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Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called
cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological
substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that
may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an
important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity,
in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron
population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a
gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical
GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future
research in the field.

1. Introduction

Patterns of activity from the peripheral sensory receptor
arrays can dramatically influence the development of con-
nectivity and functional organization of cortical fields in
mammals. In some species, evolution in relation to specific
environmental cues has nurtured the brain’s blueprint in
such a way that a sensory cortex processing specific survival
needs has been enlarged over time as compared to other
modalities (Figure 1) [1–5]. Similarly, when a sensory func-
tion is lost during development, spared senses compensate
by taking more cortical space and recruiting the deafferented
areas, to maintain homeostasis of sensory function. This
reorganization optimizes and secures the individual’s sur-
vival and awareness to future environmental changes. For
example, the loss of sight at birth or during early life
in humans leads to important anatomical and functional

reorganization of the visually deprived cortex that will
become activated by a wide variety of nonvisual stimuli
involving touch, audition, and olfaction [6–11]. Enhanced
spatiotemporal functions in the remaining sensory modali-
ties have also been reported [12–16]. It seems therefore that
the visual cortex of the blind is not lifeless and is capable
of adapting in order to accommodate these nonvisual inputs
through cross-modal plasticity.

But how does a visually deprived cortical area signal its
loss of sensory inputs to, or be recruited by, areas of other
sensory modalities? Two main hypotheses have been pro-
posed to explain cross-modal plasticity in a visually deprived
brain. The first hypothesis proposes that early deprived visual
cortical circuits can be rewired and/or cross-wired with other
modalities following the initial insult [17–19]. This rewiring
stipulates the formation of new and permanent aberrant
connections from the sensory receptors of spared modalities
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Figure 1: Primary cortical areas in three species of mammals (i.e., Mouse, Ghost Bat and Opossum) that have approximately the same
size cortical sheet, but different amounts of cortex allowed to different sensory modality (S: Somatosensory system, A: Auditory system and
V: Visual system), related to use of particular sensory receptor arrays. In the mouse (top left), which relies heavily on tactile inputs from
the whiskers for survival, the somatosensory cortex (S) is enlarged, compared with the ghost bat (bottom left) and normal opossum (top
right). The auditory cortex (A) in the neocortex of the echolocating ghost bat is expanded, while the visual area (V) and S is relatively small.
Similarly, the cortex of the highly visual opossum have a dominant visual cortex. Finally, for example, in the enucleated at birth opossum
(bottom right) the V cortex becomes smaller and is recruited by the A and S modalities. Similarity in relative location of sensory cortical
fields in all these mammals suggests that the topographic organization and overall pattern of thalamocortical projections of the brain is
constrained by developmental mechanisms. Conversely, the differences in size, shape, and detailed organization of sensory cortical fields
indicate that input from the periphery is a crucial factor in guiding many of the details of organization of the neocortex. Rostral is to the left
and medial is up. Scale bar = 1 mm. Adapted from Kahn and Krubitzer, 2002 [48].

to visual thalamic relays and up into the visual cortices.
The second hypothesis stipulates the activation, formation,
and/or enhancement of corticocortical connections that
involve local connectivity modifications in the deprived
cortex as well as physically present but functionally silent
connections between sensory cortices that could therefore
be activated and/or sprout following a specific sensory loss.
Thus, early blindness could lead either to abnormal thalam-
ocortical or corticocortical connections. These connections
are not yet fully understood but would explain, in part,
how the afferents of the remaining modalities could reach
the deprived cortex. In order to clarify these hypotheses at
the microscale level and to better understand the biolog-
ical underpinnings of cross-modal plasticity, several early
developmental models have been developed in the past four
decades.

Even if it is now widely accepted that cross-modal plas-
ticity involves important anatomical and functional changes
in the neocortex, its cellular mechanisms are still ill-
defined. Inhibitory GABAergic interneurons are believed to

subserve cross-modal plasticity processes such as in re-
establishing homeostasis when the excitation-inhibition bal-
ance is perturbed. For example, GABAergic neuronal activity
coordinates the rhythmic behavior of principal (excitatory)
neurons in the cortical networks. GABAergic neurons are
also critically involved in neuronal growth, fine tuning of
sensory receptive fields, visual plasticity, and the formation
of critical periods in development. In addition, GABAergic
interneurons especially those expressing calcium-binding
proteins like calbindin (CB), calretinin (CR), and partic-
ularly parvalbumin (PV) have a protracted development
reaching their neurochemical and innervation maturity only
during early postnatal life making them very sensitive to
sensory experience, sensory privation, and noxious envi-
ronmental changes. Finally, GABAergic interneurons play a
pivotal role in gating sensory thalamocortical feed-forward
inputs [20–22], cortico-cortical [23–25], and corticothalam-
ocortical connectivities between visual cortices [26] which is
of prime interest for cross-modal plasticity following an early
sensory loss. Further, significant morphological alterations
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in inhibitory networks are found in animal models of
sensory deprivation, early blindness, rewiring, and cross-
modal plasticity [1, 27–30]. Since interneurons play such a
significant role in activity-dependent modification of devel-
oping sensory circuits, it is thus important to study specific
implications of the various GABAergic subpopulations in
cross-modal plasticity paradigms.

In this paper we will first discuss general anatomical
and functional findings in different animal models of cross-
modal plasticity (in particular hamsters, ferrets, opossum,
and mice) and the effects of loss of sensory function on
GABAergic cortical networks. We will then focus on how
aberrations in inhibitory circuitry could explain cross-modal
plasticity and briefly discuss future research directions in the
field. Thus, the main objective of this paper is to stress out the
importance of studying the GABAergic networks in animal
models of cross-modal plasticity for future experimental
work because information on the possible mechanisms
involved is presently lacking.

2. Animal Models of Cross-Modal Plasticity

During development, activity pattern amongst different sen-
sory modalities determines the relative size and organization
of its representative subcortical and cortical areas. The loss
or decrease of any one modality leads to the invasion
of the deprived cortical area by inputs originating from
other modalities, illustrating the remarkable capacity of the
cerebral cortex for plasticity resulting in anatomical reorga-
nization, functional and behavioral recovery. As mentioned
before, in blindness, cross-modal changes most probably
require or involve rewiring and cross-wiring of cortices.
The remaining modalities could colonize the deprived
visual cortex directly through changes at the subcortical
level (modified thalamo-cortical afferences) and via cortico-
cortical connections.

