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Abstract: Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer,
yet no effective therapeutics exist. This review provides an overview of the recent development of
recombinant immunotoxins for the treatment of glypican-3 (GPC3) expressing HCC. GPC3 is a cell
surface heparan sulfate proteoglycan that is overexpressed in HCC, but is absent from normal adult
human tissues. Treatment of HCC with anti-GPC3 immunotoxins represents a new therapeutic option.
Using phage display and hybridoma technologies, three high affinity antibodies (HN3, HS20 and YP7)
have been generated against GPC3. Two of these antibodies (HN3 and HS20) have demonstrated
the ability to inhibit Wnt/Yap signaling, leading to a reduction in liver cancer cell proliferation.
By combining the HN3 antibody capable of inhibiting Wnt/Yap signaling with the protein synthesis
inhibitory domain of the Pseudomonas exotoxin, a recombinant immunotoxin that exhibits a dual
inhibitory mechanism was generated. This immunotoxin was found to be highly effective in the
treatment of human HCCs in mouse xenograft models. Engineering of the toxin fragment to reduce
the level of immunogenicity is currently being explored. The development of immunotoxins provides
opportunities for novel liver cancer therapies.

Keywords: recombinant immunotoxin; glypican-3 (GPC3); hepatocellular carcinoma; liver cancer;
monoclonal antibodies; pseudomonas exotoxin

1. Introduction

The emergence of antibody-based therapeutics has been met with great success when used to treat
cancer. Monoclonal antibodies can work in numerous ways to promote anti-cancer effects. Antibodies
can help to activate the immune response by promoting Antibody Dependent Cell Cytotoxicity (ADCC)
and Complement Dependent Cytotoxicity (CDC) [1,2]. Recent reports have indicated that antibodies
can function as checkpoint inhibitors to promote the activation of cytotoxic T cells [3,4]. Antibody
therapies can also inhibit cancer cell proliferation by blocking the binding of growth factors [2].
Muromonab and rituximab were the earliest monoclonal antibodies to demonstrate anti-cancer effects.
These antibodies have been used to treat blood cancers including T cell acute lymphoblastic leukemia
and non-Hodgkin’s lymphoma [5–10]. The ability of antibodies to inhibit cancer growth by different
mechanisms allows them to be applicable for various cancers.

There were over fifty monoclonal antibody therapeutics being evaluated in Phase III clinical trials
in 2015 [11]. Twelve of the antibodies in Phase III trials were being evaluated as cancer therapeutics [11].
There were two anti-cancer antibodies approved by the FDA in 2015; dinutuximab that targets the
GD2 disialoganglioside is used to treat neuroblastoma [11,12] and daratumumab targeting CD38 is
used for multiple myeloma [11,13]. While monoclonal antibody treatments are proving beneficial in
cancer therapy, they are not without their downsides. Administration of rituximab and muromonab
can trigger a cytokine release syndrome and can even result in opportunistic viral infections [14].
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Additionally, antibody therapeutics have been associated with hypersensitivity reactions that can
cause headache, diarrhea, fever, and hypotension [15,16]. If untreated, these reactions can develop into
anaphylaxis and serum sickness, both of which can be life threatening [16]. Despite the potential side
effects, monoclonal antibody therapeutics have changed the landscape of cancer therapy.

