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Cisplatin is the most important and efficacious chemotherapeutic agent for the treatment of advanced gastric cancer. Cisplatin
forms inter- and intrastrand crosslinked DNA adducts and its cytotoxicity is mediated by propagation of DNA damage recognition
signals to downstream pathways involving ATR, p53, p73, and mitogen-activated protein kinases, ultimately resulting in apoptosis.
Cisplatin resistance arises through a multifactorial mechanism involving reduced drug uptake, increased drug inactivation,
increased DNA damage repair, and inhibition of transmission of DNA damage recognition signals to the apoptotic pathway.
In addition, a new mechanism has recently been revealed, in which the oncoprotein c-Myc suppresses bridging integrator 1
(BIN1), thereby releasing poly(ADP-ribose)polymerase 1, which results in increased DNA repair activity and allows cancer cells
to acquire cisplatin resistance. The present paper focuses on the molecular mechanisms of cisplatin-induced apoptosis and of

cisplatin resistance, in particular on the involvement of BIN1 in the maintenance of cisplatin sensitivity.

1. Introduction

Gastric cancer is one of the most prevalent malignancies in
Japan and East Asian countries [1], This cancer represents
the major cause of mortality in these countries, despite
great advances in diagnosis and multimodal treatments
[2]. Cisplatin (cis-Diamminedichloroplatinum (II): CDDP)
is an important chemotherapeutic agent in the treatment
of advanced gastric cancer. Some trials of combination
chemotherapy with S-1 and cisplatin as the first-line or
second-line treatment for advanced and recurrent gastric
cancer have yielded good responses and this treatment is well
tolerated [3, 4]. However, there is diversity in the efficacy
of cisplatin and in patient response to anti-cancer drugs
including cisplatin, which can be of importance in terms of
therapeutic outcome. Molecules and factors that are capable
of predicting patient responses and resistance to anticancer

agents are therefore of great interest and have been exten-
sively studied. A recent study of the potent predictor of cis-
platin sensitization Bridging integrator 1 (BIN1, also known
as box-dependent MYC-interacting protein 1) demonstrated
that BIN1 plays an important role in sensitization to cisplatin
[5]. BINI is a nucleocytoplasmic adaptor protein that is
involved in pleiotropic cellular functions such as suppression
of oncogenic transformation. Here, we provide an overview
of the molecular mechanism of cisplatin-induced apoptosis
and of cisplatin resistance as well as of the mechanisms by
which BINT sensitizes cancer cells to cisplatin.

2. Cisplatin and Its Stereoisomer Transplatin

Cisplatin was first discovered in 1965 as a strong inhibitor of
bacterial cell growth and some years later was found to be a
potent antitumor drug in studies using the murine leukemia
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L1210 cell line [8, 9]. Cisplatin is actually one of the most
widely used anticancer drugs, and the central role of this
drug in human cancer chemotherapy attests to its current
importance. Cisplatin-based chemotherapy is highly efficient
for the treatment of patients with a variety of cancers such as
lung, ovarian, head and neck, and gastric cancer 3, 10]. On
the other hand, its trans analogue, transplatin, is known to
be biologically inactive because of the diversity of qualitative
and quantitative DNA adducts that it forms compared with
cisplatin [6].

3. Molecular Mechanisms of Cisplatin-Induced
Pro-Apoptotic Effects

3.1. DNA Strand-Crosslinks and DNA Damage Recognition.
Cisplatin exerts its cytotoxic properties by reacting with
DNA, which eventually culminates in irreversible apoptosis.
Cisplatin primarily interacts with the N7-sites of purine
residues in DNA to form DNA-DNA interstrand and
intrastrand crosslinks [11]. The intrastrand adducts, ApG
and GpG in particular, are responsible for the cytotoxic
effects of cisplatin and account for 85-90% of the bound
platinum [12]. These adducts block DNA replication and
transcription. DNA adduct formation is followed by DNA
damage recognition by over 20 proteins including hMSH2
of the mismatch repair (MMR) complex, the nonhistone
chromosomal high-mobility groups 1 and 2 (HMGI and
2) proteins and the transcriptional factor “TATA-binding
protein” (TBP) [13-15]. The putative role of these DNA
damage recognition proteins is to transmit DNA damage
signals to downstream signaling cascades involving p53,
MAPK, and p73, which ultimately induce apoptosis.