2.1. Early Sensory Privation, Binocular Enucleation, and
Congenital Blindness Models. Several studies have shown
that the total or partial loss of a sensory modality like
vision leads to changes in the anatomical and functional
organization of the structures associated with the affected
sensory input as well as from the spared modalities [31, 32].
In the 1970s, Rebillard et al. reported for the first time
that the primary auditory cortex in congenitally deaf cats
could be driven by visual or somatosensory stimuli [33] and
was later shown also in a congenitally deaf mouse strain
[34]. Furthermore, following bilateral lid sutures at birth in
kittens it was also found that the neurons in the visual part
of the anterior ectosylvian cortex (AEV) could respond to
other modalities [35, 36]. Thus, areas normally dedicated
to vision could be taken over by neighbouring auditory
and somatosensory areas leading to superior performance in
localization discrimination tasks relying on these remaining
senses. These changes were attributed to the expansion of
the auditory and somatosensory areas to the detriment of
extrastriate or associative visual cortices [37, 38]. Cross-
modal plasticity has also been observed in primary sensory

cortices. In rats enucleated at birth, the primary somatosen-
sory cortex (S1) can recruit the rostral part of primary visual
cortex (V1) conferring functional tactile neuronal responses
in that area. These rats showed better exploring skills and
higher whisker responsiveness than control siblings [39, 40].
Similar anatomical and electrophysiological findings have
been reported in early postnatal and adult enucleated mice
and rabbits [41–43]. Enucleation at birth or congenital
microphthalmia in kittens induces auditory activation of the
visual cortex, principally area V1 [44, 45], which has also
been shown in hamsters, opossums, and mice [46–49].

In very low-sighted mammals like the blind mole rat
(Spalax ehrenbergi), the primary visual thalamic relay, the
dorsal lateral geniculate nucleus (dLGN), receives direct
atypical subcortical projections from the inferior colliculus
(IC) which gets its auditory input from the cochlea [50].
Hence, in these animals, an auditory stimulus can activate
neurons in both the dLGN and area V1 [51–53]. Congenitally
anophthalmic mutant mice (strain ZRDCT-An) show similar
responses. When the dLGN-V1 connectivity is preserved
in these mice, there is an increase in the thalamo-cortical
projections coming from the lateral posterior (LP) (ancestor
of the pulvinar in rodents) and the somatosensory ventro-
posterior (VP) nuclei [54]. Further, there is development
of ectopic innervations of the dLGN and the LP by inputs
originating in the dorsal column nuclei (DCN) of the
somatosensory system and the IC [55–57]. Chabot et al.
found that an auditory stimulation provoked a strong c-fos
response in cells of the dLGN and V1 and to a lesser extent in
secondary associative visual cortices (V2M and V2L) in these
anophthalmic mutants only, compared to C57BL/6 normal
controls and enucleated at birth mice that do not develop
aberrant projections between IC and the dLGN [46, 56].
More recently, an elegant study using mice mutants that
lacked functional rods (Gnat−/−), but had normal cone
function, reported that cortical connections of V1 in these
animals were similar to those of normal siblings, but there
were sparse inputs from the auditory cortex (AC) to area V1.
This region also received some abnormal subcortical inputs
from the anterior thalamic nuclei, the ventral posterior,
the ventral lateral, and the posterior nuclei. While vision
generated from a small number of cones appeared to be
sufficient to maintain most of the patterns of normal
connectivity, the sparse abnormal thalamic inputs to V1,
existing inputs from AC, and possibly abnormal inputs to
LG and LP may be responsible for generating alterations
in the functional organization of V1 of these mice [32].
Taken together, these studies suggest that developmental
timing and age at which sensory loss happens are of
prime importance to the strength of rewiring and cross-
wiring that occurs in cross-modal plasticity. These studies
also imply that a prenatal period of spontaneous retinal
and/or basic postnatal retinal activities may play a role in
shaping differences in sensory reorganization in mammals.
This corroborates results obtained in prematurely born
animals like hamsters (E15) and opossums (E13,5) in which
subcortical reconnections are generally more important. For
example, binocular enucleation at birth in these animals
also induces strong auditory responses in the primary visual
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cortex [31, 47, 58, 59]. In enucleated hamsters, single cell
electrophysiological recordings have shown that 63% of neu-
rons in the V1 are now responsive to auditory stimulation.
This manipulation leads to the formation of direct new
ectopic auditory projections from the IC to the dLGN while
the connectivity between this nucleus and the visual cortex
remains unchanged (Figures 2(a) and 2(c)). These new
auditory inputs to the visual thalamus and cortico-cortical
connections from A1 are thought to be responsible for the
auditory activities found in V1 [47]. Interestingly, reducing
or ablating visual thalamo-cortical inputs on the day of birth
in normal hamsters significantly increases the number of
cortico-cortical projections to V1 arising from both primary
nonvisual and associative visual areas in the adult [60].
In enucleated opossums, the cross-modal plasticity and
alterations of the subcortical and cortico-cortical afferent
circuits are stronger. As a result, in these marsupials, area
V1 can now receive ectopic projections from the primary
thalamic auditory (medial geniculate nucleus (MG)) and
somatosensory (ventrobasal nucleus (VB)) relays as well as
new inputs from primary auditory (A1) and somatosensory
(S1) cortices. However, no projections between the IC and
the dLGN were seen in this model [31]. For comparison pur-
poses, a similar enucleation paradigm in the rat reported a
reduction in thalamo-cortical afferents from the dLGN to the
visual cortex, a significant increase in the projections from
the LP to the V1, and more cortico-thalamic projections
between the S1 and the LP in these rats [61].

As previously mentioned, it is possible for auditory
and/or somatosensory information to reach area V1 in
blind mammals via modifications of the cortico-cortical
connectivity. Several animal studies in the past decade show
the existence of direct anatomical connections between the
auditory and visual cortices, more particularly in normal-
sighted cats and nonhuman primates [62–66]. Long pro-
jections relaying the V1 to other primary sensory cortices
are found in several mammalian species such as rats [67],
gerbils [68], hamsters [47, 60], and ferrets [69]. Recently, an
indirect pathway between the primary auditory and visual
cortices through layer V pyramidal neurons in V2L has
been identified in the mouse and can be amplified by
enucleation at birth. The authors suggest that this A1-V2L-
V1 pathway may be involved in multisensory processing
and contribute to the auditory activation of the occipital
cortex in blind rodents [70]. It is possible that such cortico-
cortical connections in normal animals contribute to cross-
modal plasticity by being stabilized, reorganized and/or
being amplified following any form of sensory loss during
development. Taken as a whole, studies so far highlight the
importance of putative reorganization of subcortical, thala-
mo-cortical, and cortico-cortical pathways in the blind brain.