The field of antibody therapeutics has expanded beyond simple monoclonal antibodies. New
forms of antibody-based therapeutics include antibody drug conjugates (ADC), chimeric antigen
receptor T cells (CAR-T), and recombinant immunotoxins (RIT). Antibody drug conjugates use the
specificity of the antibody to target chemotherapeutic drugs directly to cancerous cells. Brentuximab
vedotin (Anti-CD30, MMAE) and ado-trastuzumab emtansine (Anti-Her2/neu, maytansine) are
approved by the FDA for the treatment of Hodgkin’s lymphoma and HER2 positive metastatic
breast cancer, respectively [17–20]. These drugs work as mitosis inhibitors by blocking tubulin
polymerization [17,20]. These treatments have an advantage over standard chemotherapies because
the targeting of drugs helps to reduce off-target side effects [17,21]. It is important to note that a similar
class of therapeutics are the antibody radioisotope conjugates. These function off the same principle as
the ADC, but use radioisotopes to damage DNA rather than chemicals [21]. Chimeric antigen receptor
T cells represent the newest class of cancer therapeutics. T cell activation is highly regulated, requiring
the activation of the T cell receptor by major histocompatibility complex (MHC) displaying peptide
and the activation of CD28 by costimulatory molecules on antigen presenting cells [22]. By fusing an
antibody binding domain with important T cell signaling domains (CD28 and CD3ζ), the requirement
for T cells to interact with MHC is removed. Several CAR-T based therapies are currently in clinical
trials, but none have received FDA approval. While all of these therapeutic classes have potential,
this review will focus on the generation of recombinant immunotoxins.

Recombinant immunotoxins are fusion proteins that combine the antigen binding domain of
an antibody with a bacterial toxin like Pseudomonas exotoxin A. These bacterial toxins have the
ability to inhibit cellular protein synthesis through the modification of elongation factors. Advances
in recombinant immunotoxins over the last thirty years is largely due to a better understanding of
the toxin portion. Structural studies on Pseudomonas exotoxin A has revealed the existence of three
domains. Domain III has been studied the most and was found to be responsible for the catalytic activity
of the toxin [23–25]. This domain inhibits protein synthesis by modifying elongation factor 2 through
ADP-Ribosylation [24,26,27]. The blocking of protein synthesis can lead to the initiation of apoptotic
death in cancer cells [24,26]. The C-terminal amino acid sequence in domain III is thought to play a role
in retrograde targeting of the toxin from the Golgi apparatus to the endoplasmic reticulum. It contains
a REDL sequence that is capable of binding to the mammalian KDEL receptor [24,28–30]. Domain I is
believed to initiate cell surface attachment by binding to CD91 (α2-macroglobulin receptor) [25,31].
In most recombinant immunotoxin designs, domain I is removed and replaced by the antibody
fragment. This substitution allows for the targeting of immunotoxins to a diverse array of cancer
antigens. Understanding the function of domain II has been more difficult than the other domains.
It was originally believed to be involved in the translocation of the toxin through the membrane into
the cytosol [26]. However, research on this domain has provided evidence that this may not be the
case. It is now believed that the toxin fragment may gain entry to the cytosol by moving through the
Sec61p membrane channel and the endoplasmic reticulum-associated protein degradation (ERAD)
pathway [24,32–34]. The low number of lysine residues in the cytosolic fraction may help the protein to
avoid ubiquitination, which in turn helps it to escape degradation in the ERAD pathway [34]. Research
on immunotoxins has helped to identify the presence of a furin cleavage site in domain II. Cleavage at
this site has been shown to be partially responsible for separating the toxin fragment from the antibody
portion [35,36]. A better understanding of how the toxin functions has allowed for the development of
more potent therapeutics.

Recombinant immunotoxins are being used in the clinical setting to treat several forms of cancer.
Clinical trials involving anti-CD22 and anti-mesothelin immunotoxins are ongoing. The anti-CD22
immunotoxin was constructed by fusing an antibody Fv region with a truncated form of Pseudomonas
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exotoxin A. This therapeutic was used with high success in the treatment of hairy cell leukemia [27,37].
A clinical trial published in 2012 demonstrated that patients with relapsed or refractory hairy
cell leukemia responded positively to immunotoxin treatment. Of the twenty-eight patients
included in the study, thirteen showed complete remission and eleven showed partial remission [38].
The anti-mesothelin immunotoxin, SS1P, has been tested on patients diagnosed with a variety of
mesothelin expressing solid tumors [39]. Mesothelioma, ovarian, and pancreatic cancers were included
in a study that determined SS1P was well tolerated by patients and that treatment reduced the rate of
disease progression [40,41].