3.2. Cisplatin-Induced p53 and MAPK Activation. As men-
tioned above, cisplatin is believed to mediate activation of
the p53 protein, a tumor suppressor, following DNA damage
recognition. The transcriptional activation and stability of
the p53 protein is known to be regulated by the two kinases
ataxia telangiectasia-mutated protein (ATM) and ATM- and
Rad3-related protein (ATR) [16, 17]. Cisplatin preferentially
activates the ATR kinase which phosphorylates p53 on
serine-15, resulting in its activation [18]. Of the mitogen-
activated protein kinase (MAPK) signals that are involved in
cisplatin-induced toxic effects, including extracellular signal-
related kinases (ERKs), c-Jun N-terminal kinases (JNKs),
and the p38 kinases, ERK activation appears to be the most
important since activated ERK also phosphorylates p53 on
serine-15 [19]. In addition, activation of JNK/p38 results
in phosphorylation of the transcription factors c-Jun and
activating transcription factor (ATF)-2 which, in turn, can
bind to AP-1 binding sites in the promoters of multiple target
genes. This cascade ultimately induces apoptosis through
proapoptotic FasL gene expression.

3.3. Cisplatin Activation of p73-Dependent Apoptotic Signal-
ing. p73is a nuclear p53-related protein, which functions as
a pro-apoptotic protein and accumulates in cisplatin-treated
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cells. Cisplatin-induced accumulation of p73 is dependent on
MLH1 MMR proteins since it does not occur if the cells are
deficient in these proteins [20]. Cisplatin-induced activation
of the MMR protein-dependent p73 cell death pathway
differs from its activation of p53 in that p73 activation does
not involve ATR phosphorylation. The link between DNA
damage recognition protein and activation of p73 may be the
oncogenic tyrosine kinase c-Abl. Thus, cisplatin activates c-
Abl, and accumulation of p73 following cisplatin treatment is
not observed in c-Abl-defective cells. Cisplatin activation of
c-Abl is regulated by MMR because MLH1-defective cells fail
to activate c-Abl during cisplatin treatment. Furthermore,
cisplatin cytotoxicity is reduced in c-Abl defective cells [21,
22]. The likely downstream events of both the cisplatin-
induced p73 and p53 pathways are that cytochrome c is
released through the mitochondrial membrane via Bax and
Bak induction [23], which ultimately results in apoptosis
through caspase 9 activation [6, 24] (Figure 1).

3.4. Cisplatin Modulation of Cell Cycle Checkpoints. Cisplat-
in-induced DNA damage induces an initial transient S-phase
arrest, which is followed by inhibition of Cdc2-cyclin A or
B kinases to yield a persistent G2/M arrest [25, 26]. As
the inhibitory effect of cisplatin on the Gl-phase cyclin-
dependent kinases is a later event in the cell cycle checkpoint,
accumulation of cells in the G1 phase is seldom observed and
the cells remain in the G2/M phase.

4. Mechanisms of Cisplatin Resistance

To date, the mechanisms of cisplatin resistance have been
suggested to involve reduced intracellular cisplatin accumu-
lation, increased inactivation of cisplatin by thiol-containing
molecules, increased DNA damage repair, and inhibition of
transmitted DNA damage recognition to apoptotic path-
ways.

4.1. Reduced Intracellular Drug Accumulation. Reduced cis-
platin accumulation in cells is caused by either inhibited drug
uptake or increased drug efflux. Regarding inhibited drug
uptake, active transporters such as Na*K*-ATPase or a gated
ion channel are involved in cisplatin uptake. The inactivation
and down-regulation of these uptake transporters result in
cisplatin-resistance [27, 28]. Regarding increased cisplatin
efflux, MRP2, which is one of the 7 known isoforms of
the multidrug resistance-associated protein (MRP) family,
appears to be important for cisplatin resistance. An increased
level of this transporter protein was observed in resistant cells
[29]. Furthermore, antisense depletion of MRP2 increased
cisplatin sensitivity, supporting the involvement of MRP2 in
cisplatin resistance [30]. Another transporter that is involved
in cisplatin efflux is the protein encoded by the copper-
transporting P-type ATPase gene, ATP7B, which mediates
resistance to both copper and cisplatin. High levels of ATP7B
mRNA in ovarian cancer correlated with cisplatin resistance.
It has been also proposed that ATP7B expression is useful as
a clinical marker of cisplatin resistance [31].
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FIGURE 1: Signal transduction cascades mediating cisplatin-induced apoptosis. Quoted from [6] and modified.

4.2. Increased Cisplatin Inactivation by Thiol-Containing
Molecules. Glutathione, (gamma-glutamylcysteinylglycine:
GSH) which is the most abundant intracellular thiol, can
detoxify many toxins including cisplatin. Cisplatin can be
catalytically converted into cisplatin-thiol conjugates by
GSH-S-transferase 7, and these conjugates are ultimately in-
activated [32].