2.2. Artificial Rewiring Paradigms in Hamsters and Ferrets
Neonates. Cross-modal plasticity changes have also been
studied by surgically creating new visual circuits. Schneider
pioneered this approach and showed that a lesion of the
visual and superficial layers of the superior colliculus (SC)
at birth in hamsters (that constantly give birth prematurely

at E15) could produce ectopic retinal projections, from
surviving ganglionic cells to subcortical sensory relays that
normally receive small or no visual inputs [71]. For example,
a bilateral lesion of the stratum opticum on postnatal day
1 leads to a fourfold amplification of retinal synapses in
the lateral posterior nucleus (LP) of the thalamus, which
is a secondary associative visual relay connected to the
lateral secondary visual cortex (V2L) in rodents [72, 73]
(Figures 2(a) and 2(b)). Frost (in hamsters) and Sur (in
ferrets) were the first to optimize this model and demon-
strate that, in combination to the superficial SC lesion
at birth, surgically cutting the auditory (i.e., the inferior
colliculus brachium) or somatosensory (i.e., the medial
lemniscus) afferents could lead to the formation of new
robust ectopic retinal projections to the auditory medial
geniculate nucleus (MG) (Figures 3(a), 3(b)) or to the
somatosensory ventrobasal nucleus (VB), respectively [74–
80]. At birth thalamo-cortical projections from primary
sensory thalamic relays have not yet reached the cortical
subplate (this happens at P1 in hamsters and P14 in ferrets).
Therefore, by using this experimental paradigm one can
alter the nature of sensory activity that reaches the primary
auditory or somatosensory cortices during development
without changing the original thalamo-cortical connectivity.
The new retinal projections inducted in MG or VB are
from the three main classical ganglion cell types, form
functional synapses, and are retinotopically organized in the
host primary auditory (A1 (Figure 3(c))) or somatosensory
(S1) cortex, respectively [78–84]. Nevertheless, the molecular
and cellular mechanisms involved in the formation of these
new ectopic connexions are still unanswered. In the ferret,
the morphology of the retinal synapses in the MG are similar
to the ones found in the visual CS and dLGN in control
animals [85, 86]. Further, retinal afferents conserve their
visual organization in the auditory relays [87, 88]. Although
the tonotopic organization of thalamo-cortical projections
is preserved between MG and A1 in these rewired ferrets
[89, 90], it has been shown that the horizontal network in the
auditory cortex as well as its contralateral callosal projections
is largely modified and is very similar to those normally
found in the V1 [91, 92]. In vivo electrophysiological
recordings of single neurons in both the A1 and S1 indicated
that these cells have acquired functional receptive field
properties of the visual cortex (i.e., orientation selectivity,
motion and direction sensitivity) (see Figure 4) and some
also show a bimodal response [83, 93–97]. Using intrinsic
signal optical imaging in the A1 of rewired ferrets, visual
orientation selectivity columns were found to be similar
but broader than those in the V1 of control animals [98–
102]. Furthermore, at the behavioral level, these rewired
animals can learn visual discrimination tasks and perceive
vision with the rewired auditory cortex [95, 103, 104].
Rewired hamsters with no visual cortex can learn visual
tasks as well as normal animals, and a lesion of the auditory
cortex abolishes this ability and function (Figures 5(a) and
5(b)). In fact, rewired hamsters with auditory cortex lesions
exhibit cortical blindness similar to nonrewired hamsters
with visual cortex ablations. Overall these results involving
intermodal rewiring in neonatal hamsters and ferrets show
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Figure 2: Hamster models of cross-modal plasticity. Photomicrographs examples of normal (a), SC lesioned (b) and enucleated (c) hamsters.
Column a: top figure showing normal hamster brain with intact superior colliculus and optic chiasm (black arrow heads). At the bottom
a simplified schematic representation of the normal visual and auditory pathways. Column b: At the top Superior colliculus (SC) lesioned
hamster brain were the SC and optic chiasm are atrophied (black arrow heads). Underneath, diagrams showing the new ectopic retinal
projections to the LP in the SC lesioned and to the MG in the SC + ICb lesioned animals. Column c: Enucleated case with an evident SC but
complete absence of optic nerves and optic chiasm (arrows). Bottom diagram illustrating the new ectopic auditory projections between the
IC and the dLGN to V1. V1, primary visual cortex; V2L, lateral secondary visual cortex; A1, primary auditory cortex; dLGN, dorsal lateral
geniculate nucleus; LP, lateral posterior nucleus; MG, medial geniculate nucleus; SC, superior colliculus; IC, inferior colliculus; ICb, inferior
colliculus brachium; CN, cochlear nucleus.
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Figure 3: Ectopic retinal projections to the medial geniculate nucleus (MG) in the SC + ICb lesioned (or rewired) hamster. (a) Retinal
projections in the MG labelled by intraocular injection of the cholera toxin β fragment and (b) co-tagged with wheat germ agglutinin-horse
radish peroxidise (WGA-HRP). (c) Gold chloride myelin staining (left panel) and transneuronal labelling, with WGA-HRP (right panel),
of new visual thalamo-cortical afferences reaching namely cortical layer IV in the primary auditory cortex (A1) (white arrow head). A1,
primary auditory cortex; AuD, dorsal secondary auditory cortex; AuV, ventral secondary auditory cortex; TeA, temporal association cortex;
PRh, perirhinal cortex; dLGN, dorsal lateral geniculate nucleus; vLGN, ventral geniculate nucleus; LP, lateral posterior nucleus; MG, medial
geniculate nucleus; ot, optic track; IGL, intergeniculate leaflet.

that sensory information via subcortical thalamic afferents
play an important role in shaping anatomical and functional
specifications of primary sensory cortices. This suggests that
the type of sensory activity and experience can plays an
important role in forging parts of the neuroarchitecture of
the hosting cortex [1, 4, 105, 106].

