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Introduction: The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and
there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD
patients to COVID-19 from the perspective of the global differential expression landscape.
Objectives: To fill the research void on the molecular mechanism underlying the high susceptibility of
LUAD patients to COVID-19 from the perspective of the global differential expression landscape.
Methods: Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated
with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean
deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as
well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray
datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted
gene co-expression network analysis. Then, the hub genes were further analyzed via an examination
of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration
level, and their interactions with the interactome sets of the A549 cell line.
Results: A total of 257 susceptibility genes were identified, and these genes were associated with RNA
splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2,
MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility
genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with
the infiltration of multiple immune cells.
Conclusion: In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this
study may increase our understanding of the high risk of COVID-19 in LUAD patients.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus disease 2019 (COVID-19) has swept across the
globe since it was first identified in December 2019 in Wuhan,
China, and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is the primary culprit behind COVID-19 [1,2]. To
date, COVID-19 has resulted in over 72 million diagnosed cases
and more than 1 million deaths, posing a serious threat to the pub-
lic [3]. Factors such as age and comorbidities may affect the sever-
ity of clinical manifestations of COVID-19, which include mild or no
pneumonia, fever, headaches, hemoptysis, myalgia, fatigue, and
sputum production [4,5]. The pervasion of the virus is attributed
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to the transmission route from person to person via saliva droplets,
direct contact with COVID-19 patients, or aerosol transmission
[2,6]. Although the public is susceptible to COVID-19, elderly peo-
ple and people with health conditions, such as cardiovascular dis-
ease, chronic obstructive pulmonary disease, hypertension, cancer,
and diabetes mellitus, are more predisposed to the more severe
symptoms of COVID-19 [7–9]. A recent cohort study by Liang
et al. pointed out the higher incidence of cancer in COVID-19
patients than in normal populations and the fact that COVID-19
patients with cancer were also more likely to suffer from acute
complications than those without cancer [10]. Lung cancer has
been found to be the most common type of cancer in COVID-19
patients [11]. Considering the association between lung cancer
and COVID-19 and the highest frequency of lung adenocarcinoma
(LUAD) among all histological subtypes of lung cancer, it is neces-
sary to dig into the molecular mechanism underlying the high sus-
ceptibility of LUAD patients to COVID-19.

Despite the fact that the molecular basis for the susceptibility of
LUAD patients to COVID-19 has been investigated by several
studies, these studies all focused on the ACE2 SAR2-Cov-2 receptor
[12–14]. The crucial importance of ACE2 in the high vulnerability
of LUAD patients to COVID-19 needs not be emphasized. Apart
from ACE2, numerous other genes and pathways may play essen-
tial roles in the susceptibility of LUAD patients to COVID-19, and
these factors have not been extensively investigated by prior stud-
ies. To fill this research void, the present work identifies genes cor-
related with the susceptibility of LUAD patients to COVID-19 via
biological computational methods and by calculating standard
mean difference (SMD) values for differentially expressed genes
(DEGs) in 49 SARS-CoV-2-infected LUAD samples and 24 non-
affected LUAD samples, as well as 3931 LUAD samples and 3027
non-cancer lung samples from the 40 most pooled RNA-seq and
microarray datasets, which created the most complete LUAD data-
set assembled so far. The susceptibility genes for COVID-19 in
LUAD were annotated with their biological functions, and hub sus-
ceptibility genes significantly related to COVID-19 were selected
via a weighted gene co-expression network analysis (WGCNA).
Then, the hub genes were further analyzed via the examination
of their clinical significance in multiple datasets, a correlation anal-
ysis with immune cell infiltration levels, and their interactions
with the interactome sets of the A549 cell line. The present study
is anticipated to stimulate strategies that can be used to help LUAD
patients with COVID-19.
2. Materials and methods

2.1. Accumulation of global RNA-seq and microarray datasets for
LUAD

We searched the TCGA and Genotype-tissue Expression (GTEx)
databases to obtain level-three fragments per kilobase per million
(FPKM) and transcripts per million reads (TPM) of RNA-seq data of
533 LUAD and 347 normal lung samples (288 normal cases and
533 tumor cases from the TCGA database; 59 normal cases from
the GTEx database). The FPKM expression matrix was converted
to a TPM expression matrix and normalized with the log2
(x + 0.001) algorithm.

Other databases, including GEO, ArrayExpress, SRA, and Onco-
mine, were searched for microarrays containing gene expression
data for LUAD and non-cancer lung samples. The following search
strategies were used to retrieve the microarrays: ‘‘cancer OR carci-
noma OR tumour OR tumor OR malignan* OR neoplas*” AND ‘‘Lung
OR pulmonary OR respiratory OR respiration OR aspiration OR
bronchi OR bronchioles OR alveoli OR pneumocytes.” The details
of each RNA-seq and microarray dataset, including accession ID,
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country, platform, sample type, and sample numbers, were
extracted and compiled together. The processing of all included
microarrays followed the steps of probe matching, log2 transfor-
mation if possible, averaging for repeated items, and normalization
between arrays. If several GSE datasets were generated from the
same GPL platform, they were merged into one dataset, and the
batch effect was removed from these datasets with the sva and
limma packages of R software v.3.6.1.
2.2. The DEGs of LUAD identified from all collected datasets

The index of (SMD) was used to summarize continuous
variables with different units of measurement and large differ-
ences in mean. We successfully applied the methods of calcu-
lating SMD values to the gathered datasets to comprehensively
evaluate the expression trends of specific genes in human can-
cers. In the present work, differential expression analysis for all
RNA-seq and microarrays was performed with the limma pack-
age of R software V.3.6.1. Genes with significant aberrant
expression in LUAD samples of any of the included datasets
according to differential expression analysis (log 2 fold change
(FC) value of >1 or <�1 and adjusted P value < 0.05) were
reserved for further estimation of SMD values. The SMD values
with 95% confidence intervals (CIs) were computed based on
data including the number of samples, mean, and standard
deviation of expression values in the LUAD and non-cancer
groups. A meta package of R software v.3.6.1 was utilized for
the calculation of SMD values for all reserved genes. Up-
regulated reserved genes (log2FC > 1, adj. P < 0.05) with
SMD values and 95 %CI > 0 were defined as upregulated DEGs
in LUAD, and down-regulated reserved genes (log2FC < �1, adj.
P < 0.05) with SMD values and 95 %CI < 0 were defined as
down-regulated DEGs in LUAD.
2.3. The susceptibility genes for COVID-19 in LUAD

In the current study, two microarrays from the GEO database,
GSE147507 and GSE163547, were included to obtain the DEGs
between SARS-CoV-2-infected LUAD samples and non-affected
LUAD samples [15,16]. The limma package for R software has been
widely used in differential expression analyses of microarrays as
well as RNA-seq data. It was crucial to normalize the expression
values of all the samples before making meaningful comparisons
between different groups of samples on the same measurement
scale [17]. Therefore, the R package known as biomaRt was first
used to infer the transcript per million (TPM) expression matrix
from the original count expression matrix of GSE147507. Following
the normalization of the expression matrix, differential expression
analysis was applied to the two microarrays. The screening criteria
for DEGs were log2FC values of >1 or <�1 and adjusted P val-
ues < 0.05. The intersection of up-regulated DEGs in LUAD (part
2.2) and up-regulated DEGs in SARS-CoV-2-infected LUAD samples
was designated as the susceptibility gene for COVID-19 in LUAD
patients.