Other immunotoxins are currently in preclinical development to target cancer. Immunotoxins
have been used to treat intracranial tumors in rodent models by targeting the EGF receptor expressed
in glioblastomas [42]. Similarly, anti-c-Met and anti-epithelial cell adhesion molecule (EpCAM) have
been evaluated for their ability to target gastric cancer and a wide range of solid tumors including
breast, colon, and liver cancers, respectively [43–45]. Instead of substituting the antibody portion to
make new immunotoxins, it is also possible to substitute the toxin fragment. A diphtheria toxin based
immunotoxin is being evaluated in a Phase II clinical trial (NCT00611208), which includes patients
with a variety of T cell lymphomas [46].

The use of plant-derived toxins in anti-cancer therapeutics is also being explored. Plant toxins
can permanently disable protein synthesis in eukaryotic ribosomes by cleaving the 28S rRNA [47,48].
Although plant and bacterial derived toxins have a different mechanism for protein synthesis inhibition,
they both can lead to apoptotic cell death. Toxins like ricin, gelonin, saporin-S6, and ebulin 1 have been
incorporated in various cancer therapeutics [47,49,50]. One attempt examined whether rituximab’s
effectiveness could be enhanced by crosslinking it with saporin-S6. Interestingly, a synergistic effect on
protein synthesis inhibition was observed [51]. Additionally, a paper published in 2014 described the
identification of pachyerosin as a new ribosomal inactivating protein. This toxin was used to create a
novel immunotoxin targeting EpCAM and was demonstrated to be effective in the treatment of liver
cancer [52]. The variety of immunotoxins will continue to grow as new ribosome inhibiting proteins
are discovered.

2. Anti-GPC3 Recombinant Immunotoxins

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer [53,54]. It is
estimated that worldwide nearly 750,000 people die each year due to liver cancer, with around 50% of
these cases occurring in China [55]. Treatment of liver cancer is largely limited to chemotherapy or
surgical removal. Chemotherapy is often ineffective because of the liver’s natural resistance to damage
by chemicals. Liver cells express ABC transporters capable of exporting a large range of common
chemotherapeutic agents which can lead to multidrug resistance [56]. In early diagnosed cancers where
surgery is an option, the five-year survival rate ranges from 41% to 74% [57]. If cancer presents in the
late stages when surgery is not an option, the only approved chemotherapy treatment is the tyrosine
kinase inhibitor, sorafenib [57,58]. This treatment increases the survival rate by only 2–3 months [59,60].
Sorafenib treatment can cause mild side effects that range from fatigue, diarrhea, hand-foot syndrome,
hypophosphatemia, and weight loss, to severe side effects that include hypertension, hemorrhaging
in the brain, and anemia [59,61,62]. A study on sorafenib determined that the HuH-7 HCC cell line
was capable of developing resistance to high dose treatments by modulating the PI3K-Akt signaling
pathway [63]. The need for therapeutics that are well tolerated and that exhibit a high level of
anti-tumor activity are desperately needed to replace the current options.

Several targets have emerged for antibody therapies against liver cancer. A search for antibody
and hepatocellular carcinoma was conducted on the ClinicalTrials.gov website on 11 April 2016.
There were over sixty clinical trials that were identified with this search criteria. These results were
narrowed down to the thirty clinical trials that are presented in Table 1 by excluding trials that had
not opened yet, excluding trials associated with viral infections or viral testing, and by selecting
the most advanced phase for similar drug trials. Antibodies against vascular endothelial growth
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factor receptor 2 (VEGF-R2) and vascular endothelial growth factor A (VEGF-A) are involved in
approximately one third of the current HCC clinical trials. Ramucirumab which blocks the VEGF
receptor and bevacizumab which neutralizes the growth factor, are the monoclonal antibodies
included in these clinical trials [64–66]. Blocking VEGF signaling has been linked to a decrease in
vasculogenesis and angiogenesis [67]. This has been attributed to the down regulation of the Ras-Raf
and PI3K-Akt pathways [68]. Other targets in HCC include: glypican-3 (GC33), c-Met (onartuzumab),
epidermal growth factor receptor (cetuximab), insulin-like growth factor-1 receptor (cixutumumab),
insulin-like growth factor I and II (MEDI-573), platelet-derived growth factor receptor A (MEDI-575),
activin receptor-like kinase 1 (PF-03446962), endoglin (TRC105), and TROP-2 (sacituzumab) [69–75].
Additional targets like EpCAM and CD133 are being evaluated in preclinical studies as potential
markers for HCC [45,76–78]. As HCC is better understood, the list of potential targets will continue
to grow. Among these targets, GPC3 is very attractive for therapeutic design because it is uniquely
overexpressed in hepatocellular carcinoma [69].