4.3. Increased DNA Damage Repair. DNA damage is rec-
ognized differently depending on whether the DNA is
transcriptionally active (transcription-coupled repair) or not
(global nucleotide excision repair: global NER) (Figure 2).
In global NER, a complex of xeroderma pigmentosum
(XP) Type C (XPC) and human homolog Rad23B (hHR23B)
detects the damaged lesion and recruits transcription factor
II H (TFIIH, which is composed of a number of core
subunits including XPB, p34, p44, p52, and p62 as well as
cyclin-dependent-kinase-(Cdk-) activating kinase subunits
including Cdk 7, cyclin H, and Matl) to the lesion together

with XPG. TFIIH that contains XPB and XPD helicases
creates a 10- to 25-nucleotide open DNA complex around the
lesion. XPA verifies the damage in this open DNA complex.
Replication protein A (RPA) then stabilizes the open DNA
complex and is involved in positioning XPG and excision
repair crosscomplementing (ERCC1)-XPF endonucleases
that are responsible for the DNA incisions. After removal of
the damage-containing nucleotides, DNA polymerase fills in
the gap and ligase seals the nick.

In transcription-coupled repair, Cockayne syndrome
(CS) group A, CSB, TFIIH, XPG, and possibly other co-
factors displace the stalled RNA polymerase II complex
from the damaged lesion, which then becomes accessible for
further repair process. After this initial recognition step, the
damage is repaired in a similar manner to that observed for
global NER.

Since the formation and persistence of DNA adducts of
cisplatin leads to the development of apoptosis, an increased
level of DNA repair consequently attenuates apoptosis pro-
gression. In order to remove the DNA adducts of cisplatin, to



Global NER
& DNA damage

AN
LTI [TTTT]

Genome overall

JXPC—hHRZ?)B

<i>llllll®{lllll

TFIIH
l XPG

(i)

(iii)

:

International Journal of Surgical Oncology

Transcriptional NER
¢, DNA damage

AN
[TTITT .y JITTT]

Transcribed DNA

lElongating Pol IT

CS factors
TFIIH
XPG

Replication
factors

v JTIITTTTIIIITITT]

FIGURE 2: Molecular model of the NER system. Quoted from [7] and modified. (i) XPC-hHR23B (XC-23) binds and senses DNA distorting
NER lesions in global NER, resulting in conformational alterations of the DNA. In transcriptional-coupled repair (NER), lesions are detected
by elongating RNA polymerase II (Pol II). (ii) (left) XPC-hHR23B attracts TFIIH together with XPG (XG). TFIIH creates a 10- to 20-
nucleotide open DNA complex. XPC-hHR23B is released. (right) CSA, CSB, TFIIH, XG, and possibly cofactors displace the stalled Pol II
and then bind to the lesions. (iii) XPA (XA) and RPA bind and stabilize the open DNA complex. (iv) XG that is positioned by TFIIH and
RPA cuts the damaged nucleotides at the 3’ site and ERCC-XPF (XF) that is positioned by RPA and XPA cuts them at the 5 site. (v) DNA
polymerase fills the gap and ligase seals the nick. Normal nucleotide sequence is consequently restored. Contacts drawn between molecules

reflect reported protein-protein interactions.

repair the DNA damage and to promote cell survival, the cell
cycle is arrested. Once this occurs, then it is followed by NER.
NER processing is thus associated with cisplatin resistance.
In accordance with these data, increased expression of XPA,
ERCC1, ERCCI-XPF complexes, and BRACA1 has been
linked to cisplatin resistance [33-35].

4.4. Inhibition of Transmission of DNA Damage Recognition
to the Apoptotic Pathway. The HER-2/neu protein plays an

important role in mediating transmission of the recognition
of cisplatin-induced DNA damage to apoptotic pathways.
HER-2/neu is a transmembrane receptor with a tyrosine
kinase domain in the cytoplasm, which has homology to
the epidermal growth factor receptor (EGFR). HER-2/neu
activation propagates down-stream signaling through the
phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway. G
protein-coupled receptor (GPCR) agonists including various
cytokines, angiotensin II and endothelin-1, induce EGFR
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FIGURE 3: The molecular mechanism by which BIN1 is involved in cisplatin sensitization. Quoted from [5] and modified. The Miz-1-BIN1
interaction upregulates cellular cisplatin sensitivity by disruption of PARP1 activity. In cisplatin-sensitive cancer cells, a low level of c-Myc
allows Miz-1 to stimulate BIN1 transcription, thereby maintaining a high cellular level of BIN1. The feedback inhibition of c-Myc by BIN1
perpetuates the decrease in c-Myc levels and results in decreased PARP1 activity, which consequently leads to downregulation of DNA repair
activity. (b) In cisplatin-resistant cancer cells, c-Myc overexpression represses BIN1 expression by blocking the transcription activity of Miz-
1. Loss of BIN1 feedback inhibition results in a robust increase in endogenous c-Myc and PARP1 activities, which consequently up-regulates
DNA repair activity and cancer cell resistance to cisplatin. (a, b) Dashed lines indicate a decrease in the abundance or activity of a (positive
or negative) regulator. Arrows indicate transcriptional up- or downregulation. Arrow size indicates the strength of this regulation.