To understand the enrichment of susceptibility genes in terms
of biological processes, cellular components, molecular functions,
and KEGG pathways, we performed functional annotations of these
susceptibility genes using the ClusterProfiler R package after the
determination of susceptibility genes for COVID-19 in LUAD
patients. P < 0.05 indicated significant functional annotation. The
interrelationships between susceptibility genes and biological pro-
cesses and pathways significantly related to COVID-19 were
depicted via a protein-to-protein interaction (PPI) network plotted
with STRING.
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2.4. Identification of hub susceptibility genes for COVID-19 in LUAD
through WGCNA

WGCNA is a powerful method that facilitates the investiga-
tion of the intricate gene correlations and associations between
the expression profiles of genes and phenotypes of human dis-
eases [18]. The core principle of the WGCNA method is to trans-
form the gene expression matrix into pairwise correlation
matrices, based on which co-expressed genes in the same mod-
ule can be identified [19]. In this work, correlation analysis was
further conducted to analyze the relationships between gene
modules and clinical traits [20]. Herein, a scale-free topology
network was built for all intersected susceptibility genes
expressed in 77 COVID-19 patient samples and 118 non-
affected control samples from the GSE161731 dataset as the
input file. The information on the positive or negative diagnosis
of COVID-19 coded as bivariate was the corresponding pheno-
typic data. The number of genes in the minimum module was
set at 15, and genes that shared high connectivities with similar
expression patterns were clustered into the same co-expression
modules. The 10 genes with the highest gene–trait significance
(P < 0.05) values in the module, that is, those showing most
remarkable positive correlation with the phenotype of COVID-
19, were regarded as the hub susceptibility genes for COVID-19
in LUAD patients. All steps of WGCNA were performed with
the WGCNA package in R software v.3.6.1.
2.5. The clinical significance of the hub susceptibility genes for COVID-
19 in LUAD patients

Forest plots of SMD and the summarized receiver operating
characteristics (SROC) curves were created for the 10 hub suscep-
tibility genes for COVID-19 in LUAD patients based on the com-
piled expression data in all collected LUAD datasets, which was
accomplished with the meta package in R software and Stata
v.14.0. The protein expression levels of hub susceptibility genes
in LUAD and normal lung tissues were evaluated with immuno-
histochemistry (IHC) images obtained from the human protein
atlas (HPA) database. The prognostic value of the hub susceptibil-
ity genes for LUAD patients was assessed through Kaplan–Meier
survival curves in the KM plotter database. The prognostic data
used to draw the Kaplan–Meier survival curves were aggregated
from 14 RNA-seq and microarray datasets, including CAARRAY,
GSE14814, GSE19188, GSE29013, GSE30219, GSE31210,
GSE3141, GSE31908, GSE37745, GSE43580, GSE4573, GSE50081,
GSE8894, and TCGA. All LUAD patients with prognostic informa-
tion on overall survival were divided into low- and high-
expression groups based on the median expression value of the
hub susceptibility genes. The validation of survival analyses was
conducted with the Lung Cancer Explorer database for hub sus-
ceptibility genes that had significant prognostic value from the
KM plotter database.
2.6. Exploration of whether there is relevance between COVID-19-
related host protein expression and hub susceptibility genes

LUAD patients from the TCGA database were divided into two
groups with different expression levels of hub susceptibility genes
through k-means clustering methods of the NbClust package in R
software v.4.1.0. The expression of TMPRSS2, a processing enzyme
required for the SARS-CoV-2 infection of lung epithelia, was com-
pared between the two groups by unpaired Students’ t tests in
GraphPad Prism v.8.0.1.
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2.7. The effects of cigarette smoking on the expression of hub
susceptibility genes in LUAD

Smoking-related effects on the expression level of 10 hub sus-
ceptibility genes were explored by comparing the differential
expression of these genes in LUAD patient groups with different
histories of smoking. Analysis of this part was performed using
the UALCAN tool, where independent student’s t-test was
employed for comparison between subgroups of LUAD patients.
2.8. Correlations between hub susceptibility genes and immune cell
infiltration in COVID-19 patients

The CIBERSORT method was employed to deduce the levels of
22 immune-infiltrating cells in the 77 COVID-19 samples obtained
from the GSE161731 dataset. The correlations between the
immune infiltration levels of 22 cells and the expression of hub
susceptibility genes in 77 COVID-19 samples were calculated
through Pearson’s correlation tests.
2.9. In-depth analysis of the hub susceptibility genes for COVID-19 in
LUAD

The molecular mechanisms of the hub genes in terms of endow-
ing LUAD cases with susceptibility to COVID-19 were further inves-
tigated by predicting upstream miRNA and transcription factors
(TF). We also estimated the interrelationships between hub sus-
ceptibility genes for COVID-19 in LUAD and the interactome sets
of the A549 and Calu-3 cell lines. These analyses were enabled
by the ChIP Enrichment Analysis (ChEA) and Coronascape
databases.
3. Results

