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Abstract: (1) Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by
SARS-CoV-2. Reverse transcription polymerase chain reaction (RT-PCR) remains the current gold
standard for detecting SARS-CoV-2 infections in nasopharyngeal swabs. In Romania, the first reported
patient to have contracted COVID-19 was officially declared on 26 February 2020. (2) Methods: This
study proposes a federated learning approach with pre-trained deep learning models for COVID-19
detection. Three clients were locally deployed with their own dataset. The goal of the clients was
to collaborate in order to obtain a global model without sharing samples from the dataset. The
algorithm we developed was connected to our internal picture archiving and communication system
and, after running backwards, it encountered chest CT changes suggestive for COVID-19 in a patient
investigated in our medical imaging department on the 28 January 2020. (4) Conclusions: Based on
our results, we recommend using an automated AI-assisted software in order to detect COVID-19
based on the lung imaging changes as an adjuvant diagnostic method to the current gold standard
(RT-PCR) in order to greatly enhance the management of these patients and also limit the spread of
the disease, not only to the general population but also to healthcare professionals.

Keywords: federated learning; COVID-19; computed tomography

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious and highly contagious viral
disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This
disease has been responsible for extreme global lockdown measures, millions of deaths,
and major socioeconomic havoc [1]. COVID-19 is thought to have been identified in
Wuhan, China in late 2019 before rapidly spreading on a global scale and developing into a
pandemic on 11 March 2020, according to the World Health Organization (WHO) [2]. As
of May 2022, the disease has affected more than 520 million and killed over 6.2 million
people worldwide. With more than 500,000 new cases and thousands of deaths recorded
on a daily basis around the world, this pandemic appears to be far from over and seems
like an exhausting and everlasting battle between a continuous emergence of new viral
strains and an ongoing development of new vaccines and antiviral treatments [3].

The infection with SARS-CoV-2 can either remain asymptomatic or lead to the devel-
opment of non-specific signs and symptoms such as fever, cough, partial/complete loss of
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smell and/or taste, fatigue, and shortness of breath in some individuals [4–6]. However,
little information still remains known about the long-term effects of this disease on individ-
ual health. The main medical imaging methods used to detect COVID-19 are chest X-ray
and computed tomography (CT), with the latter being vastly superior in terms of accuracy
(ACC). The typical lung CT changes detected in COVID-19 patients include ground-glass
opacities ± lung consolidation areas usually distributed in the posterior and peripheral
regions of both lungs, frequently affecting multiple lobes [7,8].

Reverse transcription-polymerase chain reaction (RT-PCR) still remains the current
gold standard for detecting this viral infection in nasopharyngeal swabs. This diagnos-
tic method features high sensitivity (Sen) (up to 97.8%) and high specificity (Spe) (up to
100%) [9]. Artificial intelligence (AI)-based software has largely been used in many do-
mains that require pattern or image recognition and classification, thus leading to multiple
applications in order to improve almost every aspect of our lives such as self-driving cars,
facial recognition, personalized virtual shopping assistants, marketing, and financial robots,
etc. One particular application of AI-based software is in medicine where the ability to
recognize different patterns or image characteristics leads to a novel way to detect various
diseases based on the histopathology and/or radio-imaging aspect [10]. In search for an ad-
juvant COVID-19 diagnostic method, an independent AI-based software previously trained
on a large set of chest CT scans may provide good Sen and Spe in detecting pulmonary
changes caused by this disease [11].

This study aims to develop a large image dataset containing unsegmented axial chest
CT images in lung window in order to perform a differential diagnosis (solely based on the
chest CT imaging aspect) between normal lung aspect, COVID-19, non-COVID-19 lung
infections, and lung cancer by using a federated learning (FL) approach with pre-trained
deep learning (DL) models for COVID-19 detection. Moreover, our automated AI software
is able to connect to an internal picture archiving and communication system (PACS) and
analyze previous CT scans in order to identify COVID-19 patients prior to the officially
declared patient zero in each region, solely based on the chest CT changes.

2. Related Works

Ever since the pandemic started in the first half of 2020, there have been numerous
attempts to develop an AI-assisted software that is capable of identifying COVID-19 based
solely on the chest CT imaging findings. Given the global spread of COVID-19, machine
learning (ML) and DL approaches have been used in order to diagnose this disease on both
X-ray and chest CT [12]. Algorithms based on DL allow computational models to have
an increased ACC in classifying different objects or sounds in order to provide a superior
output compared to humans in various scenarios [13,14].

