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Abstract

Objective—Intramyocellular lipid (IMCL) is inversely related to insulin sensitivity in sedentary 

populations, yet no prospective studies in humans have examined IMCL accumulation with 

overfeeding.

Methods—Twenty-nine males were overfed a high-fat diet (140% caloric intake, 44% from fat) 

for 8-weeks. Measures of IMCL, whole body fat oxidation from a 24-hour metabolic chamber, 

muscle protein extracts, and muscle ceramide measures were obtained before and after the 

intervention.
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Results—Eight weeks of overfeeding did not increase overall IMCL. The content of smaller lipid 

droplets peripherally located in the myofiber decreased while increases in larger droplets 

correlated inversely to glucose disposal rate. Overfeeding resulted in inhibition of Akt activity, 

which correlated with the reductions in smaller, peripherally located lipid droplets and to drastic 

increases in ceramide content. Additionally, peripherally located lipid droplets were associated 

with more efficient lipid oxidation. Finally, participants, who maintained more smaller, 

peripherally located lipid droplets, displayed a better resistance to weight gain with overfeeding.

Conclusions—These results show that lipid droplet size and location rather than mere IMCL 

content is important to understanding insulin sensitivity.
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Introduction

Type 2 diabetes (T2D) is a condition diagnostically characterized by hyperglycemia with 

insulin resistance being an early pathological insult. Repeatedly, studies have provided 

evidence that higher levels of intramyocellular lipid (IMCL) in non-diabetic insulin sensitive 

and insulin resistant patients are inversely related to insulin sensitivity (1). The exact 

mechanisms behind this relationship are not fully understood, but much research has been 

directed at this phenomenon.

To further complicate this relationship, endurance trained athletes, who are highly insulin 

sensitive, also possess large quantities of IMCL (2). Similarly, we have previously shown 

that human primary myotubes collected from physically active, insulin sensitive donors also 

have a greater IMCL content compared to myotubes collected from less insulin sensitive, 

sedentary individuals of similar body weight (3). In addition, longitudinal exercise training 

studies, which have long been known to improve insulin sensitivity, have not resulted in a 

consistent effect on IMCL content. Exercise training has been shown to increase (4), not 

change (5), or even a decrease in IMCL content (6). As exercise training and physical 

activity have a powerful impact on several physiological systems, it is difficult to use an 

exercise training model to thoroughly understand the relationship between IMCL 

accumulation and insulin resistance that is clearly established in a sedentary population such 

as obesity and type 2 diabetes.

Prior studies have utilized experimental interventions of isocaloric high fat diet (7), 

intravenous lipid infusions (8), and overfeeding (9). Since the obesogenic western diet is 

associated with weight gain, insulin resistance, and a higher prevalence of obesity (10), the 

overfeeding experimental paradigm appears to be the best way to test the mechanisms 

underlying the deleterious effects of western diets (11). We, therefore, endeavored to 

overfeed 29 healthy male participants a high fat diet (140% of nutritional calories provided 

compared to resting metabolic rate; 44% macronutrient content from fat) for 8 weeks and 

found significant weight gain and reductions in insulin sensitivity (12). Given this, we 

explored alterations in IMCL content from three muscles: the soleus, the tibialis anterior, 

and the vastus lateralis.
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Methods and Procedures

Participant recruitment and study design

We recruited 29 male participants (age: 26.8 ± 5.4 yrs; BMI: 25.5 ± 2.3 kg/m2). All 

participants provided informed consent, and study parameters were approved by the 

Institutional Review Board of Pennington Biomedical Research Center. Our study was 

registered on clinicaltrials.gov (clinicaltrials.gov identifier: NCT01672632). Prior to the 8-

week overfeeding period, participants completed a 14-day measurement of free-living 

energy expenditure by doubly labeled water (DLW) (13) to determine baseline energy 

requirements. Additionally, physical activity levels were assessed using tri-axial 

accelerometers during that time period. During the second week of DLW participants 

consumed an isocaloric diet (60% carbohydrate, 25% fat, 15% protein). Participants then 

underwent baseline clinical procedures; the same clinical measures were also conducted 

after 8 weeks of overfeeding. Following baseline measures, participants consumed a diet for 

the next 8-weeks of 44% fat, 15% protein, and 41% carbohydrate, where the total daily 

intake equated to 140% of their normal caloric intake to maintain body weight. Glucose 

disposal rate (GDR) was determined using a euglycemic-hyperinsulinemic clamp with a 

insulin infusion of 50mU/min/m2, and adjusted for fat free mass (FFM) +17.7, denoted as 

estimated mean body size (EMBS), as previously described (14). Metabolic respiratory 

measures of 24-hour respiratory quotient (RQ), Sleep RQ, and non-protein RQ were 

conducted in a 24-hour metabolic chamber as previously described (15). Serum measures 

were assessed in a certified clinical chemistry laboratory and were performed by enzymatic 

assays on a Beckman Coulter DXC 600 (Beckman Coulter, Brea, CA). Body composition 

was assessed by dual x-ray absorptiometry (DXA, QDR 4500A; Hologics, Bedford, MA), 

and MRI (3.0 T magnet; Excite HD Systems; General Electirc; Milwaukee, WI).