Table 1. Summary of current clinical trials using antibody-based therapeutics to target
hepatocellular carcinoma.

Identifer Drug(s) Type Target Phase Status

NCT01911273 PF-03446962 Mono ALK-1 II Terminated
NCT01897038 Onartuzumab with Sorafenib Mono c-Met/Tyrosine Kinases I Completed
NCT01008358 Tremelimumab Mono CTLA4 II Completed
NCT00483405 Cetuximab with chemotherapy Mono EGFR II Completed
NCT01375569 TRC105 Mono Endoglin II Completed
NCT02560779 TRC105 with Sorafenib Mono Endoglin/Tyrosine Kinases II Recruiting
NCT01507168 GC33 Mono GPC3 II Completed
NCT00639509 Cixutumumab Mono IGF-1R II Completed
NCT00906373 Cixutumumab with Sorfenib Mono IGF-1R/Tyrosine Kinases II Completed
NCT02315066 PF-04518600 Mono OX40(CD134) I Recruiting
NCT02595866 Pembrolizumab Mono PD-1 I Recruiting
NCT00966251 Pidilizumab Mono PD-1 II Terminated
NCT02423343 Nivolumab with Galunisertib Mono PD-1/TGF-βR1 Kinases II Recruiting
NCT01102400 MEDI-575 Mono PDGFRA I Completed
NCT02519348 Durvalumab with Tremelimumab Mono PD-L1/CTLA4 II Recruiting
NCT01308723 RO5323441 with Sorafenib Mono PGF/Tyrosine Kinases I Completed
NCT01258608 Mapatumumab with Sorafenib Mono TRAIL-R1/Tyrosine Kinases II Ongoing
NCT00055692 Bevacizumab Mono VEGF-A II Completed
NCT00467194 Bevacizumab with Rapamycin Mono VEGF-A/mTor I Completed
NCT01010126 Bevacizumab with Temsirolimus Mono VEGF-A/mTor II Ongoing
NCT00365391 Bevacizumab with Erlotinib Mono VEGF-A/Tyrosine Kinases II Completed
NCT00867321 Bevacizumab with Sorafenib Mono VEGF-A/Tyrosine Kinases II Completed
NCT01140347 Ramucirumab Mono VEGF-R2 III Completed
NCT02069041 Ramucirumab with Oxaliplatin Mono VEGF-R2/DNA I Recruiting
NCT02572687 Ramucirumab with Durvalumab Mono VEGF-R2/PD-L1 I Recruiting
NCT01498952 MEDI-573 with Sorafenib Bispecific IGF-I and IGF-II/Tyrosine Kinases I Completed
NCT01631552 Sacituzumab Govitecan ADC TROP-2/Topoisomerase II Recruiting
NCT00829465 Metuximab labeled with Iodine131 ARC CD147 IV Unknown
NCT02723942 T cells expressing αGPC3 Antibody CAR-T GPC3 II Recruiting
NCT02632006 T cells expressing PD-1 Antibody CAR-T PD-1 II Recruiting

Abbreviations: ALK: Activin receptor-like kinase; ADC: Antibody drug conjugate; ARC: Antibody radioisotope
conjugate; CAR-T: Chimeric antigen receptor T cell; CTLA: Cytotoxic T-lymphocyte associated protein; EGFR:
Epidermal growth factor receptor; GPC3: Glypican-3; IGF(R): Insulin-like growth factor (receptor); Mono:
Monoclonal; PD(-L): Programmed cell death protein (-ligand); PDGFRA: Platelet-derived growth factor receptor
alpha chain; PGF: Placental growth factor; VEGF(R): Vascular endothelial growth factor (receptor).