2.1. Detecting Lung Diseases on X-ray Images Using Convolutional Neural Networks (CNNs)

Vieira et al. made use of several CNNs (i.e., DenseNet201, IncepetionResNetV2, In-
ceptionV3, NASNetLarge, ResNet50, VGG16, and Xception) for classifying chest X-ray
images and published one of the most recent and prominent papers in this field. The
authors of the study used frontal chest X-rays classified into five different image datasets.
The COVID-19 dataset was named ‘COVID-DB’, consisted of three datasets, and included
717 images. Another dataset named ‘NIH Chest-X-ray’ included 61,754 X-rays and was
made publicly available by the National Health Institute (60,412 normal aspect, 1342 pneu-
monia with/without comorbidities). The last dataset consisted of 5863 frontal chest X-rays
(2782 bacterial pneumonia, 1583 normal aspect, and 1493 viral pneumonia) and was used
for testing the ACC of the algorithm. The highest ACC was obtained using ResNet50
(0.990 ± 0.003) and VGG16 (0.990 ± 0.004). The highest Sen was achieved using VGG16
(0.981 ± 0.022), while the highest Spe was obtained using ResNet50 (0.996 ± 0.003) [15].

Aslan et al. proposed a different approach to detect COVID-19 infection in individuals
by using a CNN-based transfer learning (TL): BiLSTM network. The study required a large
image database which consisted of 2905 chest X-rays in total (219—COVID-19, 1345—viral
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pneumonia, 1341—normal lung aspect). The data available initially in the dataset was
enhanced using lung segmentation and data augmentation in order to increase classification
success. The authors developed a modified AlexNet network (mAlexNet) by adjusting the
last three layers in order to classify X-ray images as normal lung aspect, viral pneumonia,
or COVID-19. When using the mAlexNet architecture, the model obtained a 98.14% ACC.
However, when combined with BiLSTM, the ACC increased slightly (98.70%) [16].

Apostolopoulos et al. used TL combined with CNNs in order to automatically detect
COVID-19 changes on X-ray images. Two datasets were developed: Dataset_1—1428 X-rays
(224 images with confirmed COVID-19, 700 images with confirmed common bacterial pneu-
monia, 504 images with normal lung aspect) and Dataset_2—1442 X-rays (224 images with
confirmed COVID-19, 714 images with both bacterial and viral pneumonia and 504 with
normal lung aspect). The authors used multiple networks for TL (VGG19, MobileNet v2,
Inception, Xception, Inception ResNet v2) and achieved the highest ACC (98.75%) when
detecting COVID-19 alone when using VGG19. Also, VGG19 was able to correctly classify
X-rays as normal, pneumonia, or COVID-19 with a recorded ACC of 93.48% [17].

Several different approaches using CNNs to detect COVID-19 on chest X-rays are
presented in Table 1.

Table 1. Multiple AI-based methods using CNNs to detect COVID-19 on chest X-rays.

Paper Sample Size Algorithm Results

Mahmud et al. [18]

305 COVID-19,
1538 Normal aspect,

1493 Viral pneumonia,
3780 Bacterial pneumonia

ConvxNet
ACC: 0.900

Recall: 0.890
Spe: 0.890

Rajaraman et al. [19]

314 COVID-19,
1583 Normal aspect,

3780 Bacterial pneumonia,
1493 Viral pneumonia,

11,002 Varied pneumonia

U-Net,
VGG-16,

Inception-V3,
Xception,

DenseNet-121,
NasNet-Mobile

ACC: 0.930
Sen: 0.970
Spe: 0.860

Rahimzadeh et al. [20]
180 COVID-19,

6054 Pneumonia,
8851 Normal aspect

ImageNet,
Xception,
ResNet50

ACC: 0.914

Chowdhurry et al. [21]
423 COVID-19,

1485 Viral pneumonia,
1579 Normal aspect

MobileNetv2,
SqueezeNet,

ResNet18,
ResNet101,

DenseNet201,
CheXNet,

Inceptionv3,
VGG19

ACC 0.979
Sen 0.979
Spe 0.988

Vaid et al. [22] 181 COVID-19,
364 Normal aspect Modified VGG19 ACC: 0.963

Brunese et al. [23]
250 COVID-19,

3520 Normal aspect,
2753 Pneumonia

VGG16
ACC: 0.960
Sen: 0.960
Spe: 0.980

Khan et al. [24]

284 COVID-19,
310 Normal aspect,

320 Bacterial pneumonia,
327 Viral pneumonia

CoroNet
ACC: 0.900
Spe: 0.960

Recall: 0.890

Ismael et al. [25] 180 COVID-19
200 Normal aspect

ResNet18,
ResNet50,

ResNet101,
VGG16,
VGG19

ACC: 0.947
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2.2. Detecting Lung Diseases on Chest CT Scans Using CNNs