3.1. The susceptibility genes for COVID-19 in LUAD

A total of 114 datasets pertaining to LUAD were included to col-
lect DEGs in 3931 LUAD and 3027 non-cancer lung samples. The
PRISMA flow diagram for selecting eligible datasets is demon-
strated in Supplementary Fig. 1. The details of the 114 datasets
and two datasets related to SARS-CoV-2 infection in LUAD cells
(GSE147507 and GSE163547) are provided in Supplementary
Table 1. According to the filtering criteria for DEGs, 6455 up-
regulated DEGs with positive SMD values and 4527 down-
regulated DEGs with negative SMD values were reserved (Supple-
mentary Table 2). The differential expression analysis results for
GSE147507 and GSE163547 reported 851 up-regulated DEGs and
2036 down-regulated DEGs in SARS-CoV-2-infected LUAD samples
versus non-affected LUAD samples (Supplementary Fig. 2A and B;
Supplementary Table 3). The intersection results for 6455 up-
regulated DEGs in LUAD samples and 851 up-regulated DEGs in
SARS-CoV-2-infected LUAD samples revealed 257 susceptibility
genes for COVID-19 in LUAD (Supplementary Fig. 2C). Functional
enrichment analyses of the 257 susceptibility genes for COVID-19
in LUAD indicated the significant assembly of them in biological
processes and molecular functions, such as the cellular amino acid
metabolic process, ncRNA processing, ribonucleoprotein complex
biogenesis, catalytic activity acting on RNA, and methyl-CpG bind-
ing, as well as KEGG pathways, including proteasomes, the biosyn-
thesis of amino acids, and one carbon pool by folate
(Supplementary Fig. 3; Table 1). The inter-activities between the
component genes of biological processes and pathways related to
RNA splicing, mitochondrial function, and proteasome are
described vividly in the PPI network (Supplementary Fig. 4).



Table 1
Functional enrichment annotation for susceptibility genes for COVID-19 in LUAD.

Category ID Description GeneRatio pvalue p.adjust qvalue Count

BP GO:0006520 cellular amino acid metabolic process 20/225 1.7E�08 4.2E�05 3.8E�05 20
BP GO:0034470 ncRNA processing 16/225 9.7E�07 1.1E�03 9.7E�04 16
BP GO:0022613 ribonucleoprotein complex biogenesis 18/225 1.6E�06 1.1E�03 9.7E�04 18
BP GO:0042254 ribosome biogenesis 13/225 1.7E�06 1.1E�03 9.7E�04 13
BP GO:0034660 ncRNA metabolic process 20/225 2.1E�06 1.1E�03 9.7E�04 20
BP GO:0031145 anaphase-promoting complex-dependent catabolic process 8/225 8.0E�06 3.4E�03 3.0E�03 8
BP GO:1902036 regulation of hematopoietic stem cell differentiation 7/225 3.3E�05 1.2E�02 1.1E�02 7
BP GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I,

TAP-dependent
7/225 4.3E�05 1.3E�02 1.1E�02 7

BP GO:0033209 tumor necrosis factor-mediated signaling pathway 10/225 5.1E�05 1.3E�02 1.1E�02 10
BP GO:0061418 regulation of transcription from RNA polymerase II promoter in response to

hypoxia
7/225 5.1E�05 1.3E�02 1.1E�02 7

CC GO:0034709 methylosome 6/240 3.7E�09 1.2E�06 1.0E�06 6
CC GO:0098798 mitochondrial protein complex 14/240 2.0E�06 3.3E�04 2.9E�04 14
CC GO:0005687 U4 snRNP 4/240 8.2E�06 8.7E�04 7.7E�04 4
CC GO:0005759 mitochondrial matrix 18/240 2.1E�05 1.7E�03 1.5E�03 18
CC GO:0000793 condensed chromosome 11/240 5.5E�05 3.0E�03 2.6E�03 11
CC GO:0034719 SMN-Sm protein complex 4/240 5.5E�05 3.0E�03 2.6E�03 4
CC GO:0046540 U4/U6 � U5 tri-snRNP complex 5/240 1.0E�04 4.2E�03 3.7E�03 5
CC GO:0097526 spliceosomal tri-snRNP complex 5/240 1.0E�04 4.2E�03 3.7E�03 5
CC GO:0000502 proteasome complex 6/240 1.3E�04 4.2E�03 3.7E�03 6
CC GO:0034708 methyltransferase complex 7/240 1.4E�04 4.2E�03 3.7E�03 7
MF GO:0140098 catalytic activity, acting on RNA 15/237 5.7E�06 2.6E�03 2.4E�03 15
MF GO:0008327 methyl-CpG binding 4/237 1.2E�04 2.4E�02 2.2E�02 4
MF GO:0051082 unfolded protein binding 7/237 1.6E�04 2.4E�02 2.2E�02 7
MF GO:0016840 carbon-nitrogen lyase activity 3/237 4.1E�04 4.6E�02 4.2E�02 3
KEGG hsa03050 Proteasome 6/117 4.7E�05 7.7E�03 7.1E�03 6
KEGG hsa01230 Biosynthesis of amino acids 7/117 9.6E�05 7.9E�03 7.4E�03 7
KEGG hsa00670 One carbon pool by folate 4/117 1.7E�04 9.1E�03 8.4E�03 4
KEGG hsa05014 Amyotrophic lateral sclerosis 15/117 2.2E�04 9.1E�03 8.4E�03 15
KEGG hsa03040 Spliceosome 9/117 3.2E�04 9.3E�03 8.6E�03 9
KEGG hsa03013 RNA transport 10/117 3.4E�04 9.3E�03 8.6E�03 10
KEGG hsa03008 Ribosome biogenesis in eukaryotes 7/117 1.0E�03 2.4E�02 2.2E�02 7
KEGG hsa05022 Pathways of neurodegeneration - multiple diseases 16/117 1.2E�03 2.6E�02 2.4E�02 16

Note: BP: biological process; CC: cellular component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes. Only top ten significant terms were
displayed in the table.
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3.2. Identification of hub susceptibility genes for COVID-19 in LUAD

Based on a hierarchical clustering of topological overlap matrix
(TOM)-based dissimilarity and an amalgamation of modules with
close relationships, the 257 susceptibility genes were merged into
three modules (Fig. 1). A correlation analysis between the module
Eigengenes and the trait data of COVID-19 patients and control
subjects suggested that the brown module showed the most nota-
ble positive correlation with a diagnosis of COVID-19 (r = 0.334,
P < 0.001; Table 2). The identification of hub susceptibility genes
for COVID-19 in LUAD was restricted to the brown module, and
10 genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK,
TRMT112, PFDN2, PFDN6, and NDUFS3, with the highest gene-
trait significance were confirmed as the hub susceptibility genes
for COVID-19 in LUAD (Table 3).

