the panels.
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PH3 labelling and statistics in DEts.hid model
Two rounds of experiments (ts12hR24h, at least 20 discs were

analyzed each round) were done for both DEts.GFP (control) and

DEts.hid. Increase of PH3-positive cells in dorsal eye disc portions

of DEts.hid animals are consistently observed. PH3-positive cell

numbers were counted in dorsal (GFP+) and ventral eye disc

portions in selected discs. Size of the dorsal (GFP+) and ventral eye

disc portions were measured through the ‘‘histogram’’ function in

Adobe Photoshop CS. To compare the density of PH3+ cells in

each disc portion, number of PH3+ cells were divided by size (in

pixels) of the corresponding tissue which is used to calculate the

number of cells in 100,000 pixels (density). Such normalized

density of PH3+ cells in various portions of eye discs (mean 6 SD)

were used for the statistical chart. PH3+ cell numbers in

100,000 pixels is on average 88 in DEts.hid dorsal eye discs

compared to 62 in the control dorsal discs. Their statistical

significance was evaluated through a two-tailed, unpaired

Student’s t-Tests (P,0.04). In contrast, the number of PH3+ cells

are comparable in ventral disc portions of each genotype

suggesting that increased proliferation mostly occurred in the

dorsal part of the disc (at least at the time point of R24 h).

Immunohistochemistry
Imaginal discs were dissected from late 3rd instar larvae and

stained using standard protocols. Antibodies to the following

primary antigens were used: PH3 (Upstate), anti-cleaved Caspase-

3 (Cell Signaling), b-GAL (Promega), ELAV and Wg (DHSB).

Secondary antibodies were donkey Fab fragments from Jackson

ImmunoResearch. Images were taken with either a Zeiss

AxioImager or a confocal microscope.

Supporting Information

Figure S1 The JNK activity marker TRE-dsRed is induced in

‘undead’ ey.hid-p35 cells. Shown are (A) wild-type (wt), (B) ey.p35

and (C) ey.hid-p35 eye imaginal discs labeled for dsRed (JNK

marker, red in A–C; grey in A9–C9) and ELAV (photoreceptor

neurons, green in A–C; grey in A0–C0). Only ey.hid-p35 discs

induce TRE-dsRed expression (C, C9; arrow) and disrupt the ELAV

pattern (C0).

(TIF)

Figure S2 The UAS-dcp-1RNAi and UAS-drICERNAi stocks are

functional. Combined expression of UAS-dcp-1RNAi and UAS-

drICERNAi stocks suppresses both TUNEL-positive apoptosis (A,B)

and eye-ablation of GMR-hid (C,D) suggesting that these stocks

contain functional RNAi transgenes targeting dcp-1 and drICE.

(TIF)

Figure S3 Several UAS-RNAi transgenes of the JNK pathway

suppress GMR-egr. (A) The unmodified GMR-Gal4 UAS-eiger

(GMR.egr) eye ablation phenotype. (B–H) RNAi transgenes

targeting the genes indicated above the panels suppress the eye

ablation phenotype induced by GMR-Gal4 UAS-eiger (GMR.egr)

suggesting that they are functional.

(TIF)

Figure S4 Inactivation of JNK pathway genes in ey.hid-p35 eye

discs does not affect caspase activity. (A) A ey.hid-p35 disc labeled

for Cas3* and ELAV. (B) dronc RNAi suppresses Cas3* and

normalizes the ELAV pattern in ey.hid-p35 discs. (C–H) RNAi

transgenes targeting the indicated JNK pathway components

normalize the ELAV pattern, but fail to suppress Cas3* activity in

ey.hid-p35 discs suggesting that they suppress AiP downstream of

caspase activation.

(TIF)

Figure S5 Rho1 acts upstream of JNK in the ‘undead’ AiP

model. (A,A9,C,C9) ey.hid-p35 discs are characterized by strong

puc-lacZ (A,A9) and wg (C,C9) expression as well as disrupted

photoreceptor pattern (ELAV). (B,B9,D,D9) RNAi targeting Rho1

suppresses puc-lacZ (B,B9) and wg (D,D9) expression as well as

normalizes the ELAV pattern in ey.hid-p35 discs. Caspase activity

is not affected suggesting that Rho1 acts downstream of Dronc and

upstream of JNK.

(TIF)

Figure S6 Egfr is required for AiP in a wing model. (A) A control

wing disc expressing UAS-p35 under nubbin (nub)-Gal4 (nub.p35)

control shows normal Wg expression (A9) and little to no Cas3*

labeling (A0). (B) An experimental AiP disc expressing hid and p35

under nub control (nub.hid-p35) displays strong overgrowth with

abnormal Wg pattern (B9) and strong Cas3* labeling (B0).

Together with (D), these data suggests that nub.hid-p35 is a

suitable ‘undead’ AiP model. (C) A nub-Gal4 UAS-p35 (nub.p35)

control disc. puc-lacZ expression is detectable at low level. (D)

Coexpression of hid and p35 induces strong JNK activity (puc-lacZ)

in the enlarged nub domain. (E) RNAi targeting Egfr suppresses the

overrepresentation of the nub domain, but leaves puc-lacZ intact.

This result suggests that EGFR signaling is required for AiP in the

wing disc and acts downstream of JNK. (F,G) Control disc

expressing Egfr RNAi in the nub domain without hid, in the

presence (F) or absence (G) of p35. The size of the nub domain is

not significantly altered by Egfr RNAi compared to (C).

(TIF)

Figure S7 Induction of the JNK activity marker TRE-dsRed in

DEts.hid eye imaginal discs. (A–D) hid and GFP expression were

temporally induced for 12 h by temperature shift to 30uC during

early third instar larval stage as indicated in Figure 6E. dsRed

expression (red in A–D; grey in A9–D9; see arrows) was monitored

at 0 h (A), 6 h (B), 12 h (C) and 24 h (D) recovery after the

temperature shift. GFP (green in A–D; grey in A0–D0) marks the

DE domain. Blue is DAPI labeling to outline the discs. dsRed

labeling is weakly detectable at R0 h, peaks at 6 h after recovery

and fades off at R12 h. At R24 h, it is barely visible. (E) A DEts.

GFP control disc at 6 h recovery after the temperature shift,

labeled for dsRed (red in E, grey in E9). JNK activity is not

induced. GFP expression in (E0) is strong. Blue in (E) is DAPI

labeling to outline the discs.

(TIF)

Table S1 Chromosomal deficiencies tested in the AiP screen on

2L. Listed are the names of the deficiencies, the extent of the

chromosomal deletions and the score in the AiP screen. Green

marks suppressors and yellow marks enhancers. Deficiencies

marked with * could not be scored, because they caused lethality

in the ey.hid-p35 background.

(PDF)
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