Ardakani et al. made use of DL techniques in order to detect COVID-19 based on CT
images. The study included a total of 1020 images (510—non-COVID-19 and 510—COVID-
19) out of which 816 were used for training, and the rest were used for validation. The au-
thors used ten CNNs (AlexNet, GoogLeNet, VGG-16, VGG-19, SqueezeNet, MobileNet-V2,
ResNet-18, ResNet-50, ResNet-101, Xception) to train and validate the datasets. The highest
performance in both training and validation was achieved using Xception (Sen: 98.77%;
Spe: 100%; ACC: 99.38%) and ResNet-101 (Sen: 100%; Spe: 99.26%; ACC: 99.63%) [26].

Ahuja et al. developed a three-phased methodology for detecting COVID-19 on
chest CT scans: data augmentation, TL, and abnormality detection using a deeper layer.
The used dataset consisted of 349 chest CT images of COVID-19 patients and 397 chest
CT images illustrating a non-COVID-19 aspect. The tested TL models were ResNet18,
ResNet50, ResNet101, SqueezeNet. The best performing model was Res-Net18, which
achieved a training ACC of 99.82%, a validation accuracy of 97.32%, and a testing ACC of
99.4%. When classifying COVID-19 and non-COVID-19 chest CT images, this methodology
achieved 98.6% specificity and 100% sensitivity, reaching an area under the curve (AUC) of
0.9965 [27].

Several different approaches using CNNs to detect COVID-19 on chest CT scans are
presented in Table 2.

Table 2. Multiple AI-based methods using CNNs to detect COVID-19 on chest CT scans.

Paper Sample Size Algorithm Results

Ko et al. [28]

3993 Chest CT images
COVID-19,

Non-COVID-19
pneumonia,

Non-pneumonia

VGG16,
ResNet-50,

Inception-v3,
Xception

ResNet-50
ACC: 0.998
Sen: 0.995
Spe: 1.000

Ying et al. [29]
777 COVID-19,

708 Normal aspect,
505 Bacterial pneumonia

VGG16,
DenseNet,

ResNet,
DRE-Net

DRE-Net
ACC: 0.94
Recall: 0.93
AUC: 0.99

Wang et al. [30]
5372 Raw chest CT images

COVID-19,
Other pneumonia

DenseNet
COVID-19Net

Training
ACC: 0.812
Sen: 0.789
Spe: 0.899

Validation 1
ACC: 0.783
Sen: 0.803
Spe: 0.766

Gozes et al. [31]
157 Chest CT scans

COVID-19,
Non-COVID-19 aspect

ResNet-50-2 Sen: 0.982
Spe: 0.922

Fu M et al. [32] 60,427 CT scans ResNet-50
ACC: 0.989
Sen: 0.967
Spe: 0.993

While these centralized approaches of using CNN for detecting COVID-19 in either
X-ray or CT images have been proven to be accurate, they have a major drawback. In
practice, a collaboration between medical institutions is difficult due to privacy concerns.
Thus, building a dataset with enough samples to train a DL model can be difficult.

Ines Feki et al. [33] proposed a FL approach for COVID-19 detection in X-ray images.
In their work, VGG-16 and ResNet50 [34] pretrained models were used. X-ray images were
used as inputs in the CNN models and divided the dataset into four subsets, each subsets
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belonging to a FL client. The obtained model in their work was a binary classifier predicting
whether an X-ray image is from a patient with COVID-19 or not. In their work, Rajesh
Kumar et al. [35] proposed blockchain FL for COVID-19 detection in CT images. Their
approach was to perform image segmentation on the CT images by using SegCaps [36]
and then train a capsule network [37] using the outputs from the SegCaps network. As
mentioned for [33], the obtained model was a binary classifier. In their work [38], Boyi Liu
et al. experimented with four different CNN models for detecting COVID-19 (COVID-Net,
MobileNet_v2, ResNet18 and ResNeXt) in X-ray images by using FL. Their conclusion was
that ResNeXt and ResNet18 were a better choice in term of COVID-19 identification in
X-ray images.

3. Materials and Methods
3.1. Materials

The image dataset developed in this study included a total of 2230 axial chest CT
images in lung window and was further divided into three groups: (a) COVID-19 (1016 im-
ages), (b) lung cancer, and non-COVID-19 lung infections (610 images), and (c) normal lung
aspect (604 images).