and HER-2/neu transactivation [36, 37]. Cisplatin facilitates
growth inhibition through activation of p21Wfl/CiPl in a
p53-dependent manner. The PI3K/Akt that is activated by
HER-2/neu induces cytoplasmic localization of the CDK
inhibitor p21Wafl/Cipl = A decrease in the nuclear level of
p21Wafl/Cipl abrogates the p53-dependent antiproliferative
effects induced by cisplatin and consequently sustains cis-
platin resistance [38].

5. A New Molecular Mechanism of
Cisplatin Resistance

A very recent investigation demonstrated a new mechanism
by which the oncoprotein c-Myc enables cancer cells to
acquire cisplatin resistance by suppressing BIN1, thereby
releasing the DNA repair protein poly(ADP-ribose)poly-
merase (PARP) 1 [5] (Figure 3).

BIN1 was identified as a nucleocytoplasmic adaptor pro-
tein that can exert tumor suppressor properties by directly
interacting with the c-Myc oncoprotein [39]. BINI is
expressed in normal and benign cells and tissues but was
undetectable in almost all estrogen receptor-positive or
estrogen receptor-negative carcinoma cell lines. Complete or
partial losses of BIN1 were documented in 60% of breast
cancer tissue analyzed by immunohistochemistry or RT-PCR
[40]. Reintroduction of BIN1 into human breast cancer and
melanoma cell lines that lack its endogenous expression
leads to loss of proliferation capacity and cellular death
mediated by both p53- and caspase-independent pathways
[40].

5.1. Involvement of BINI in Cisplatin-Sensitization. The
molecular mechanism by which BINI1 is involved in cisplatin
sensitization has become clear. Experiments involving forced
depletion of the BIN1 protein using antisense or short
hairpin RNA targeted toward BINI in p53-positive, -null, -
mutant cells resulted in increased cisplatin resistance. BIN1
interacts with c-Myc in the nucleus and inhibits its trans-
activation of target genes and cell transformation. Exposure
of cisplatin-resistant cell lines expressing full-length BIN1 or
a BIN1 deletion mutant lacking the MYC-binding domain
(MBD) to cisplatin demonstrated that the MBD was essential
for BIN1-mediated chromatin condensation and apoptotic
cell death. However, addition of the c-Myc inhibitor 10058-
F4, which disrupts the conformation of the c-Myc protein,
to mimic BIN1-mediated inhibition of c-Myc was 25% less
effective than full-length BIN1-expressing cells in inducing
cisplatin sensitivity in an Annexin V-binding assay. These
data suggest that BIN1 interacts with a non-Myc regulator
protein to modulate cancer cell sensitivity to cisplatin.

5.2. BINI Directly Interacts with PARPI at Its Automodifica-
tion Domain and Inhibits PARPI1 Activity by Blocking PARPI
Automodification Domain-Mediated Modulation of DNA In-
tegrity. A glutathione S-transferase (GST) pull down assay
with the recombinant GST-tagged full-length BIN1 protein
followed by tandem mass spectrometry of coprecipitating
proteins identified PARP1 as a candidate BIN1 interacting
protein. Immunoprecipitation of cell lysates with an anti-
BIN1 antibody followed by Western blotting with an anti-
PARP1 antibody demonstrated the association of BIN1
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FIGURE 4: Immunohistochemical staining of BIN1 in a resected specimen of primary advanced gastric cancer. (a) BIN1-positive (arrowhead)

and (b) BIN1-negative staining.