3.3. Obvious up-regulated expression and prognostic significance of
hub susceptibility genes in LUAD

All 10 hub susceptibility genes for COVID-19 exhibited remark-
able overexpression in LUAD samples compared to non-cancer
lung samples, and the differential expression of most of the hub
susceptibility genes for COVID-19 could be used to moderately dis-
criminate LUAD from non-cancer lung samples (Supplementary
Figs. 5–8). The IHC staining results further confirmed the higher
expression levels of TRMT112, PFDN6, and NDUFS3 in LUAD tissues
than in normal lung tissues (Supplementary Fig. 9). The up-
regulation of five hub susceptibility genes, MEA1, MRPL24, PFDN2,
PFDN6, and NDUFS3, served as a significant indicator of worse
overall survival for LUAD patients (P < 0.05; Fig. 2). Among the five
genes, MEA1, PFDN2, and PFDN6 were verified to exert a significant
6232
impact on the survival of LUAD patients in the Lung Cancer
Explorer database (Fig. 3).

3.4. The insignificant links between COVID-19-related host protein
expression and hub susceptibility genes

LUAD patients were clustered into the k1 group (212 LUAD
patients) with a low expression of 10 hub susceptibility genes
and the k2 group (323 LUAD patients) with a high expression of
10 hub susceptibility genes (Fig. 4A and B). TMPRSS2 expression
was slightly higher in the k2 group than in the k1 group (5.163 ±
1.768; 5.287 ± 1.659), though without statistical significance
(P = 0.411; Fig. 4C).

3.5. The effects of cigarette smoking on the expression of hub
susceptibility genes in LUAD

Parallel expression patterns based on LUAD patients from the
TCGA database indicated that smokers or reformed smokers with
a history of more than 15 years exhibited higher levels of MRPL24,
EBNA1BP2, PFDN2, and PFDN6 than nonsmokers (P < 0.05; Supple-
mentary Fig. 10).

3.6. Correlations between hub susceptibility genes and immune cell
infiltration in COVID-19 patients

The proportions of various immune cells in the 77 COVID-19
patient samples are illustrated in the composition map shown in
Fig. 5. The correlation analysis of the expression of the 10 hub sus-
ceptibility genes and the infiltration levels of 23 immune cells in
the COVID-19 samples reflect the fact that the fraction of plasma



Fig. 1. Weighted gene co-expression network analysis results for susceptibility genes for COVID-19 in LUAD. A. Sample dendrogram and heatmap of the diagnostic
information on COVID-19 based on the GSE161731 dataset. The name of each sample was labeled in the dendrogram. The red bar indicates the diagnosis of COVID-19. B. The
selection of the best soft thresholding power. The red line represents the cut-off value of the evaluation parameters of the scale-free network (R2 = 0.9). C. Cluster dendrogram
and the merged gene modules. Bars in different colors distinguish different gene modules. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Correlations between module Eigengenes and the diagnosis of COVID-19 patients.

Module Correlation coefficient P value

blue 0.311591 9.25E�06
brown 0.3338057 1.85E�06
grey �0.2565495 2.94E�04

Table 3
Genes significantly correlated with the diagnosis of COVID-19 from brown module.

Probes Module color Gene-trait significance P value of gene-trai

MEA1 brown 0.449270087 4.46E�11
MRPL24 brown 0.409941997 2.66E�09
PPIH brown 0.394952303 1.11E�08
EBNA1BP2 brown 0.394183684 1.19E�08
MRTO4 brown 0.362115455 1.97E�07
RABEPK brown 0.346438643 7.01E�07
TRMT112 brown 0.328666689 2.72E�06
PFDN2 brown 0.318871762 5.54E�06
PFDN6 brown 0.314612188 7.49E�06
NDUFS3 brown 0.312333732 8.78E�06
MRPL57 brown 0.307083049 1.26E�05
PSMA7 brown 0.297202059 2.45E�05
NME1 brown 0.282170279 6.43E�05
SNRPF brown 0.266739081 0.00016365
GNL2 brown 0.252828898 0.000362504
TIMM23 brown 0.246588005 0.000510675
NDUFA6 brown 0.246509495 0.000512853
SNRPD3 brown 0.246276027 0.000519381
ADSL brown 0.206493534 0.003776313
SNRPD1 brown 0.186960302 0.008868284
ERH brown 0.173434462 0.015320465
ROMO1 brown 0.165878881 0.020473293

Note: The top ten genes were designated as the hub susceptibility genes for COVID-19 i
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cells, CD4 activated memory T cells, and follicular helper T cells
increased with the elevation of EBNA1BP2, PFDN6, and NDUFS3
expression in COVID-19 samples, while the fraction of macro-
phages (M0), gamma delta T cells, and neutrophils decreased with
higher PPIH, MRPL24, and TRMT112 expression in COVID-19 sam-
ples (Fig. 6).
t significance Module membership P value of module membership

0.809177779 1.89E�46
0.85769273 1.17E�57
0.863048632 3.78E�59
0.872920332 4.55E�62
0.81075742 9.21E�47
0.711785814 1.97E�31
0.827330611 3.14E�50
0.884069056 1.13E�65
0.848636997 2.83E�55
0.882734205 3.19E�65
0.883942162 1.25E�65
0.778829158 5.89E�41
0.4790863 1.39E�12
0.906207262 4.48E�74
0.874285624 1.72E�62
0.815121776 1.22E�47
0.82519979 9.18E�50
0.870535107 2.43E�61
0.864879379 1.13E�59
0.819175371 1.77E�48
0.708157272 5.40E�31
0.581007567 5.37E�19

n LUAD.



Fig. 2. Prognostic analysis results for five hub susceptibility genes in LUAD. A. Kaplan–Meier survival curves on the impact of MEA1 expression on the overall survival of LUAD
patients. B. Kaplan–Meier survival curves on the impact of MRPL24 expression on the overall survival of LUAD patients. C. Kaplan–Meier survival curves on the impact of
PFDN2 expression on the overall survival of LUAD patients. D. Kaplan–Meier survival curves on the impact of PFDN6 expression on the overall survival of LUAD patients. E.
Kaplan–Meier survival curves on the impact of NDUFS3 expression on the overall survival of LUAD patients. HR: hazard ratio. The black and red lines delineate the overall
survival probability of LUAD patients in the low and high expression groups, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. The validation of the survival analysis for susceptibility genes in LUAD. A. Forest plots of the hazard ratio value for MEA1. B. Forest plots of the hazard ratio value for
PFDN2. C. Forest plots of the hazard ratio value for PFDN6. TE: Estimate of treatment effect. SETE: Standard error of treatment estimate.
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3.7. In-depth analysis of the hub susceptibility genes for COVID-19 in
LUAD

The topological network in Supplementary Fig. 11 displays
upstream miRNAs or TFs that may regulate the transcription of
the 10 hub susceptibility genes. Particularly, TFs, such as SP1,
ELK1, and GABPA, and miRNAs, such as hsa-miR-206, hsa-miR-
548a-5p, and hsa-miR-548c-5p, could target more than one hub
susceptibility gene. The 10 hub susceptibility genes and eight
interactome sets of the A549 cell lines exhibited overlaps at both
6234
the gene level and the shared term level (Fig. 7); no interrelation-
ships were found between the 10 hub susceptibility genes and the
interactome sets of Calu-3 cell lines (data not shown).