The COVID-19 image database was built using chest CT scans from the internal PACS
of the Medical Imaging Department of the University of Medicine and Pharmacy of Craiova,
in addition to other reliable free online access public image datasets: Radiopaedia [4],
Radiology Assistant [7], Harvard Dataverse (a COVID-19 CT Dataset with Open-Access
chest CT images of over 1000 patients with confirmed COVID-19 diagnosis) [39], and the
COVID-19 common pneumonia chest CT dataset (416 COVID-19 positive CT scans) [40].

The lung cancer and non-COVID-19 lung infections image dataset was developed
using multiple reliable free online access public chest CT examinations: Radiopaedia
(pneumonia [41], lung abscess [42], lung hydatid infection [43], tuberculosis [44], primary
lung cancer [45], pulmonary metastases [46]) and the COVID-19 and common pneumonia
chest CT dataset (412 common pneumonia CT scans) [47]. Morever, this dataset also
included a large-scale CT and PET/CT dataset for lung cancer diagnosis (Lung-PET-
CT-Dx) [48], as well as chest CT scans from the internal PACS of the Medical Imaging
Department at the University of Medicine and Pharmacy of Craiova.

The normal lung aspect image database was entirely developed using chest CT scans
from the internal PACS of the Medical Imaging Department at the University of Medicine
and Pharmacy of Craiova.

All images classified as COVID-19 came from patients with a positive RT-PCR result.
For patients confirmed with COVID-19, chest CT scans were performed within 1 to 10 days
from the RT-PCR test, in order to boost the detection of COVID-19 chest CT pathologic
changes over the course of the disease. All patient data was anonymized, and the study
was approved by the Ethical Board of the University of Medicine and Pharmacy of Craiova
(no. 101/20.05.2022).

3.2. Methods
3.2.1. TL

Artificial neural networks, also known as neural networks (NNs), are computing
systems inspired by the biological neural networks based on a collection of connected
computing units (nodes) called artificial neurons [49]. They have revolutionized almost
all medical fields, showing better results than other ML approaches [50,51]. It has been
proven that a NN would only require two hidden layers of nodes in order to converge on
any dataset [52].

The DL concept refers to networks that have more intermediate layers, and in the area
of image processing, they usually contain some convolutional layers [53] that make use
of kernels (also known as filters) that slide along input features and provide translation
equivalent responses known as feature maps [54]. TL implies converting a network that
was trained for a specific job to respond to a new one, and this happens by replacing some
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existing layers (usually the last layers) and keeping the rest of the layers together with the
weights. The new architecture goes through a learning process again, and the results are
usually better [55].

3.2.2. FL and Model Description

When training a DL model, the process usually happens on a central server or work-
station. For the training process, the dataset must be stored on that specific machine, or an
external storage provider must be mounted. While this type of process has been proven to
be highly effective for training DL models, in some cases, in which the dataset is comprised
of data from multiple sources, this type of training process cannot be done due to both
legal and privacy concerns. FL [56] is a process for training AI models. The training is
performed on multiple machines and each of these machines has its own dataset. Each of
the machines involved in the training process uploads to the central server the updated
weights without disclosing the dataset on which the model was trained. FL technique
applies only to supervised learning. In contrast with the conventional training process
described earlier, in FL, no samples from the dataset are uploaded to the central server.
FL techniques for training a DL model can be divided into two categories: centralized
and decentralized. For centralized FL, a central server is involved in order to manage
all the steps performed by each machine and to coordinate each machine in the training
process [57]. Moreover, the central server is the one in charge to query the available devices
and request the updated weights from each machine. In decentralized FL, the central
server is no longer needed, and each machine involved in the training process coordinates
to create a global model [57]. The model is then sent to all the machines in the network.
Decentralized FL is also created using blockchain [58].

For the proposed method, a centralized FL technique was used. The proposed archi-
tecture contained a central server and three clients. Each client had its own dataset batch.
The assumptions made in our method were that there were three separate institutions
with three datasets and a central server that had to compile a global model for all three
institutions without sharing the dataset between them. To eliminate network latency that
can impact the FL process [57], all three nodes were deployed on the same physical machine.
As mentioned earlier, when FL was performed, the central server did not have access to the
datasets each node was trained on. Each node had sent the updated weights to the central
server. For compiling the global model, the federated averaging algorithm (FedAvg) was
used [59]. FedAvg algorithm is given by Equation (1), in which k is the total number of
clients that participated in a specific training round, t represents the training rounds and
wk represents the weights updated by client k.

wt+1 =
∑k

i=1 wt
i

k
(1)