2.3. Can Multisensory Integration Already Be Present in
Normal Primary Sensory Cortices? The classical modality

exclusivity of primary sensory areas has recently been chal-
lenged. Observations in a variety of species suggest that each
of these domains could already be subjected to influences
from other senses in normally reared animals. The first
evidence was found in the early 1970s where a study,
contested at the time, showed that auditory stimuli could
elicit neuronal activity in primary (area 17) and secondary
(area 18) visual cortices of normal cats [107]. More recently,
transitional multisensory zones of multimodal responsive
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Figure 4: Visual properties of single neurons in auditory and somatosensory cortices of rewired hamsters. These cells that responded to
visual stimuli showed orientation selectivity, motion and direction sensitivity with receptive field properties similar with those obtained from
neurons in the visual cortex of normal hamsters. (a) Examples of visual responsive neurons in the somatosensory cortex of hamsters with new
retinal projections in the somatosensory ventrobasal nucleus (VB) of the thalamus adapted from Metin and Frost [83] . (b) Receptive field
properties of visual neurons found in the auditory cortex of hamsters with ectopic retinal terminals in the auditory medial geniculate nucleus
(MG). Orientation (left panel) and direction (right panel) selectivity adapted from Frost and collaborators [103]. V, vertical orientation; Ob,
oblique orientation; Or, orientation selective; H, horizontal orientation; D, direction selective; Uni-D, unidirectional; Bi-D, bidirectional; NS,
non-selective neuron.

neurons have been reported at the border of the primary
visual cortex in rats [108]. Other recent electrophysiological
studies in cats, ferrets, and monkeys have highlighted a low-
level influence of other sensory modalities on auditory areas
including A1 [69, 109, 110]. These results suggest the pos-
sible existence of an important multisensory convergence,

occurring at low hierarchical levels, of sensory cortical areas
involving feedback, feedforward and lateral cortico-cortical
connections and also subcortical inputs. This way a sensory
area processing one particular modality could have access,
simultaneously, to other unimodal and polymodal sensory
information [18, 111]. For example, it is possible that in
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Figure 5: Visually guided behavior in SC + ICb lesioned (or rewired) hamsters. (a) Example of the experimental setup with visual stimuli
and Y maze. (b) Histograms showing trials to criterion on the visual discrimination tasks in normal hamsters before and after ablation
of visual (VC) and auditory (AC) cortices. (c) Behavior of rewired hamsters before and after AC lesions. At the behavioral level, rewired
hamsters can learn visual discrimination tasks as well as normal ones and a lesion of the auditory cortex abolishes this function. In fact, SC +
ICb lesioned hamsters with auditory cortex lesions exhibit cortical blindness (∗) similar to normal hamsters with visual cortex lesions. These
results provide strong evidence for sensory substitution where a given sensory modality acquires the functional properties of a missing one.
Adapted from Frost et al. [103] and Ptito et al. [95].

visually deprived animals or blind humans these putative
interactions are modified to permit a greater recruitment of
the primary visual cortex by the spared modalities.

At this point we can assert that cross-modal plasticity
that occurs following an early sensory function loss involves
important rewiring and cross-wiring processes. However,
the question of how thalamo- and cortico- cortical plastic
changes, as well as new multisensory integrations, are taking
place remains unresolved. A possibly significant mechanism
may involve the cortical inhibitory (or GABAergic) interneu-
rons since they are important for visual cortex plasticity and
for refinement of sensory information reaching the cortex.

3. The Importance of Cortical
GABAergic Interneurons

The neocortex contains mainly two neuronal types, exci-
tatory (glutamatergic) pyramidal cells and inhibitory non-
pyramidal (GABAergic) neurons. These aspiny interneurons
are widespread and represent only 15–30% of all neocortical
neurons. Inhibitory interneurons include a vast array of
subtypes that vary in morphological, physiological, and neu-
rochemical characteristics (e.g., calcium-binding proteins,
neuropeptides, ion channels, receptors, and transporters).
Further, they target their synapses onto distinct subcellular
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locations at the postsynaptic level [112–115]. In the cortex,
different GABAergic interneuron subtypes were originally
classified by expression of calcium-binding proteins parval-
bumin (PV), calbindin (CB), or calretinin (CR). Recently,
a more accurate classification through expression of several
neuropeptides suggests that most inhibitory interneurons
in the cortex can be classified in three largely indepen-
dent populations expressing PV, CB/somatostatin (SS), and
CR/vasointestinal peptide (VIP) [112, 113, 115, 116]. Exactly
how many specific interneuron subtypes actually exist in the
cortices of different species [112, 117–119] is still a matter of
debate. Inhibition is critical to a wide range of brain processes
specifically in network oscillations and synchronisation,
synaptic plasticity, and in preventing runaway excitation. In
addition, GABAergic interneurons also regulate nearly all key
developmental steps in the cortex, from neuronal prolifera-
tion, migration, and differentiation to experience-dependent
refinement of local cortical circuits. As a result, disturbances
in inhibitory circuits have been involved in a number
of neurological disorders, such as epilepsy, schizophrenia,
autism, anxiety disorders, and Alzheimer’s disease [116,
120, 121]. These GABAergic interneurons are present in all
sensory modalities. In sensory cortices interneurons play
an essential role in refining sensory receptive fields as well
as in confining and modulating sensory afferent activity to
sensory cortices. For example, in the visual cortex they shape
spacing between cortical columns and strongly influence
ocular dominance plasticity [20–22, 122–128].

The large diversity of interneurons suggests that individ-
ual inhibitory classes may have unique roles in arbitrating
the balance between excitation and inhibition in cortical
circuits and plasticity. Development of GABAergic circuits
is a prolonged process that begins during midgestation
and is complete only by the end of adolescence [114,
116]. PV-positive cells represent the largest subgroup of
the GABAergic population in sensory neocortices. Amongst
inhibitory neurons in the cortex, the PV subtype is the
last to mature in rodents, human and nonhuman primates
[129]. The prolonged development of interneurons may
constitute a sensitive period where environmental changes
can lead to permanent alterations in the inhibitory circuitry.
Considering the numerous roles played by GABAergic
interneurons in the development, function, and plasticity of
cortical networks, combined with their late maturation in
the postnatal life, it is reasonable to hypothesize that they
could be a key component in gating cross-modal plasticity
processes following early sensory deprivation. We will discuss
several lines of evidence that stress their possible implication
in this context.