4. Discussion

The COVID-19 pandemic has resulted in great challenges in the
clinical management of cancer patients, especially LUAD patients
[21–23]. More attention should be paid to LUAD patients with
COVID-19 to improve their life conditions. Great efforts have been



Fig. 4. K-means clustering of LUAD patients based on hub susceptibility genes and TMPRSS2 expression in different groups. A. Cluster plot. LUAD patient samples in clusters 1
or 2 are represented by blue dots and green triangles, respectively. B. Heatmap of the expression characteristics of hub susceptibility genes in two clusters of LUAD samples. C.
Box plot of TMPRSS2 expression in LUAD samples of clusters 1 and 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. The scale-stacked bar plot of the proportions of various immune cells in 77 COVID-19 patient samples. The fractions of the infiltration levels of various immune cells
are represented in bars of different colors.
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Fig. 6. The correlation diagram of the relationships between the infiltration levels of various immune cells and the expression of hub susceptibility genes in COVID-19
samples. Positive and negative correlations are indicated in blue and red colors, respectively. The size of nodes indicated the absolute value size of the correlation coefficient.
Significant correlation results are marked with a red box. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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devoted by previous researchers to conquer COVID-19’s impact on
LUAD patients. Luo et al. carried out a bioinformatics study with
multiple databases to analyze the prognostic value and mechanism
of the proprotein convertase, FURIN, in LUAD [24]. Uddin et al.
investigated the association of ACE2 expression with immune sig-
natures, immune ratios, and pathways in LUAD through the com-
putational analysis of the expression profile of ACE2 in LUAD
from the TCGA and GEO databases [11]. The work of Tang et al.
demonstrated the expression characteristics of ACE2, TMPRSS2,
and AAK1 in LUAD and their influence on immune infiltration via
differential expression analysis, enrichment pathway analysis,
and the estimation of immune cell infiltration in LUAD [25]. How-
ever, the scientific mechanism underlying the high susceptibility of
LUAD patients to COVID-19 had not been clarified. We are the first
group to expound on the mechanism of the high vulnerability of
LUAD patients to COVID-19 through the landscape profiling of
the differentially expressed genes between LUAD samples infected
with SARS-CoV-2 and non-infected LUAD samples.

In the process of obtaining the susceptibility genes for COVID-
19 in LUAD, unlike the traditional practice of gathering DEGs
6236
merely from datasets of COVID-19 and uninfected samples, the
susceptibility genes for COVID-19 in LUAD were gathered from
49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD
samples, as well as 3931 LUAD samples and 3027 non-cancer lung
samples in globally compiled RNA-seq and microarray datasets.
The narrowing of the search range to the common up-regulated
DEGs in LUAD and up-regulated DEGs in SARS-CoV-2-infected
LUAD samples might enhance the relevance of the identified genes
to COVID-19. Functional enrichment analyses of the selected sus-
ceptibility genes implied potential biological processes, molecular
functions, and pathways through which these genes may make
LUAD patients more likely to develop COVID-19. We noted that
several of the enriched biological process terms were associated
with RNA splicing and mitochondrial functions. Previous studies
on COVID-19 have provided evidence regarding the impact of
COVID-19 on RNA splicing and mitochondrial functions. Singh
et al. suggested that SARS-CoV-2 might cause mitochondrial dys-
functions via downregulating the ribosomal, mitochondrial com-
plex I, and mitochondrial fission-promoting genes [26]. Banerjee
et al. reported that NSP16, a non-structural protein encoded by



Fig. 7. Overlap between hub susceptibility genes and eight interactome sets of the A549 cell lines. A. Overlaps at the gene level, in which identical genes are linked by purple
curves; B. Overlaps at the shared term level, in which genes belonging to the same ontology term are linked by blue curves. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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SARS-CoV-2, could inhibit global mRNA splicing by combining with
the mRNA recognition domains of the U1 and U2 splicing of RNAs
[27]. The most significant pathway was clustered near the suscep-
tibility genes; proteasomes, which play crucial roles in viral repli-
cation processes, and proteasome inhibitors were proposed by
Longhitano et al. as promising therapeutic strategies for COVID-
19 [28–30]. The above functional annotation results imply that
these susceptibility genes may increase LUAD patients’ risk of
COVID-19 by participating in the biological processes and path-
ways of RNA splicing, mitochondrial functions, and proteasomes.

Another fruitful finding of the current study is that several of
the hub susceptibility genes, including MEA1, PFDN2, and PFDN6,
were proven by both training and validation sets to be significantly
related to the poor survival of LUAD patients. Many studies have
reported DEGs with prominent prognostic value in LUAD; the prog-
nostic significance of the hub susceptibility genes in LUAD from the
present study is also noteworthy and might be alternatives as sur-
vival indicators of LUAD patients in future clinical practice.

There have been interesting studies pointing out that cigarette
smoking exerts boosting effects on the membrane expression of
genes, including ACE2, in lung epithelial cells, thus increasing the
risk of contracting COVID-19 [31,32]. To determine about whether
cigarette smoking also had a certain effect on the expression of the
10 hub susceptibility genes, we conducted gene expression analy-
sis in non-smoker versus smoker groups, and we were surprised to
find the higher expression of four hub susceptibility genes, includ-
ing MRPL24, EBNA1BP2, PFDN2, and PFDN6, in LUAD smokers. The
results imply that the increased susceptibility of LUAD smokers to
COVID-19 compared to LUAD non-smokers might partly be attrib-
uted to the stimulating effects of cigarette smoking on the expres-
sion of these susceptibility genes.