GPC3 represents an exciting opportunity for the development of anti-cancer therapeutics.
Research done by Hsu and his colleagues in the late 1990s first showed that GPC3 mRNA was expressed
in over 70% of HCC cases [79]. More importantly, GPC3 expression was found to be associated
with cancerous cells and not with normal adult liver cells [69,79–81]. Research has demonstrated a
proliferative effect of GPC3 because it interacts with cell signaling pathways, including the Wnt/Yap
pathway [82–84]. GPC3 surface expression levels varied between HCC cell lines with Hep3B having
one of the highest expressions with an estimated 200,000 sites per cell. HuH-7 and HuH-1 both had
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considerably less surface expression with around 10,000 sites per cells [85]. Additionally, GPC3 has a
high internalization rate which makes it ideal for immunotoxin targeting [85]. The unique expression
profile of GPC3 and its association with signaling pathways make it a potential therapeutic target for
the treatment of liver cancer.

Using both hybridoma and phage display antibody technologies, researchers in our lab have
identified candidate GPC3 binders. Three antibodies have been selected based on their affinity, epitope
location, and anti-tumor activity. A schematic of the antibodies’ approximate binding sites can be
found in Figure 1A. The first antibody was isolated using mouse hybridoma technology and was
named YP7 [86]. This protein was generated to a C-terminal peptide, so it binds in close proximity
to the cell surface. The second antibody generated was a human heavy chain antibody named
HN3 [84]. This GPC3 binder was identified from a human single domain antibody phage display
library. Unlike a traditional antigen binding region that consists of two domains, this heavy chain
antibody only has a single domain in its binding region [84]. The HN3 antibody binds a conformational
site on the core protein (Figure 1A) [84]. Its reduced size may prove to be advantageous in tumor
penetration. Interestingly, their reduced size allows single domain antibodies to bind epitopes located
in protein clefts. These epitopes are generally inaccessible to conventional antibodies due to steric
interference [87]. These antibodies may provide access to new binding sites that have not been explored
for their therapeutic potential. The third antibody candidate was also isolated using phage display
technology. This antibody is a human single chain Fv antibody, which means that the light and heavy
chains are translated as a single protein. This antibody was named HS20 and was found to bind
directly to the heparan sulfate side chains that post-translationally decorate GPC3 (Figure 1A) [83,88].
These three antibodies demonstrated that they could bind GPC3 with both a level of high specificity
and high affinity.
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Figure 1. Overview of immunotoxin design. (A) Representation of anti-GPC3 antibodies and their
approximate binding sites. YP7 and HN3 bind to the core protein near the C-terminus and a
conformational epitope that requires both the N-terminus and the C-terminus, respectively. HS20 binds
directly to the heparan sulfate chains associated with GPC3; (B) Construction of HN3-PE38 and the
second generation HN3-mPE24; (C) HN3 immunotoxin domains and their associated functions.

These three antibodies were used to generate a series of recombinant immunotoxins in order
to test their potential clinical applications. Each antibody had their Fv or VH domains fused to
domain II and III of the Pseudomonas exotoxin A (PE38). An overview of the HN3 recombinant
immunotoxin design can be found in Figure 1B. While the YP7 immunotoxin consistently showed a
higher affinity for GPC3 binding, surprisingly it was the HN3 immunotoxin that showed the most
effective killing [85]. This observation was not due to the differences in toxin activity because a [3H]
leucine incorporation assay showed a similar decrease in protein synthesis for both the HN3 and
YP7 based immunotoxins [85]. The increased cell cytotoxicity appeared to be related to the inhibition
of Wnt/Yap signaling. The proposed dual inhibition mechanism is included in Figure 1C. The fact
that YP7 failed to inhibit cell signaling helped to explain why it showed lower cytotoxic activity
despite its high binding affinity. The HN3-PE38 immunotoxin showed the greatest ability to inhibit
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liver cancer growth in mouse xenograft models [85]. A few of the HN3-PE38 treated mice showed
complete tumor remission [85]. Interestingly, when HN3-PE38 was given in conjunction with sorafenib,
there was no observable increase in cytotoxic activity. However, when HN3-PE38 was paired with
irinotecan to inhibit topoisomerase I, there was a significant reduction in tumor size [85]. This research
demonstrated that not only could immunotoxins be used as single agents, but also in combination
with current chemotherapies. Both the HN3 and HS20 based immunotoxins have clinical potential
because of their ability to inhibit cell signaling pathways. However, the ability of HS20 to bind directly
to heparan sulfate would suggest that it has the potential to target multiple cancer types that express
different glypicans.