3.1. Effects of Sensory Deprivation on the Expression of
Calcium-Binding Proteins (CBPs) in Cortical GABAergic
Interneurons. A large number of studies show that the
expression of calcium-binding proteins (CBPs) in cortical
GABAergic interneurons can be altered significantly in dif-
ferent sensory areas, olfactory bulb, and in the hippocampus
following modifications to the afferent sensory input [130–
138]. For example, deafferentation of the primary auditory

cortex in ferret at P14 (two weeks before auditory capability)
by bilateral ablation of the cochlea causes a reduction in
the density of neurons immunoreactive (IR) for GABA, PV,
and CB [105]. Ibotenic acid lesions of thalamic afferents
from the somatosensory ventroposterior nucleus delay the
development of PV and CB interneurons in the rat barrel
cortex [139]. More precisely the visual cortex has mostly been
studied in rodents, carnivores, and nonhuman primates in
that context. Dark rearing, retinal lesions, TTX intraocular
injections, mutated loss of photoreceptors in the retinae
during development, visual deprivation by eye lid sutures or
enucleation have all been shown to modify the expression
of the different CBPs (PV, CB, and CR) [140–146]. This
was shown for the first time in rats where a monocular
enucleation, performed before the critical period at P14,
could induce a significant decrease in PV expression in
interneurons in the contralateral binocular zone of the
primary visual cortex (V1) [142, 147]. The authors had
postulated an important role for PV-expressing interneurons
in ocular dominance plasticity in this paper. Similar results
were also found in the primary visual cortex of adult
macaques, wherein following monocular inactivation by
intraocular injection of TTX, both PV and CB but not
CR were affected in ocular dominance columns associated
with the deprived eye. More specifically, in these columns
there was significant decrease in the number of neurons,
as well as neuropil expressing PV and CB in cortical layers
IV to VI and II/III, respectively [141]. Analogous changes
were also observed following monocular enucleation or
retinal lesions. The main finding was the varying density of
perineuronal nets expressing these neurochemical markers
between layers II/III and V [140, 143]. In experiments using
dark-reared mice, a decrease in the expression of PV but
not CB and CR mRNA levels was observed in V1, while
monocular deprivation induced no changes [144]. Further
studies done in cats show that following dark rearing from
birth there is a significant decrease in the total number of
cells expressing PV and CR but not CB in areas 17 and 18
[145]. Long-term monocular deprivation in rats decreases
the expression of CB but not CR and PV in primary visual
cortex, suggesting that the CBPs-IR neuronal subpopulations
may be differently affected by the various types of visual
deprivation paradigms [148]. More recently, distribution of
PV-IR and CB-IR interneurons was studied in the primary
visual cortex of CRX−/− mice, where photoreceptors lack
outer segments resulting in the complete absence of vision
from birth as compared to C57Bl/6 controls [149]. In CRX
mutants, there is significant decrease in PV in all layers
and of CB only in layers II/III of the primary visual cortex.
Developmental results in these mutant mice further suggest
that PV expression requires visual activity in V1. In hamsters
a lesion of the stratum opticum layer of the SC at birth
leads to the death of∼70% of the primary retinal projections
to the dLGN-V1 pathway and a fourfold increase in the
remaining afferents to the lateral posterior nucleus (LP)-V2L
route. Interestingly, in these animals we found changes in the
number of PV- and CB- immunoreactive neurons in V1 and
V2L as compared to intact hamsters. More precisely, these
two populations of neurons were decreased in layer V of
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V1, but PV interneurons were significantly increased in layer
V of V2L in SC-lesioned animals [30] (Figure 6(c)). These
results suggest that the decline in visual activity influences
PV and CB expressions only in layer V of area V1 whereas
the increase of PV-IR cells in layer V of V2L may be
correlated with the nurturing presence of new ectopic retinal
projections in LP.

Overall, these studies support the idea that different sub-
populations of GABAergic neurons are differently influenced
by sensory activity depending on their specific anatomical
localisation (cortical areas, layers, and modules) and intrinsic
cellular properties. It is therefore important to assess the
precise function of each specific subtype of interneurons.
However, in these experiments, it is not always clear whether
the alterations are caused by reduced GABA, PV, CR, and CB
immunoreactivity/expression in intact interneurons or by an
overall reduction of the GABAergic interneuron population.
Furthermore, it is still not clear so far about how the
neurochemical identity of a specific interneuron relates to its
function.

3.2. GABAergic Networks in Experience-Dependent Plasticity
and Critical Period Formation. Several recent studies in the
visual system suggest that an adequate development and
function of GABAergic interneurons in the V1 are critical
for controlling the onset and time course of critical periods
and for the establishment of the cortical circuit architecture
that is necessary for the occurrence of ocular dominance
(OD) plasticity [128, 150–153]. This was demonstrated for
the first time by Hensch et al. where knockout mice, lacking
Glutamic Acid Decarboxylase 65 (GAD65, the synaptic
isoform of GABA-producing enzyme), showed no closure of
the critical period and thus no occurrence of OD plasticity.
Nonetheless, this shortage was rescued by cortical infusion
of the GABA agonist diazepam (DZ) [126]. Conversely,
augmenting inhibitory signaling prematurely launches the
critical period making the mice insensitive to monocular
deprivation, as is normally the case in the adult mouse
[150, 154, 155]. GABA transmission mediated by the α1
subunit containing GABA-A receptors has been shown to
be mandatory for the induction of the critical period
for OD plasticity [155, 156]. In parallel, the precocious
development of inhibitory circuitry via exposure to brain
derived neurotrophic factor (BDNF) in rodents accelerates
the maturation of PV interneurons and triggers early onset of
the critical period for visual plasticity [153, 157, 158]. Using
kittens and the monocular eye lid suture paradigm, Stryker
and collaborators have shown that muscimol-induced block-
ade in V1 causes inversion of OD plasticity, resulting in a
consistent shift in the responsiveness of this cortex in favour
of the less-active closed eye [159, 160]. More recently, in
similar conditions but using normal sighted cats it was found
that infusion of DZ on top of V1 resulted in a widening of
ocular dominance column spacing, while reducing inhibition
shortened the distance between columns [161]. However,
once inhibition is mature, it can restrict cortical plasticity. In
the adult visual system of the rat, ocular dominance plasticity
is greatly reduced but can be restored to juvenile levels by

suppressing inhibition with the antidepressant fluoxetine
[162]. Indeed, directly attenuating GABA release by a GAD
inhibitor reinstates OD plasticity in adult rats [163]. This
is also true for environmental enrichment in old age where
diazepam infusion averts the reduction in OD plasticity
[164].