FL is an iterative process, in which the central server is sending the initial model to
the clients, and the clients train the model with their data and send updates to the central
server. A FL round is a process in which all these steps are performed. Each client has its
own model with the corresponding weights. For the proposed study, a client contained a
VGG-16 model [60]. Since this model was very large and required a large amount of data
to train, TL techniques were used. The weights loaded into each model for each FL entity
were obtained from training the model on the ImageNet dataset [61]. ImageNet dataset
contained around 14 million labeled images with 20,000 classes. VGG-16 model is a CNN
classifier proposed by Karen Simonyan et al. [60], which has an architecture with small
convolutional filters (3 × 3). Karen Simonyan et al. [60] proposed the VGG-16 architecture
with different layer configurations. All VGG-16 configurations have a stack of convolutional
layers and a stack of fully connected layers. Depending on the configuration, a VGG-16
model can have between 133 and 144 million parameters [60]. For all configurations of
VGG-16, the input is a 224 × 224 × 3 tensor. The image is passed through a stack of
convolutional and fully connected layers (the number varies depending on configuration).
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Each configuration followed a similar structure, the difference being the number of layers in
each configuration: 11 layers (8 convolutional and 3 fully connected layers) in A, 13 layers
(10 convolutional and 3 fully connected layers) in B configuration, 16 layers in C and D
configuration and 19 layers in E configuration. For the proposed method, the D model
configuration was chosen. The configuration is presented in Table 3. For this model, the
input tensor was not changed: 224 by 224 with 3 channels. VGG-16 was chosen as it
has been proven to be accurate in classifying X-ray and CT images [23,25]. Moreover, in
order to locally deploy three FL clients, a model that could fit three times on the GPU
was needed. For the proposed model distributed to each client, the fully connected layer
proposed in [60] was dropped and replaced with a fully connected layer with 128 neurons
with a rectified linear unit as the activation function, followed by a fully connected layer
with three neurons, with Softmax as activation function (Equation (3)). Thus, the model
was processing the input tensor and provided as an output a vector with three values as
presented in Equation (2). Each value from the vector represented the probability for each
class. The diagram of the proposed method is presented in Figure 1.

ŷ =

ŷ1
ŷ2
ŷ3

 (2)

σ
(→

z
)
=

ezi

∑K
j=1 ezj

(3)

where
→
z is the input vector and K is the number of classes.

Table 3. VGG-16 configuration for the proposed method, adapted from [60].

Layer Id D Configuration

16 weight layers
Input (224 × 244 × 3)

1 conv3-64
conv3-64

maxpool

2 conv3-128
conv3-128

maxpool

3
conv3-256
conv3-256
conv3-256

maxpool

4
conv3-512
conv3-512
conv3-512

maxpool

5
conv3-512
conv3-512
conv3-512

maxpool

6 FC-128
7 FC-3

Softmax
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The loss function used for the VGG-16 models deployed on each entity was cross-
entropy. Cross entropy is a loss function that measures the performance of a classification
model. In applications where there are two classes, the cross-entropy function becomes
binary cross-entropy. However, the proposed method is a multiclass classification. There-
fore, for calculating the loss of each model for each entity deployed, a separate loss was
computed for each label and for each observation. The final loss for each entity involved in
the training and validation process was computed as the sum of the losses for each label
(Equation (4)). Where L was the number of classes, y was the binary value indicating if
observation o was correcting classifying the label i, and p was the predicted probability of
observation o for class i.

−∑L
i=1 yo,i log(po,i) (4)

3.2.3. Hyperparameters and FL Configuration

For the proposed method, two categories of parameters can be defined. The first
category is represented by the parameters that are configured for each VGG-16 DL model
deployed on each client. When performing training of a DL model, the values computed
by the loss function are indicating whether a model is converging or not. These values
are passed to the optimizer of the DL model to decide what weights to update. The
optimizer chosen for the proposed model was Adam [62]. The Adam optimizer is based
on the stochastic gradient descent (SGD) algorithm. However, unlike SGD which keeps
the learning rate constant for all weights updated, Adam used a learning rate for each
parameter. By having a learning rate for each parameter, Adam improved the performance
in computer vision tasks, especially in sparse or noisy gradients [62]. Adam introduced
four configuration parameters. Alpha (α), the learning rate, a parameter that indicated
the step size at each iteration. Beta1 and Beta2 (β1, β2), the exponential decay rates in
which β1, β2 ∈ [0, 1). Epsilon (ε), a small value for preventing division by zero. The values
recommended by Diederik P.K. et al. [62] were used: α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 10−8. Adam was used as an optimizer for all three clients. For each client, the chosen
batch size was 50 and 15 epochs. For the FL configuration, a total number of 10 training
rounds were chosen.