3. Perspective and Future Directions

The study of PE38 based immunotoxins began to reveal several therapeutic barriers. Issues
stemming from off-target toxicity, immunogenicity, and short half-life in the blood stream are all
concerns that need to be addressed. Early studies on the optimization of PE38 helped researchers to
produce an immunotoxin with significantly reduced side effects. In an attempt to increase proteolytic
stability, lysosomal protease cleave sites were identified and removed from domain II. Interestingly,
versions that interrupted the eleven amino acid furin cleavage site lost nearly 80% of their cytotoxic
ability [89]. When domain II was removed, except for the furin cleavage site, the immunotoxin lost
around 50% of its cytotoxicity, but had a ten-fold higher tolerated dose in mice [89]. The removal of
domain II resulted in significant reduction of capillary leakage syndrome and decreased pathologies
associated with the liver [89,90]. Similar results were observed when the same toxin fragment was
incorporated in the HN3-mPE24 immunotoxin [91]. While the immunotoxin’s cytotoxicity was affected,
the therapeutic index was greatly increased with the removal of domain II.

Another therapeutic concern focuses on the foreign nature of the toxin fragment. There is the
potential for secondary immune responses generated against the immunotoxin. This can lead to the
production of neutralizing antibodies which can reduce the effectiveness of immunotoxin therapy [92].
This generally does not affect the first round of immunotoxin treatment, but can become a significant
problem during follow-up treatments. There are currently two proposed strategies for reducing the rate
of neutralized antibody formation. One method uses pentostatin and cyclophosphamide to deplete B
and T cells during the course of immunotoxin treatment. A study in 2013 used SS1P in combination
with pentostatin and cyclophosphamide to treat ten chemotherapy refractory mesothelioma patients.
Neutralizing antibody formation was delayed as a result of the pentostatin/cyclophosphamide
treatment, with eight of the patients showing no neutralizing antibodies after the first round of
treatment [93]. While these results are promising, there is the possibility that anti-tumor T and B cells
are also being depleted during treatment. A method that leaves the adaptive immune response intact
might be a more favorable option.

The second method being explored does not deplete the adaptive immune response, but rather
reduces the ability of these cells to recognize the toxin fragment as foreign. By removing or mutating
the amino acids responsible for eliciting the unwanted secondary immune responses, it may be possible
to produce an immunotoxin with greatly reduced immunogenicity. Building upon the truncation of
domain II, eight point mutations were made in domain III of the Pseudomonas toxin to silence B cell
epitopes. This new design of the SS1P immunotoxin exhibited higher levels of cytotoxic activity against
tumor cells in vitro, as well as increased tumor regression in a mouse experiment [90]. Additionally,
the sera from five patients that were treated with the original version of SS1P were characterized for
their ability to bind the new mutated version. Interestingly, all of the sera showed a decreased ability to
bind the mutated version of SS1P, indicating that the B cell epitopes had been effectively silenced [90].
This mutation strategy has helped to increase the effectiveness of immunotoxin therapies in the clinical
setting. The success of this strategy has provided evidence that further silencing of epitopes may be
required for the production of an optimized immunotoxin. While mutating B cell epitopes will reduce
the ability of antibodies to bind, the reduction of T cell activation could significantly reduce the overall
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immunogenicity. The T20 version being developed has a total of six point mutations to reduce T cell
mediated immunogenicity [94]. The strategy for identifying the antigenic fragments responsible for
T cell activation is not straight forward. The heterogeneity of the human MHC complexes makes it
difficult to determine if a mutation strategy will be 100% effective [95]. We believe that a toxin fragment
with mutated T and B cell epitopes may provide the best therapeutic option, but it remains unclear
if the immunogenic nature of the immunotoxin conveys any therapeutic benefits. The display of the
toxin portion in MHC molecules might promote favorable cytotoxic T cell responses and increased
tumor killing. A further study on the tumor microenvironment may be required before the role of
immune response in immunotoxin therapy is fully understood.