More recently, it has been shown by Maffei and collab-
orators that, in layer IV of binocular V1 in rats, depression
of inhibitory synapses on pyramidal neurons is induced
when these animals are monocularly deprived for 2 days
at the end of the third postnatal week (i.e., before the
critical period), whereas potentiation is induced if the
monocular deprivation is started in the fourth postnatal
week (i.e., within the critical period). During development,
these two forms of plasticity shift the balance between circuit
excitation and inhibition while the excitatory synaptic drive
remains unaffected. Thus, inhibitory plasticity seems to be
fundamental in modulating cortical circuit refinement and
might be one of the key mechanisms promoting ocular
dominance shifts [165]. Such dynamic adjustment of the
excitation-inhibition balance may allow the networks to
maintain stable levels of activity in the face of variable
sensory input. More electrophysiological evidence from
this group [148, 166–169] and others [170] suggests that
inhibition mediated specifically by fast-spiking (FS) basket-
like (PV positive) and regular spiking nonpyramidal (RSNP)
(CB or SS positive) interneurons is critically involved in
plasticity following deprivation or deafferentation-induced
degradation of visual function in V1 of rodents. These
effects may however depend upon the age and nature of
the visual deprivation and might be differentially regulated
across specific cortical layers in the primary visual cortex.
Taken as a whole, these studies suggest that maturation
of specific subclasses of GABA interneurons is crucial in
initiating critical period plasticity, shaping thalamo-cortical
afferents, and modulating experience-dependent plasticity in
the visual cortex.

3.3. Maturation of Inhibitory Networks and Dependence on
Sensory Experience. Although great progress has been made
towards understanding both the process of postnatal mat-
uration of excitatory networks and the mechanisms under-
lying activity-dependent plasticity of excitatory synapses in
principal neurons, an understanding of the maturation of
inhibitory (GABAergic) circuits has emerged only recently.
While the first steps of the development and migration of
GABAergic interneurons are likely coordinated by genetic
programs, the maturation of these neurons and their
synapses are strongly modulated by afferent neuronal activity
and experience in both visual and somatosensory cortices.
For example, monocular enucleation or dark rearing expo-
sures in rats have been shown to decrease the number of
cells and terminals containing GABA and glutamic acid
decarboxylase (GAD) [130, 171]. Similar groundbreaking
results were also found in the somatosensory cortex, where
the unilateral resection of whiskers one day after birth
induces a 50% decrease in GABAergic neurons and synapses
in layer IV, in the deprived barrels [172]. Conversely and even
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Figure 6: Laminar distribution of PV and CB expressing interneurons in the visual and auditory cortices of normal, enucleated and SC
lesioned at birth hamsters. (a) Immunostaining patterns of the two CBP-IR neuronal subpopulations in V1 of normal and enucleated
hamster. Left panels: cresyl violet staining with laminar boundaries; middle panels: photomicrographs of the distribution of PV and CB
immunoreactivities; right panels: distribution of each CBP-IR neurons (black dots) plotted from three superimposed sampled sections.
Black arrows indicate layer IV and V changes for PV-IR and CB-IR neurons between experimental groups. Pial surface of the cortices are at
the top. Scale bars 100 μm. (b) Changes in the distributions of PV and CB neurons in layer IV and V of V1 compared to A1 in normal versus
enucleated hamsters. (c) Alterations in the distribution of PV and CB interneurons in V1 and V2L of SC lesioned versus normal hamsters.
Histograms illustrate the mean density number of neurons per mm3 of cortical layer and error bars represent SEM. Significant differences
are represented by stars ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001. Adapted from Desgent et al. [29, 30].
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in the adult brain, mice that undergo excessive stimulation of
a single whisker for 24 hours have an increase of inhibitory
synapses on dendrites of principal cells in the corresponding
barrel [173]. In adult primates, eliminating retinal activity
by an intraocular administration of Tetrodotoxin (TTX)
reduces the immunoreactivity for GABA, GAD, and the
GABA-A receptor in neurons in the areas corresponding to
the injected eye in V1 [146, 174–176].

More recently, Morales et al. have shown that between
the time at which the eyes first open and the end of the
critical period for experience-dependent plasticity, the total
GABAergic input converging onto pyramidal cells increases
threefold in rats. A developmental increase in GABAergic
input can be prevented in animals deprived of light since
birth, but not in animals deprived of light after a period
of normal experience. Thus, sensory experience appears to
play a permissive role in the maturation of intracortical
GABAergic circuits [177]. In the past decade genetic strate-
gies based on interneuron cell type specific promoters and
fluorescent protein reporters have allowed more efficient
high-resolution labelling of specific GABAergic interneurons
and associated morphology. By using these approaches direct
experimental evidence was found linking structural and
functional changes of specific inhibitory networks with their
sensory experiences in vivo and in vitro. A significant study
in this context from Chattopadhyaya et al. showed that
sensory input deprivation using intraocular injections of
TTX in mice, and in postnatal organotypic cultures, causes
a reduction in the density of perisomatic synapses formed
by basket GABAergic neurons in the visual cortex. This
sensitivity was restricted to a critical time window during the
third postnatal week in mice which correlates with the time
course of the critical period for ocular dominance plasticity
[178]. These results are consistent with studies done in
the barrel cortex in mice that underwent whisker removal
from the left mystacial pad at neonatal day 7, until day 15
[134, 138, 179]. These experiments using Glutamate Acid
Decarboxylase 67 (GAD67)-Green fluorescent protein (GFP)
(delta neo) and wild-type mice showed specific structural
anatomical changes, illustrated by a reduction in the number
of presynaptic perisomatic inhibitory boutons, specifically
from PV interneurons. These changes were associated again
with a lack of sensory experience during the second and the
third postnatal week. However, the total number of GFP-
GAD67 cells (i.e., total number of GABAergic cells) remained
unchanged indicating that these changes in PV expression
from basket cells appeared to be the major effect of sensory
deprivation. Moreover, these modifications were associated
with a reduction in the amplitude of evoked intracortical
inhibitory synaptic potentials in patch-clamp recordings in
deprived versus spared cortices. These results indicate that
perisomatic inhibition mediated by PV-positive basket cells
was pruned by sensory deprivation. More recently, Jiao and
collaborators, using a line of mutant mice that lack activity-
dependent BDNF expression (bdnf-KIV), have shown that
experience regulates the cortical GABAergic network via
activity-driven BDNF expression of principal neurons [138].
Levels of endogenous BDNF protein in the barrel cortex
are strongly regulated by sensory inputs from the whiskers.