The labels from the dataset were encoded as follows: 0 for COVID-19, 1 for non-
COVID-19 pneumonia and lung cancer, and 2 for normal lung aspect. After this step, the
images were placed in three different folders named according to the integer encoded
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number. These paths on the local machine were parsed into three mutable lists, a list of
images for each disease. To randomly divide the dataset for the three clients, each list was
shuffled and divided into three sub-lists. After this step, each client had its own unique
dataset. The proposed method first initialized a global model by loading the weights of
the pre-trained VGG-16 model. This step was performed by the central server. Then, the
central server randomly selected N clients from the available client list. In our method, N
was equal to two, meaning that if two out of the three clients were available, the training or
evaluation could start. The central server then distributed the weights downloaded at the
beginning of the procedure to each client. Finally, each client performed the training and
sent the updated weights to the central server. The central server aggregated a new model
based on FedAvg [59] given by Equation (1).

4. Results

For evaluating the performance of the aggregated model, the following metrics were
observed: categorical accuracy, F1-score micro, F1-score macro, Cohen’s kappa score, and
Matthews correlation coefficient. These metrics were defined by the following equations:

Categorical Accuracy =
n
N

(5)

F1µ =
2·Precisionµ·Recallµ
Precisionµ·Recallµ

(6)

F1M =
2·PrecisionM·RecallM
PrecisionM·RecallM

(7)

where n represented the number of correct predictions, and N represented total predictions.
Indices µ and M indicated micro-averaging and macro-averaging, respectively. In binary
classification, the F1 score is computed as a harmonic mean between precision and recall.
For the proposed method, which represents a multiclass model, micro-averaged and macro-
averaged precision and recall were used to compute F1-micro and F1-macro. Precision-
micro, precision-macro, recall-micro, and recall macro are given by Equations (8)–(11),
where TP is true positives, FP is false positives, FN is false negatives, and k is the total
number of classes.

Precisionµ =
∑k

i=1 TPi

∑k
i=1(TPi + FPi)

(8)

PrecisionM =
∑k

i=1
TPi

TPi+FPi

k
(9)

Recallµ =
∑k

i=1 TPi

∑k
i=1(TPi + FNi)

(10)

RecallM =
∑k

i=1
TPi

TPi+FNi

k
(11)

Cohen’s kappa score is a performance metric that is used to assess the agreement
between two parties. For ML or DL models, Cohen’s kappa score is used to compare the
predictions of a model with the actual values. Cohen’s kappa score is defined by Equation
(12) [63], in which p0 is the observed agreement and pe is the expected agreement. The
value of k should be less than or equal to 1. Besides measuring the performance of a DL
model, Cohen’s k score can be used to compare two models which have similar accuracy.

kk =
p0 − pe
1− pe

(12)

The Matthews correlation coefficient (MCC) is a performance metric used in ML or DL
which can measure the quality of a binary classifier. Thus, for a binary classifier, MCC is
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given by Equation (13). However, the proposed study contained a multiclass DL classifier.
MCC was generalized for multiclass classification [64] and for a K-by-K confusion matrix,
is given by Equation (14), where c is the correctly predicted samples, s is the total number
of samples, pk is the number of predictions for class k, and tk denotes the number of
occurrences for class k.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

MCC =
c× s−∑K

k pk × tk√
(s2 −∑K

k p2
k)
(

s2 −∑K
k t2

k

) (14)

For comparison purposes only, the same pre-trained DL model, VGG-16, was trained
in a centralized way on all images in the dataset and the same metrics were observed:
categorical accuracy, F1-score micro, F1-score macro, Cohen’s kappa score, and MCC.
For visualizing the final convolutional layer and producing a localization map for the
important regions in the images, gradient-weighted class activation map (Grad-CAM) was
used [65]. The results obtained for centralized VGG-16 and FL VGG-16 models during
training are presented in Table 4. The performance of each model during the validation
stage is presented in Table 5. As an additional step, the training time in seconds for the
FL approach and centralized approach was added in Table 4. All the implementations
were done using Python programming language, version 3.7. For training the models,
Tensorflow version 2.8.0 was used [66] with Keras version 2.4.0. The FL framework used for
this study was Flower.dev [67] version 0.18.0. All the FL clients were deployed on the same
machine, equipped with an Intel Xeon processor, 128GB of RAM, and an Nvidia Quadro
RTX 6000 GPU.

Table 4. Performance metrics for the aggregated model and centralized model during the train-
ing phase.