There are several other considerations that need to be addressed when point mutations are
introduced. One of the biggest concerns deals with the cytotoxic function of the toxin after mutation.
If an epitope is part of the catalytic domain or is important for protein folding, then silencing mutations
can have a negative effect on immunotoxin function. Additionally, mutations may inadvertently
introduce new epitopes that can be targeted by the immune system. This requires new immunotoxins
to be screened against existing patient samples to determine the effectiveness of the silencing strategy.
It also requires the serum from patients treated with modified immunotoxins to be characterized for
anti-immunotoxin antibodies. The ability to produce better therapeutic immunotoxins will ultimately
rely on access to patient clinical samples and will constantly be evolving as we learn more about the
human immune response.

The final therapeutic barrier deals with the relatively short half-life of the immunotoxins in
circulation. The small size of recombinant immunotoxins makes them susceptible to removal by
glomerular filtration in the kidneys [90,96]. The deletion of domain II from the SS1P immunotoxins
reduced the already short serum half-life from nineteen minutes to only thirteen minutes [90]. There are
several proposed methods for increasing the duration of the immunotoxins in circulations. One method
would involve the addition of polyethylene glycol to the recombinant immunotoxins. A study on the
anti-microbial protein, Onc112, demonstrated that the half-life of this peptide could be significantly
increased after PEGylation [97]. Additionally, this study demonstrated that variation in the size
of the PEGylation and the addition of cleavable linkers would contribute to the observed serum
half-life [97]. Another approach to help compensate for low serum half-life would be to increase
the frequency of immunotoxin injections. The efficacy of this approach was demonstrated in rodent
models that used osmotic pumps to continuously inject cytotoxins/immunotoxins to treat arthritis and
tumors, respectively [98,99]. Advances in the design, targeting, and administration of recombinant
immunotoxins has made this technology an exciting therapeutic option for the treatment of liver cancer
and other solid tumors.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC ATP-Binding Cassette
ADC Antibody Drug Conjugate
ADCC Antibody Dependent Cellular Cytotoxicity
ADP Adenosine Diphosphate
ALK Activin Receptor-Like Kinase
ARC Antibody Radioisotope Conjugate
CAR-T Chimeric Antigen Receptor T Cell
CD Cluster of Differentiation
CDC Complement Dependent Cytotoxicity
CTLA Cytotoxic T-Lymphocyte Associated Protein
EGFR Epidermal Growth Factor Receptor
EpCAM Epithelial Cell Adhesion Molecule
ERAD Endoplasmic Reticulum-Associated Protein Degradation
FDA Food and Drug Administration
Fv Variable Fragment
GPC3 Glypican-3
HCC Hepatocellular Carcinoma
IGF(R) Insulin-Like Growth Factor (Receptor)
MHC Major Histocompatibility Complex
MMAE Monomethyl Auristatin E
Mono Monoclonal
mPE24 Mutated PE24
mRNA Messenger Ribonucleic Acid
NCI National Cancer Institute
PDGFRA Platelet-Derived Growth Factor Receptor Alpha Chain
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Cell Death Protein Ligand 1
PEG Polyethylene Glycol
PE38 Pseudomonas Exotoxin A Domain II and Domain III
PGF Placental Growth Factor
RIT Recombinant Immunotoxin
TCR T-Cell Receptor
VEGF(R) Vascular Endothelial Growth Factor (Receptor)
VH Heavy Chain Variable Region
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