Moreover, the mutant barrel cortex exhibits significantly
reduced levels of GABA release only from the PV-expressing
fast-spiking (FS) interneurons. Postnatal deprivation of
sensory inputs markedly decreases perisomatic inhibition
selectively from FS cells in wild-type but not bdnf-KIV mice.
These results suggest that postnatal experience, through
sensory-driven BDNF expression, controls cortical develop-
ment by regulating FS cell-mediated perisomatic inhibition
in vivo. This further highlights that PV (FS) networks can
selectively be inhibited by sensory deprivation from the
thalamo-cortical afferent pathway.

Together, these results suggest that the properties of
local cortical inhibitory network are modified by sensory
experience. Thus, postnatal sensory activity is necessary for
transformation of immature inhibitory transmission to a
mature functional phenotype. Nevertheless, precisely how
activity and molecular-driven mechanisms work together to
accomplish the remarkable specificity of GABAergic synapse
maturation, localization, and formation is not fully under-
stood but is emerging. Several molecular factors have also
been implicated in the process such as BDNF, GABA itself,
Otx2 homeoprotein, molecular components of the extracel-
lular matrix, and cell adhesion molecules (e.g., chondroitin
sulfate proteoglycans (CSPGs), polysialic acid (PSA), and
the neural cell adhesion molecule (NCAM)). For example,
in mouse visual cortex, PSA is downregulated following eye
opening and this decrease has been shown to allow the
maturation of GABAergic synapses and the opening, of the
critical period for ocular dominance plasticity [180]. For
more exhaustive reviews on this topic please refer to the
following papers [22, 181–185].

4. Alterations of GABAergic Interneurons in
Animal Models of Cross-Modal Plasticity

Very few studies have looked at the possible role of GABAer-
gic interneurons in cross-modal plasticity. Alterations in
inhibitory circuits were observed qualitatively for the first
time in deaf and rewired cross-modal ferrets and con-
cerned modifications in the morphology and proportion of
interneurons containing PV and CB. Specifically, CB neurons
in A1 of these animals showed an atypical and extended
dendritic arborisation in the horizontal axis. However
these changes were never studied further with quantitative
validation [1, 105]. Interestingly, a recent study done in
FVB (GAD-GFP) mice has shown that olfactory deprivation
occurring at P12 can lower the number of GABAergic
interneurons in the piriform cortex and at the same time
increase their number in the barrel cortex, ipsilateral to
the lesion, upregulating whisker tactile sensation [28]. This
suggests that these neurons are important for cortical sensory
compensation and substitution. Recent work carried out in
our laboratory, on hamsters enucleated at birth (EH), follows
the idea that observed cross-modal plasticity changes may
be due to modifications in GABAergic interneurons that
express calcium-binding proteins (CBPs) like PV and CB
[29, 30]. Since the laminar distribution of these proteins
is significantly different in the primary visual and auditory
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cortices of normal hamsters [186], the induction of aberrant
connectivity to these cortices should also be evident at the
neurochemical level. Indeed, hamsters enucleated at birth
show significant changes in the distribution of CBPs only in
their primary visual cortex. Compared to intact hamsters,
the density of PV-immunoreactive neurons is higher in
layer IV and lower in layer V, whereas the density of CB-
immunoreactive cells is significantly lower in layer V of
V1 in the enucleated animals (see Figures 6(a) and 6(b)).
These results suggest that the affected primary visual cortex
may adopt the GABAergic chemical features of the auditory
cortex through cross-modal rewiring.

Several possibilities exist. As described earlier, sensory
deprivation generally reduces the expression of PV in
primary sensory cortices. Normally, visual activity is an
essential requirement in preventing a robust downregulation
of PV expression, mainly in cortical layer IV. The functional
implications of this decrease, following sensory deprivation
in several animal models, have been associated with a
reduced inhibition following loss of sight. One can therefore
expect a general decrease in PV expression in the V1 of
enucleated hamsters, with possible stronger effects in the
thalamorecipient cortical layer IV. In CRX−/−mutant mice,
there is a significant decrease of PV-IR cells in all layers of the
primary visual cortex [149]. This contrasts with the increase
in the number of PV-IR cells in layer IV and the decrease
observed in layer V of enucleated hamsters. The decrease in
PV-IR in mutant mice suggests that parvalbumin expression
requires visual activity in V1. There is clearly no visual activ-
ity during postnatal development in enucleated hamsters
whereas in CRX−/− mice, even with photoreceptors lacking
outer segments, there remain waves of spontaneous retinal
ganglion cell activity transmitted to the thalamus and cortex
before P14. It could therefore be expected that, in enucleated
hamsters, one would find an even greater decrease of PV-IR
cells in all cortical layers of the V1 as with these mice, but
except for layer V this was not the case.

Significant reduction of expression of both PV and CB
in interneurons of layer V of V1 in enucleated hamsters
may imply changes in an alternate pathway for cortico-
cortical communication between the primary visual cortex
and neighbouring-associated areas. Guillery and Sherman
proposed that the driving of cortico-cortical projections is
mediated by layer V pyramidal neurons that project to the
pulvinar of the thalamus (or lateral posterior nucleus (LP) in
rodents), which in turn provides the output to higher cortical
areas (i.e., the feedforward corticothalamocortical pathway)
[187, 188]. Dysfunction of inhibitory interneurons of layer
V could play a pivotal role in gating this alternative process
and corticocortical communications [26]. It is however
unknown as to whether the observed changes in PV and CB
expression in interneurons within layer V of EH are directly
involved in cortico-cortical networks. In fact, changes in the
number of PV-IR and CB-IR neurons in enucleated hamsters
might reflect laminar-specific increase and/or decrease of the
synaptic drive on these particular neurons in layer IV and V
of V1 after enucleation at birth.