Model Categorical
Accuracy F1µ F1M

Cohen’s
Kappa Score

Matthews Correla-
tion Coefficient

Training Time
(Seconds)

Centralized
VGG-16 0.9390 0.9390 0.9356 0.9053 0.9053 998.129

Proposed
method—FL

VGG-16
0.8382 0.7865 0.8131 0.6816 0.6917 1960.73

Table 5. Performance metrics for the aggregated model and centralized model during the valida-
tion phase.

Model Categorical
Accuracy F1µ F1M Cohen’s Kappa Score

Matthews
Correlation
Coefficient

Centralized VGG-16 0.79 0.79 0.7741 0.6804 0.6856

Proposed method—FL VGG-16 0.7932 0.7865 0.7246 0.6441 0.6894

In Figure 2, Grad-CAMs for two randomly selected images in the dataset (COVID-19
and Lung cancer or other non-COVID-19 infections labels) are presented. The images
were obtained by displaying the output of the layer with the Id 5 as presented in Table 3.
The Grad-CAM for the two images indicated that, for feature extraction, the proposed
model is focusing on extracting features from the lung lesions. It is important to note that
the algorithm detects only lung lesions without highlighting false positive changes in the
mediastinal structures.
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5. Discussion

The approach presented in our paper involves using a medical imaging method (chest
CT) in detecting COVID-19 as an automated adjuvant diagnostic method to the current
gold standard (RT-PCR). Compared to RT-PCR, CT devices are widely available worldwide,
are able to assess patient prognosis in the course of the disease, can rapidly provide a
test result, and greatly enhance the daily testing capacity. The DL model was obtained
as an aggregated model from a FL training. Our proposed method can be used as an
unsupervised and completely independent software that performs a differential diagnosis
(solely based on CT imaging aspect) between normal lung aspect, COVID-19, and lung
cancer and non-COVID-19 lung infections. Moreover, since the three clients involved in the
training process did not share any samples from the dataset, our method can be used as
a collaborative technique between medical institutions to build a common DL model for
COVID-19 detection without sharing private data.

Compared to other AI-based applications that detect COVID-19 using chest CT scans,
our solution not only detects lung signs of SARS-CoV-2 infection but also indicates alterna-
tive diagnostics in case of a negative test result.

This paper proposed a FL approach for COVID-19 detection with pre-trained DL
models. FL is a process for training AI models. The training can be performed on multiple
machines and each of these machines has its own dataset. A central server coordinates
all machines with the goal of obtaining a global model. When the model is obtained,
the weights of the model are sent back to each machine in order to update the model
stored locally. In the proposed method, three FL entities were deployed locally, each
with a pretrained VGG-16 [60] model. The configuration chosen for this model was D-
configuration as presented in Table 3 [60]. The fully connected layers of each VGG-16 were
dropped and replaced with a fully connected layer with 128 neurons with Rectified linear
unit as activation function followed by a fully connected layer with 3 neurons with Softmax
as activation function. Convolutional layers of the DL model were frozen in order to
prevent these from modifying during training. The aggregated model is a multiclass model,
having three neurons as output: COVID-19, cancer, and non-COVID-19 lung infections
or normal lung. To properly assess the performance of the aggregated model, categorical
accuracy, F1µ, F1M, Cohen’s Kappa score, and MCC were observed. Categorical accuracy
represents the percentage of predicted classes that match with the actual labels. While
categorical accuracy alone cannot provide complete information about the performance
of the model, it shows that the aggregated model is classifying correctly 83.82% of the
images during training and 79.32% during validation. In [35], experiments in a blockchain-
federated learning configuration with different classifiers were performed. The inputs of
the classifiers were CT images. Except for one, all of the classifiers were pretrained on
ImageNet dataset. Their results show a precision of 0.8269 with specificity of 0.1561 and
sensitivity of 0.8294 for VGG-16 model. However, the model proposed by Rajesh Kumar
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et al. [35] is a binary classifier. In their work, Ines Feki et al. [33] proposed a FL approach
for COVID-19 classification in chest X-ray images. While the FL VGG-16 model obtained
in [33] performed well with 93.57 accuracy and 92.12 specificity, the authors observed that
the performance of the model was significantly affected when one or more clients are not
involved in the training process.