It was found that innate and adaptive immune cells extensively
infiltrated fatal COVID-19 lungs [33]. In respiratory epithelial cells
and cardiomyocytes, SARS-CoV-2 could induce innate immune
responses mediated by double-stranded RNA [34], which demon-
strated the considerable immune response stimulated by SARS-
CoV-2. Therefore, we also checked the correlations between the
expression of susceptibility genes and the infiltration level of
immune cells in COVID-19 samples. Of the 10 hub susceptibility
6237
genes for COVID-19, PPIH was one of the host proteins engaged
in the regulation of the calcineurin/NFAT pathway, thus playing a
vital role in immune cell activation [35,36]. The work of Susanne
et al. indicated the redundant interaction between immunophilins,
including PPIH, and CoV non-structural protein 1 [37]. MRTO4 was
also found to be associated with the virus-induced immune
response and has been screened out as one of the key genes in
human antigen-presenting cells activated by the polio vaccine
[38]. The connection between TRMT112 and T cells could be traced
to the study by Kohei et al., in which TRMT112 was distinctively
differentially expressed between T cell subsets from paroxysmal
nocturnal hemoglobinuria patients and healthy control subjects
[39]. Corresponding to the findings in prior studies, the significant
relationships between the 10 hub susceptibility genes and the frac-
tions of immune cells in the current study hinted at the potential
involvement of the hub susceptibility genes in the immune activi-
ties of the human body against SARS-CoV-2.

Interesting results regarding the virus–host interface have been
yielded by the PPI maps of SARS-CoV-2 proteins and human pro-
teins via AP-MS and BioID, which facilitated the recognition of
the pathogenicity of SARS-CoV-2 [40–44]. Therefore, it was neces-
sary to explore the overlaps between hub susceptibility genes for
COVID-19 and the interactome sets of A549 cells in response to
COVID-19. The interrelations between the hub susceptibility genes
and the interactome sets of the A549 cell lines provide useful clues
regarding the molecular mechanisms of these hub genes in render-
ing LUAD patients vulnerable to COVID-19 infection.

5. Conclusion

In summary, we identified a string of susceptibility genes for
COVID-19 in LUAD. These susceptibility genes, MEA1, MRPL24,
PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and
NDUFS3, may increase the vulnerability of LUAD patients to
COVID-19 by interfering with multiple biological processes and
pathways, such as RNA splicing, mitochondrial functions, and the
proteasome or immune functions of the human body. Further,
in vitro and in vivo experiments should be carried out in future
work to validate the functional roles and immunity correlations
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of hub susceptibility genes in increasing the risk of COVID-19
infection in LUAD patients. Additionally, future studies could
examine the antibody levels for viral antigens, particularly the
anti-SPIKE antibody, after natural infection or after vaccination in
LUAD samples with high or low expressions of the 10 susceptibility
genes. These were also the limitations of the present work. Never-
theless, the findings in the current study may shed new light on the
high susceptibility of LUAD patients to COVID-19.
Data availability

The data underlying this article are available in the article and
its online supplementary material.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was supported by: Guangxi Zhuang Autonomous
Region Medical Health Appropriate; Technology Development
and Application Promotion Project (S2020031); Guangxi Medical
High-level Key Talents Training ‘‘139” Program (2020); Guangxi
Medical University Training Program for Distinguished Young
Scholars (2017); Medical Excellence Award Funded by the Creative
Research Development Grant from the First Affiliated Hospital of
Guangxi Medical University (2016); Guangxi Degree and Postgrad-
uate Education Reform and Development Research Projects, China
(JGY2019050); Guangxi Educational Science Planning Key Project
(2021B167); Guangxi Higher Education Undergraduate Teaching
Reform Project (2020JGA146); Guangxi Medical University Educa-
tion and Teaching Reform Project (2019XJGZ04); Innovation Pro-
ject of Guangxi Graduate Education (YCSW2021121). We
sincerely thank for the technical support provided by Guangxi
Key Laboratory of Medical Pathology.
Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.11.026.

References

[1] Han HJ, Nwagwu C, Anyim O, Ekweremadu C, Kim S. COVID-19 and cancer:
From basic mechanisms to vaccine development using nanotechnology. Int
Immunopharmacol 2021;90:107247. https://doi.org/10.1016/j.
intimp.2020.107247.

[2] Moujaess E, Kourie HR, Ghosn M. Cancer patients and research during COVID-
19 pandemic: A systematic review of current evidence. Crit Rev Oncol Hematol
2020;150:102972. https://doi.org/10.1016/j.critrevonc.2020.102972.

[3] Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives
in delivery points of view. Adv Drug Deliv Rev 2021;170:1–25. https://doi.org/
10.1016/j.addr.2020.12.011.

[4] Liu C, Zhao Y, Okwan-Duodu D, Basho R, Cui X. COVID-19 in cancer patients:
risk, clinical features, and management. Cancer Biol Med 2020;17:519–27.
https://doi.org/10.20892/j.issn.2095-3941.2020.0289.

[5] Baharoon S, Memish ZA. MERS-CoV as an emerging respiratory illness: A
review of prevention methods. Travel Med Infect Dis 2019;32:101520. https://
doi.org/10.1016/j.tmaid.2019.101520.

[6] Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics
in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med
2020;382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316.

[7] Tan J, Yang C. Prevention and control strategies for the diagnosis and treatment
of cancer patients during the COVID-19 pandemic. Br J Cancer 2020;123
(1):5–6. https://doi.org/10.1038/s41416-020-0854-2.

[8] Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin,
transmission and clinical therapies on coronavirus disease 2019 (COVID-19)
6238
outbreak - an update on the status. Mil Med Res 2020;7(1). https://doi.org/
10.1186/s40779-020-00240-0.

[9] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective
cohort study. Lancet 2020;395(10229):1054–62. https://doi.org/10.1016/
S0140-6736(20)30566-3.

[10] Liang W, Guan W, Chen R, Wang W, Li J, Xu Ke, et al. Cancer patients in SARS-
CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020;21
(3):335–7. https://doi.org/10.1016/S1470-2045(20)30096-6.

[11] Uddin MN, Akter R, Li M, Abdelrahman Z. Expression of SARS-COV-2 cell
receptor gene ACE2 is associated with immunosuppression and metabolic
reprogramming in lung adenocarcinoma based on bioinformatics analyses of
gene expression profiles. Chem Biol Interact 2021;335:. https://doi.org/
10.1016/j.cbi.2021.109370109370.

[12] Samad A, Jafar T, Rafi JH. Identification of angiotensin-converting enzyme 2
(ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related
lung cancer using computational analyses. Genomics 2020;112(6):4912–23.
https://doi.org/10.1016/j.ygeno.2020.09.002.

[13] Zhang H, Quek K, Chen R, Chen J, Chen B. Expression of the SAR2-Cov-2
receptor ACE2 reveals the susceptibility of COVID-19 in non-small cell lung
cancer. J Cancer 2020;11(18):5289–92. https://doi.org/10.7150/jca.49462.

[14] Han G, Sinjab A, Hara K, Treekitkarnmongkol W, Brennan P, Chang K, et al.
Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host
Proteases in Normal and Malignant Lung Tissues from Pulmonary
Adenocarcinoma Patients. Cancers (Basel) 2021;13(6):1250. https://doi.org/
10.3390/cancers13061250.