Changes in immunoreactive interneurons might reflect
two phenomena: (1) a true change in the number/density

of PV or CB immunoreactive neurons (e.g., via apopto-
sis/neurogenesis, impaired migration, suppressed cell prolif-
eration, etc.) or (2) altered immunocytochemical detection
levels of the proteins PV or CB, respectively, whose cellular
expression might be positively correlated to physiological
activity levels [134, 138, 143, 145, 189–191]. Because we did
not find any differences in the total population densities
for these two proteins, we favour the interpretation that PV
and CB expression (changes in synthesis or degradation) in
layer IV and V of V1 is altered in EH and that the altered
protein levels may be related to the activity of these inhibitory
interneurons. However, due to limited knowledge of the
physiological function of CBP proteins, the interpretation of
the physiological consequences of this early enucleation is
complicated. Furthermore, the causal relationship between
our anatomical findings and the putative role of these cells
in cross-modal plasticity in this animal model remains
exploratory.

The observed changes in EH could be explained not only
by the absence of postnatal visual input to the V1 but also
by the presence of auditory information reaching V1 from
new ectopic projections arising from the IC to the dLGN of
the thalamus in this rewired model [47]. Another alternative
involves cortico-cortical projections originating from the
auditory cortex [60]. We hypothesize that these specific
changes in the laminar distribution of mostly PV-IR but
also CB-IR neurons in V1 could be responsible for shaping
auditory response properties of V1 neurons previously
observed in enucleated hamsters. The new auditory thalamic
afferents into the visual system of the enucleated hamsters
could explain the auditory cortex-like distribution pattern of
PV-IR neurons in the primary visual cortex. Noteworthy is
recent work by Sugiyama et al. which led to the discovery
of a novel mechanism explaining how visual input is tied to
the onset of ocular dominance plasticity in the visual cortex.
This group has shown that a retinal-derived homeoprotein,
Otx2, can be directly transferred into V1 through a visual-
experience-dependent mechanism. Once Otx 2 has reached
the visual cortex, it can nurture specific types of GABAergic
interneurons (viz. PV neurons) and modulate critical period
plasticity [22, 151, 185, 192, 193]. The study of target
genes and proteins of Otx2 could reveal further insights
into the machinery linking sensory experience, GABAergic
circuit maturation, and plasticity. It is that, as yet unknown
homologues of Otx2 might be delivered from other sensory
receptor arrays and pathways to precise cortical areas, to
promote local inhibitory circuit maturation depending on
modality type. In hamsters enucleated at birth, for example,
such a molecular factor coming from the auditory system
but “redirected” to the primary visual cortex by the cochlea-
IC-dLGN pathway could lead to modality-specific changes
observed in circuits in absence of visually driven Otx2 but
in presence of an auditory homologue. This might explain
the altered auditory-like distribution of PV-IR neurons
we observed therein [29, 30]. However, the absence of
spontaneous electrical activity in the retinal afferents to the
lateral geniculate nucleus and the lack of trophic influences of
the retina on neurons in the dLGN and from there to area V1
could also be involved in the changes observed in our animal
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model. It may also be that other sensory modalities, such
as somatosensory inputs, could induce the same changes.
Injections of HRP into the dorsal column nuclei of adult
mice enucleated at birth have shown that ascending somatic
sensory axons can be rerouted to the lateral geniculate
nucleus [55]. Even if this type of connection has not yet been
reported in early enucleated hamsters [47], any combination
of these factors, in addition to abnormal auditory rewired
inputs to V1 in these animals, could account for the present
modifications in the anatomy and laminar circuitry of the
V1.

5. Future Directions and Conclusion

In conclusion, several animal studies have revealed impor-
tant properties of inhibitory network alterations in the
neocortex following the early loss of a given sensory function.
We are just beginning to acquire the necessary knowledge on
response properties of GABAergic neurons, their maturation
mechanisms, and how they influence sensory and cross-
modal plasticity. Hence, we have uncovered only the tip
of a very large iceberg in that context. Visual and other
sensory cortical circuits are organized at multiple levels of
complexity including cortical areas, layers and columns, and
specific cell types within these modules. Making sense of
the functions of these circuits, from an anatomical point
of view, requires linking these circuits to function at each
of these levels of complexity. Functional studies on cross-
modal plasticity in animals have previously been limited to
pharmacological approaches, electrophysiology, tracing or
lesion researches that provide poor cell-type specificity and
sometimes low-spatial or temporal resolutions. Nowadays,
advancements in molecular techniques have made it pos-
sible to address questions that were unapproachable just
a decade ago. As new methods for single cell two-photon
imaging, voltage sensitive dyes for cortical optical imaging,
transneuronal viral tracing, in vivo MRI spectroscopy (MRS),
laser microdissection, transfection and genetic targeting
of specific subpopulations of inhibitory interneurons are
perfected, we will certainly one day be able to highlight and
incorporate better the roles of subtype of GABAergic neurons
into multifaceted animal models of cross-modal plasticity.
More specifically, one interesting approach concerning this
issue would be to use optogenetic in transgenic mouse strains
for activation or inhibition of specific GABAergic subpopula-
tions using a viral-mediated transfer of a Cre/loxP transgene
controlling the expression of light-activated ion channels
in these cells in vivo or in vitro (e.g., channelrhodopsin
ChR and halorhodopsins eNpHR). For example, these would
allow us to dissect the function of different neuronal class
during awakening behavior or electrophysiology, sensory
stimulation, and discrimination tasks with a millisecond
resolution. Experiments using these techniques will help us
to understand more clearly some important questions in
the field: how specific GABAergic subpopulations partici-
pate in the rewiring/cross-wiring processes between cortical
modalities, what would be the effects of shutting down
one population type on cross-modal integration, how these

interneurons could integrate inputs from spared modalities,
what are the possible multimodal versus unimodal receptive
field properties in these cells in normal and sensory deprived
cortices, what are the effects on neuronal plasticity as well
as neighbouring neuronal networks, are there modality-
specific biomarkers that could travel from the sensory
receptor periphery to these cortical neurons via a modality
experience-dependent-mechanism, and what are the cor-
tical network dynamics between excitatory and inhibitory
synapses in vivo following the early-life lost of sight? It is
going to be a long ride, and experiments to tackle these
issues will be very challenging technically. Nevertheless, the
clarification of these underlying mechanisms may one day
provide clues to develop new therapeutic advances aimed
to increase adaptive circuit rewiring following insult to help
sensory substitution and recovery.
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