Skeletal Muscle Biopsy Procedure

After an overnight fast, skeletal muscle samples were collected using the Bergstrom 

technique with suction from the vastus lateralis (Propper Manufacturing Co., Long Island 

City, NY), following administration of local anesthetic of lidocaine/bupivacaine. Samples for 

ceramide content, mRNA and protein measures were immediately snap frozen in liquid 

nitrogen. A sample for immunohistochemical measures of vastus lateralis intramyocellular 

lipid, lipid droplet size quantification, and fiber typing was blotted dry and then mounted in 

Optimal Cutting Temperature (OCT, Thermo Scientific, Waltham, MA) and frozen in 

isopentane cooled over liquid nitrogen. Other samples were collected for measurements of 

ex vivo palmitate oxidation, mitochondrial extraction, and a final sample was placed in a 

solution of DMEM and 1% Pen/strep at 5mg/mL (Life Technologies, Grand Island, NY) for 

establishment of primary skeletal muscle cultures. Primary muscle cultures were established 

from muscle biopsies obtained from five donors (Age 23.0±1.9yrs and BMI 24.2±0.6kg/m2) 

at baseline of this study. Establishment of human primary muscle culture has been modified 

from protocols as previously described (16), and cultures from the five donors were grown 

simultaneously to approximately 90% confluence and then pooled together for experiments 

using protocols previously described (17).
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Ex vivo Palmitate Oxidation Measures in Skeletal Muscle

Approximately 75 mg of skeletal muscle tissue was homogenized and loaded into a trapping 

plate apparatus to assess gas exchange for fatty acid oxidation. 0.176 μM of total palmitate 

(0.088 μM of [1-14C]-palmitate in 0.088 μM of non-radiolabeled palmitate) was added to the 

muscle homogenate. Radiolabeled palmitate was obtained from American Radiolabeled 

Chemicals (St. Louis, MO). Radiolabeled 14CO2 and incomplete acid soluble intermediates 

from palmitate oxidation were assessed using scintillation counting. Data was adjusted to 

total protein content obtained from muscle homogenate as determined through the 

bicinchoninic acid assay (Pierce BCA, Thermo Scientific, Waltham, MA).

Immunohistochemical Measures in Vastus Lateralis

Serial transverse sections (10μm) of mounted biopsy samples were generated using a 

cryostat (Cryotome E; Thermo Shandon, Pittsburgh, PA) at -20°C and placed on slides 

(Fisherfinest, Fischer Scientific, Pittsburgh, PA). Sections were then stained in a filtered 

solution of Oil Red O (300mg/ml in 36% triethylphosphate) for 30 minutes at room 

temperature. Thereafter, sections were incubated with primary antibodies for anti-human 

myosin heavy chain (MYH)7 (type I myocytes) and MYH2 (type IIa myocytes) overnight at 

room temperature and subsequently incubated with fluorescein (FITC) (type IIa myocytes) 

and Rhodamine (type I myocytes) conjugated secondary antibodies (Santa Cruz 

Biotechnologies, Santa Cruz, CA). Type IIx fibers remained unstained. Images were 

visualized using a Leica microscope (Leica DM 4000B; Leica Microsystems, Bannockburn, 

IL), digitally captured (Retiga 2000R camera; Q Imaging, Surrey, Canada), and IMCL was 

analyzed using specialized software (Northern Eclipse, v6.0; Empix Imaging, Cheektowaga, 

NY). Fiber type was determined by counting the total number of fibers and assessing the 

percentage of those positive for MYH7 and MYH2.

Mitochondrial ROS Production

Mitochondrial reactive oxygen species (ROS) production was measured from methods 

adapted from Seifert et al. (18) Briefly, mitochondrial were extracted from 200mg of muscle 

tissue using the methods of Chappelle and Perry (19, 20) and suspended in an incubation 

media containing 120mM KCl, 5mM KH2PO4, 3mM Hepes, 1mM EGTA, and 0.3% BSA 

(pH 7.4). Mitochondria were then infused with palmitoyl carnitine (60μM), and ROS 

production was accessed fluorimetrically as a rate of H2O2 emission using p-

hydroxyphenylacetate (PHPA; 167μg/mL) and horseradish peroxidase (9 units/mL) in 

mitochondria suspended in incubation media. H2O2 emission was monitored for 25 mins at 

37°C in a fluorimeter at an excitation of 320nm and emission of 400nm.