The F1 score is defined as a harmonic mean between precision and recall. The precision
metric indicates if the aggregated model is accurate in classifying dataset samples as positive
while the Recall metric indicates if the positive samples are classified correctly without
taking into account the false positives. The macro average of the F1 score is the arithmetic
mean of the F1 score for each label. Thus, all classes have the same weight. From Table 4, it
can be observed that in terms of macro averaged F1 score, the aggregated model obtained
0.8131 compared with the model trained in a centralized way which obtained a value of
0.9356. The micro F1 score is calculated by summing the true positives, true negatives,
and false positives for each of the three classes (Equations (6), (8) and (10)). While in the
macro average F1 score, all classes have the same weight, in the micro F1 score all samples
have the same weight. Different values for the F1 macro and the F1 micro metrics show
that the dataset was imbalanced. While the two presented models perform differently,
our proposed method contains three entities isolated one from another, with each entity
having a subset from the entire dataset and not all the samples as the centralized model.
The minimum available clients for training and evaluation was configured as equal to two,
which implies that if one of the deployed FL clients is not ready to perform training or
validation, the FL process can proceed with the remaining two clients. This configuration
can prevent the entire system to get blocked by the FL clients but, as can be seen in the
metrics obtained during training (Table 4), it has an impact on the performance of the global
model. In three rounds from the total of ten chosen for training, only two clients were
available for training and validation due to hardware limitation. For FedAvg (Equation (1)),
k represented the total number of clients who participated in a specific training round and
the total was equal to 2. Thus, not involving in the FL training a third client can impact the
performance of the global model. However, this can be a real-world scenario as, in some
cases, a healthcare institution may not be available for training due to hardware constraints
or network latency.

While the three clients are not sharing samples from the dataset, since they are de-
ployed locally, they are sharing the same hardware resources. The training time in FL is
significantly greater than performing the training on a single model because the pre-trained
weights for each VGG-16 model have to be loaded for each client on the same GPU. In
recent years, the conventional method of training DL algorithms has been proven effective
in healthcare, especially in medical imaging. The dataset used for training and validation
is stored locally on the machine used for training. The model obtained after the training
can be then deployed on other machines or devices for predictions. By using this method,
an assumption is made: the data which will be used for training can be copied on that
specific machine. This can be done if the data belongs only to a medical department or
hospital. However, in some cases the data from multiple sources cannot be copied on the
same machine and the collaboration between medical institutions or departments can be
difficult due to both legally and privacy concerns. Furthermore, in collaboration between
these institutions the question regarding which party should process the data will rise. In
this paper, we locally deployed three FL entities. Each of these entities had an individual
dataset and trained their own local model without having information about every entity
involved in the process. Furthermore, lung CT images from different public datasets were
used, which can represent a real-world scenario in which multiple healthcare institutions
can train a global model on images obtained from different CT scans. Leveraging these
FL capabilities can open new path in healthcare research and diagnosis by collaborations
between institutions.

In Romania, the first reported patient to have contracted COVID-19 was officially
declared on 26 February 2020 [68]. However, after connecting the aggregated global model
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to our internal PACS and running it backward in order to analyze chest CT scans prior to
26 February 2020, the software encountered chest CT changes suggestive of COVID-19 in a
patient investigated in our Medical Imaging Department on 28 January 2020. The expert
radiologists that labeled the initial dataset agreed the CT aspect could have been associated
with a COVID-19 infection at that time. Several images from this patient are illustrated in
Figure 3A,B.
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Figure 3. Two different slices (lung window) from the chest CT scan labeled as COVID-19 solely
based on the lung changes by the algorithm presented in this paper. The patient had been examined
prior to the first officially reported patient to have contracted COVID-19 in Romania. The chest CT
scan illustrates bilateral confluent ground-glass opacities mostly distributed in the periphery of the
lung (A) and a diffusely delimited consolidation area affecting both the middle and the right inferior
lobe (B).

6. Conclusions

Our paper presents a FL approach with pre-trained models for COVID-19 detection.
Based on our results, we recommend using an automated AI software in order to detect
COVID-19 based on lung imaging changes as an adjuvant diagnostic method to the current
gold standard (RT-PCR) in order to greatly enhance the management of these patients
and also limit the spread of the disease, not only to the general population but also to the
healthcare professionals. Moreover, in the absence of COVID-19 lung CT changes, our
AI-assisted software is capable to identify a normal lung aspect and rule out lung cancer or
a non-COVID-19 lung infection.

Since the pandemic started in 2020, there have been numerous attempts to develop
DL models capable of identifying COVID-19 based on the chest CT imaging findings. In
our proposed method, a pretrained VGG-16 model was used. However, instead of training
the model on the entire dataset in a centralized way, three individual clients have been
deployed, each client having its own dataset. A client can be represented by a medical
institution that has a private dataset. These institutions can collaborate to produce a global
model. While FL has open problems such as adversarial attacks, bias in training data,
or system-induced bias [57], FL still represents a promising technique for collaboration
between institutions to create a DL model while keeping the dataset on the client.
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