with PARPI. In addition, GST pull-down assays of DU145
prostate cancer cells using individual GST-fused domains of
BINI and PARPI1 showed BIN1 bound to the automodifica-
tion domain of PARP1 through the BIN-amphiphysin-Rvs-
related (BAR-C) domain of BIN1. The PARPI automodi-
fication domain is known to increase in PARP1-mediated
modulation of DNA integrity after DNA damage [41].
PARP1I is a key component of the base excision repair (BER)
pathway and activated PARP1 recruits X-ray repair comple-
menting defective repair in Chinese hamster cells 1(XRCC1),
which acts as a scaffold for other BER-related proteins, DNA
ligase III and DNA polymerase-f. Overexpression of BIN1
suppressed the poly(ADP-ribosyl)ation of histone H1 by
40%. Conversely, depletion of BIN1 increased histone H1
poly(ADP-ribosyl)ation. Immunoprecipitation of DU145
cells with an anti-PARP1 antibody followed by Western blot-
ting with an anti-XRCC1 antibody demonstrated that BIN1
significantly abrogated PARP1-XRCC interaction. Moreover,
single-cell DNA gel electrophoresis assays (comet assays)
of DNA instability showed that overexpression of BIN1
increased DNA breaks and depletion of BIN1 inhibited
DNA breaks, suggesting that BIN1 destabilized chromosomal
DNA. Cells stably expressing the PARP1 N-terminal DNA
binding domain (DBD), which disrupts the interaction
between endogenous PARP1 and damaged DNA and acts
as a PARP1-specific dominant negative inhibitor, attenuated
PARP1 activity and the concomitant induction of cisplatin
sensitivity, was sustained even in BIN1-defective cells. Thus,
inhibition of PARPI is indispensable for the induction of
cisplatin sensitivity.

5.3. Overexpressed c-Myc Restores Intrinsic PARP1 Activity by
Suppressing BIN1 Expression. c-Myc overexpression induces
cisplatin resistance, whereas c-Myc inactivation increases
cisplatin sensitivity. Using the c-Myc-estrogen receptor fused
cell system, increased activity of c-Myc that was driven
by 4-hydroxytamoxifen (4-OHT) robustly enhanced the
poly(ADP-ribosyl)ation of histone H1, and cooverexpression
of the PARP1 DBD abrogated this upregulation.

In addition, overexpression of c-Myc decreased BIN1
protein abundance and depletion of c-Myc increased BIN1

protein abundance. Thus, expressions of the ¢-myc and BIN1
genes are inversely regulated. Furthermore, it is known that
c-Myc represses the transcription of cell cycle arrest genes by
a transcription initiator (Inr)-dependent repression mecha-
nism [42]. A chromatin immunoprecipitation (ChIP) assay
demonstrated that c-Myc binds to the BIN1 core promoter
region through its Inr element. Miz-1, a Myc-interacting
zinc-finger transcription factor, is known to bind to the Inr
element of several genes that are repressed by c-Myc. Miz-
1 functions as a counter partner of c-Myc and activates
transcription of the genes that are repressed by c-Myc. c-Myc
binds to Miz-1 at the Inr element and subsequently inhibits
Miz-1-mediated transcription [42]. BINI promoter-driven
luciferase activity was suppressed by cotransfection of Mizl
siRNA. In addition, depletion of Mizl also decreased the
expression levels of BIN1 mRNA and protein. A ChIP assay
using an anti-Miz-1 antibody demonstrated that endogenous
Miz-1 is recruited to the Inr-containing core promoter
region of the BINI gene in chromatin. Finally, depletion of
Miz-1 decreased cisplatin sensitivity. These results suggested
that Miz-1-induced BIN1 protein expression sustains the
sensitivity of cancer cells to cisplatin.

6. Conclusion and Perspectives

Extensive knowledge regarding the molecular mechanisms
of cisplatin-induced apoptosis and particularly of cisplatin
resistance is indispensable for the design of therapeutic
strategies using cisplatin against intractable malignancies.
It has been established that the mechanism of cisplatin
resistance includes reduced drug uptake, increased drug
inactivation, increased DNA adduct repair, and inhibition
of the propagation of DNA damage signals to the apoptotic
program. A novel mechanism mediating cisplatin sensitivity
has recently been proposed, in which Miz-1-induced BIN1
protein expression sustains the sensitivity of cancer cells
to cisplatin. We have found patients with advanced gastric
cancer who are immunohistologically positive or negative for
BIN1 expression (Figure 4). Thus, BIN1 may be a new potent
marker for the prediction of cisplatin sensitivity, which
can be used for the design of strategies for gastric cancer
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treatment. Furthermore, introduction of the BIN1 gene may
also be a new therapeutic strategy for treatment of cisplatin-
resistant gastric cancers. The rapid expansion in our
knowledge regarding the molecular mechanisms of cisplatin
resistance continues and will ensure that future anticancer
treatment strategies can be devised and that the multifacto-
rial mechanism of cisplatin resistance can be circumvented.
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BER:  Base excision repair

XRCCl1: X-ray repair complementing defective repair
in Chinese hamster cells 1
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