[15] Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al.
Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
e1039. Cell 2020;181:1036–45. https://doi.org/10.1016/j.cell.2020.04.026.

[16] Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, et al.
Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway.
Sci Rep 2021;11(1). https://doi.org/10.1038/s41598-021-86002-x.

[17] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

[18] Wan Q, Tang J, Han Y, Wang D. Co-expression modules construction by
WGCNA and identify potential prognostic markers of uveal melanoma. Exp
Eye Res 2018;166:13–20. https://doi.org/10.1016/j.exer.2017.10.007.

[19] Xu M, Ouyang T, Lv K, Ma X. Integrated WGCNA and PPI Network to Screen
Hub Genes Signatures for Infantile Hemangioma. Front Genet 2020;11:.
https://doi.org/10.3389/fgene.2020.614195614195.

[20] Wu Z, Hai E, Di Z, Ma R, Shang F, Wang Y, et al. Using WGCNA (weighted gene
co-expression network analysis) to identify the hub genes of skin hair follicle
development in fetus stage of Inner Mongolia cashmere goat. PLoS One
2020;15(12):e0243507. https://doi.org/10.1371/journal.pone.0243507.

[21] Vici P, Krasniqi E, Pizzuti L, Ciliberto G, Mazzotta M, Marinelli D, et al. Burnout
of health care providers during the COVID-19 pandemic: Focus on Medical
Oncologists. Int J Med Sci 2021;18(10):2235–8. https://doi.org/10.7150/
ijms.54025.

[22] Khalifeh YI, Tfayli AH. Managing Lung Cancer during Coronavirus Disease 2019
Pandemic. Turk Thorac J 2019;22(2021):163–8. https://doi.org/10.5152/
TurkThoracJ.2021.20110.

[23] Degeling K, Baxter NN, Emery J, Jenkins MA, Franchini F, Gibbs P, et al. An
inverse stage-shift model to estimate the excess mortality and health
economic impact of delayed access to cancer services due to the COVID-19
pandemic. Asia Pac J Clin Oncol 2021. https://doi.org/10.1111/ajco.13505.

[24] Luo L, Li M, Su J, Yao X, Luo H. FURIN correlated with immune infiltration
serves as a potential biomarker in SARS-CoV-2 infection-related lung
adenocarcinoma. Clin Exp Med 2021. https://doi.org/10.1007/s10238-021-
00760-6.

[25] Tang B, Zhu J, Cong Y, Yang W, Kong C, Chen W, et al. The Landscape of
Coronavirus Disease 2019 (COVID-19) and Integrated Analysis SARS-CoV-2
Receptors and Potential Inhibitors in Lung Adenocarcinoma Patients. Front Cell
Dev Biol 2020;8. https://doi.org/10.3389/fcell.2020.577032.

[26] Singh K, Chen Y-C, Hassanzadeh S, Han K, Judy JT, Seifuddin F, et al. Network
Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial
Dysfunctions in SARS-CoV-2 Infection. Front Genet 2021;12. https://doi.org/
10.3389/fgene.2021.599261.

[27] Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, et al. SARS-
CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host
Defenses e1321. Cell 2020;183:1325–39. https://doi.org/10.1016/
j.cell.2020.10.004.

[28] Longhitano L, Tibullo D, Giallongo C, Lazzarino G, Tartaglia N, Galimberti S,
et al. Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. Int J Mol Sci
2020;21(10):3622. https://doi.org/10.3390/ijms21103622.

[29] Song G, Lee EM, Pan J, Xu M, Rho H-S, Cheng Y, et al. Cheng et al., An Integrated
Systems Biology Approach Identifies the Proteasome as A Critical Host
Machinery for ZIKV and DENV Replication. Genomics Proteomics Bioinform.
2021;19(1):108–22. https://doi.org/10.1016/j.gpb.2020.06.016.

[30] Pang Y, Li M, Zhou Y, Liu W, Tao R, Zhang H, et al. The ubiquitin proteasome
system is necessary for efficient proliferation of porcine reproductive and
respiratory syndrome virus. Vet Microbiol 2021;253:108947. https://doi.org/
10.1016/j.vetmic.2020.108947.

[31] Masso-Silva JA, Moshensky A, Shin J, Olay J, Nilaad S, Advani I, et al. Chronic E-
Cigarette Aerosol Inhalation Alters the Immune State of the Lungs and
Increases ACE2 Expression, Raising Concern for Altered Response and

https://doi.org/10.1016/j.csbj.2021.11.026
https://doi.org/10.1016/j.intimp.2020.107247
https://doi.org/10.1016/j.intimp.2020.107247
https://doi.org/10.1016/j.critrevonc.2020.102972
https://doi.org/10.1016/j.addr.2020.12.011
https://doi.org/10.1016/j.addr.2020.12.011
https://doi.org/10.20892/j.issn.2095-3941.2020.0289
https://doi.org/10.1016/j.tmaid.2019.101520
https://doi.org/10.1016/j.tmaid.2019.101520
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1038/s41416-020-0854-2
https://doi.org/10.1186/s40779-020-00240-0
https://doi.org/10.1186/s40779-020-00240-0
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S1470-2045(20)30096-6
https://doi.org/10.1016/j.cbi.2021.109370
https://doi.org/10.1016/j.cbi.2021.109370
https://doi.org/10.1016/j.ygeno.2020.09.002
https://doi.org/10.7150/jca.49462
https://doi.org/10.3390/cancers13061250
https://doi.org/10.3390/cancers13061250
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1038/s41598-021-86002-x
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.exer.2017.10.007
https://doi.org/10.3389/fgene.2020.614195
https://doi.org/10.1371/journal.pone.0243507
https://doi.org/10.7150/ijms.54025
https://doi.org/10.7150/ijms.54025
https://doi.org/10.5152/TurkThoracJ.2021.20110
https://doi.org/10.5152/TurkThoracJ.2021.20110
https://doi.org/10.1111/ajco.13505
https://doi.org/10.1007/s10238-021-00760-6
https://doi.org/10.1007/s10238-021-00760-6
https://doi.org/10.3389/fcell.2020.577032
https://doi.org/10.3389/fgene.2021.599261
https://doi.org/10.3389/fgene.2021.599261
https://doi.org/10.1016/j.cell.2020.10.004
https://doi.org/10.1016/j.cell.2020.10.004
https://doi.org/10.3390/ijms21103622
https://doi.org/10.1016/j.gpb.2020.06.016
https://doi.org/10.1016/j.vetmic.2020.108947
https://doi.org/10.1016/j.vetmic.2020.108947


L. Gao, Guo-Sheng Li, Jian-Di Li et al. Computational and Structural Biotechnology Journal 19 (2021) 6229–6239
Susceptibility to SARS-CoV-2. Front Physiol 2021;12. https://doi.org/10.3389/
fphys.2021.649604.

[32] Lallai V, Manca L, Fowler CD. E-cigarette vape and lung ACE2 expression:
Implications for coronavirus vulnerability. Environ Toxicol Pharmacol
2021;86:103656. https://doi.org/10.1016/j.etap.2021.103656.

[33] Ramos da Silva S, Ju E, Meng W, Paniz Mondolfi AE, Dacic S, Green A, et al.
Broad SARS-CoV-2 cell tropism and immunopathology in lung tissues from
fatal COVID-19. J Infect Dis 2021. https://doi.org/10.1093/infdis/jiab195.

[34] Li Y, Renner DM, Comar CE, Whelan JN, Reyes HM, Cardenas-Diaz FL, et al.
SARS-CoV-2 induces double-stranded RNA-mediated innate immune
responses in respiratory epithelial-derived cells and cardiomyocytes. Proc
Natl Acad Sci USA 2021;118. https://doi.org/10.1073/pnas.2022643118.

[35] Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium,
calcineurin, and NFAT. Genes Dev 2003;17(18):2205–32. https://doi.org/
10.1101/gad.1102703.

[36] Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A. Gene regulation mediated
by calcium signals in T lymphocytes. Nat Immunol 2001;2(4):316–24. https://
doi.org/10.1038/86318.

[37] Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA, Carbajo-Lozoya J, et al. The
SARS-coronavirus-host interactome: identification of cyclophilins as target for
pan-coronavirus inhibitors. PLoS Pathog 2011;7(10):e1002331. https://doi.
org/10.1371/journal.ppat.1002331.

[38] Yanan W, Wenyong Z, Ze L, Jingxia G, Lei M, Shengjie O, et al. Identification of
genes and pathways in human antigen-presenting cell subsets in response to
polio vaccine by bioinformatical analysis. J Med Virol 2019;91(10):1729–36.
https://doi.org/10.1002/jmv.v91.1010.1002/jmv.25514.
6239
[39] Hosokawa K, Kajigaya S, Keyvanfar K, Qiao W, Xie Y, Townsley DM, et al. T Cell
Transcriptomes from Paroxysmal Nocturnal Hemoglobinuria Patients Reveal
Novel Signaling Pathways. J Immunol 2017;199(2):477–88. https://doi.org/
10.4049/jimmunol.1601299.

[40] Terracciano R, Preianò M, Fregola A, Pelaia C, Montalcini T, Savino R. Mapping
the SARS-CoV-2-Host Protein-Protein Interactome by Affinity Purification
Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and
Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2
Therapeutics. Int J Mol Sci 2021;22(2):532. https://doi.org/10.3390/
ijms22020532.

[41] Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-
CoV-2 protein interaction map reveals targets for drug repurposing. Nature
2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.

[42] Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, et al.
Comparative host-coronavirus protein interaction networks reveal pan-viral
disease mechanisms. Science 2020;370(6521). https://doi.org/
10.1126/science:abe9403.

[43] Davies JP, Almasy KM, McDonald EF, Plate L. Comparative Multiplexed
Interactomics of SARS-CoV-2 and Homologous Coronavirus Nonstructural
Proteins Identifies Unique and Shared Host-Cell Dependencies. ACS Infect Dis
2020;6:3174–89. https://doi.org/10.1021/acsinfecdis.0c00500.

[44] Li J, Guo M, Tian X, Wang X, Yang X, Wu P, et al. Virus-Host Interactome and
Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2
Pathogenesis e117. Med (NY) 2021;2:99–112. https://doi.org/10.1016/j.
medj.2020.07.002.

https://doi.org/10.3389/fphys.2021.649604
https://doi.org/10.3389/fphys.2021.649604
https://doi.org/10.1016/j.etap.2021.103656
https://doi.org/10.1093/infdis/jiab195
https://doi.org/10.1073/pnas.2022643118
https://doi.org/10.1101/gad.1102703
https://doi.org/10.1101/gad.1102703
https://doi.org/10.1038/86318
https://doi.org/10.1038/86318
https://doi.org/10.1371/journal.ppat.1002331
https://doi.org/10.1371/journal.ppat.1002331
https://doi.org/10.1002/jmv.v91.1010.1002/jmv.25514
https://doi.org/10.4049/jimmunol.1601299
https://doi.org/10.4049/jimmunol.1601299
https://doi.org/10.3390/ijms22020532
https://doi.org/10.3390/ijms22020532
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1126/science:abe9403
https://doi.org/10.1126/science:abe9403
https://doi.org/10.1021/acsinfecdis.0c00500
https://doi.org/10.1016/j.medj.2020.07.002
https://doi.org/10.1016/j.medj.2020.07.002

	Identification of the susceptibility genes for COVID-19 in lung adenocarcinoma with global data and biological computation methods
	1 Introduction
	2 Materials and methods
	2.1 Accumulation of global RNA-seq and microarray datasets for LUAD
	2.2 The DEGs of LUAD identified from all collected datasets
	2.3 The susceptibility genes for COVID-19 in LUAD
	2.4 Identification of hub susceptibility genes for COVID-19 in LUAD through WGCNA
	2.5 The clinical significance of the hub susceptibility genes for COVID-19 in LUAD patients
	2.6 Exploration of whether there is relevance between COVID-19-related host protein expression and hub susceptibility genes
	2.7 The effects of cigarette smoking on the expression of hub susceptibility genes in LUAD
	2.8 Correlations between hub susceptibility genes and immune cell infiltration in COVID-19 patients
	2.9 In-depth analysis of the hub susceptibility genes for COVID-19 in LUAD

	3 Results
	3.1 The susceptibility genes for COVID-19 in LUAD
	3.2 Identification of hub susceptibility genes for COVID-19 in LUAD
	3.3 Obvious up-regulated expression and prognostic significance of hub susceptibility genes in LUAD
	3.4 The insignificant links between COVID-19-related host protein expression and hub susceptibility genes
	3.5 The effects of cigarette smoking on the expression of hub susceptibility genes in LUAD
	3.6 Correlations between hub susceptibility genes and immune cell infiltration in COVID-19 patients
	3.7 In-depth analysis of the hub susceptibility genes for COVID-19 in LUAD

	4 Discussion
	5 Conclusion
	Data availability
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary material
	References