Protein Expression

Total protein for all experiments was collected using RIPA buffer (Sigma, St. Louis, MO) 

supplemented with 2% Protease Inhibitor Cocktail (Sigma, St. Louis, MO), 2% Phosphatase 

Inhibitor Cocktail 2 (Sigma, St. Louis, MO), and 2% Phosphatase Inhibitor Cocktail 3 

(Sigma, St. Louis, MO). Protein content was assessed from total protein extracts using 

western immunoblotting with the Criterion apparatus system using 4-15% SDS-

polyacrylamide gradient gels (all from Bio-Rad, Hercules, CA) and adjusted to GAPDH 
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(Cat no. AB9484; AbCam, Cambrige, MA). Imaging of western blots was facilitated on the 

Odyssey infrared imaging system (LiCor, Lincoln, Nebraska). Antibodies against Total Akt 

(Cat no. 9272), p-S473 Akt (Cat no. 9271), Total IRS1 (Cat no. 2382S), p-S1101 IRS1 (Cat 

no. 2385), and mTOR (Cat no. 4517) were obtained from Cell Signaling Technology 

(Danvers, MA) The antibodies for PLIN2 (Cat no. NB110-40877) and PLIN3 (Cat no. 

NB110-40764) were obtained from Novus Biologicals (Littleton, CO).

Lipid droplet quantification within skeletal muscle

Lipid droplet quantification was obtained using greyscale images of ORO stained muscle 

sections minimally processed in FIJI (21) through background subtraction using empirically 

derived background images. Regions of interest (ROI) representing individual muscle fibers 

were manually drawn, and the central and peripherial (band) ROIs were generated using the 

‘Enlarge’ and ‘Make Band’ tools within FIJI. Lipid droplet counts and size distribution data 

were determined by using the ‘Analyze Particles’ tool with a size exclusion of 2-70 pixels 

and circularity filter setting of 0.5–1.00.

Ceramide Measures in Skeletal Muscle

Ceramide was measured using double extraction for lipids using 50mg of skeletal muscle 

biopsy tissue and processed as previously shown (22). Liquid chromatography-electrospray 

ionization tandem-mass spectrometry was used to quantify ceramides as previously 

described (22). According to the retention times of standards, common product ions and ions 

reflecting fatty acid substituents, all target ceramide species were quantified.

Limitations to measures

Due to the rigorous requirements by study participants for performing an overfeeding 

paradigm and also to limitations is skeletal muscle biopsy material, it was impossible to 

obtain a complete data set for every data point measured in our study. Even though we 

recruited 29 participants, we were only able to obtain lipid droplet quantification on 25 

participants. Additionally, certain procedures that required large quantities of biopsy 

material (ex vivo palmitate oxidation and ex vivo mitochondrial isolation for ROS 

generation) were only obtained on a subset of our participants.

Statistical Analysis

Data were analyzed using PRISM GraphPad Software, version 6.0 (GraphPad Software, La 

Jolla, CA). All data were determined to be normally distributed using the Shapiro-Wilk 

normality test. Data that were normally distributed was analyzed using parametric methods 

(Person r correlation coefficients and paired, two-way t-tests), while data not normally 

distributed were analyzed using non-parametric methods (Spearman rho correlation 

coefficients and Wilcoxon signed ranked paired tests). A p value ≤ 0.05 was considered 

statistically significant. All graphs are represented as mean±S.E.M.
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Results

Eight Weeks of Overfeeding Altered Lipid Droplet Size and Location

Eight weeks of overfeeding in 29 males resulted in weight gain, an increase in percent fat 

accumulation, but only a trend towards a decrease in insulin sensitivity (Table 1). 

Furthermore, there were no significant changes observed in the total content of IMCL in 

three separate muscles: soleus, tibilais antertior, or vastus lateralis (Figure 1A), nor were 

there differences in the fiber type specific content of IMCL in vastus lateralis (Figure 1B). 

However, we found significant reductions in the content of smaller sized lipid droplets 

around the periphery of the myofiber (p=0.005, Figure 1C), and trends towards reductions in 

the whole myofiber (p=0.07, Figure S1A) and centrally located lipid droplets (p=0.09, 

Figure S1B). Glucose disposal rate (GDR) was inversely associated with the content of 

larger lipid droplets in the whole myofiber (r=-0.47, p=0.02, Figure 1E) and centrally 

located lipid droplets (r=-0.60, p=0.008, Figure S1C).

Changes in Smaller Lipid Droplets were Associated with Less ROS Generation from Lipid 
Oxidation and Different Lipid Associated Proteins

Associations between lipid oxidation and lipid droplet size/localization were examined, and 

we found that baseline levels of smaller, peripherally located lipid droplets were associated 

with whole body lipid oxidation as indicated by the inverse trends with 24-hour respiratory 

quotient (RQ, r=-0.35, p=0.09, N=24, Figure 2A) and a significant inverse relationship with 

sleep RQ (r=-0.57, p=0.004, N=24, Figure 2B). Changes with overfeeding showed decreases 

in the content of smaller lipid droplets trended towards an association with increases in 

whole body lipid oxidation (r=0.38, p=0.07, N=24, Figure 2C) as well as significantly 

related to ex vivo lipid oxidation from the vastus lateralis muscle (r=-0.58, p=0.04, N=12, 

Figure 2D). Importantly, the production of ROS from palmitoyl-carnitine (PC) using 

extracted mitochondria from the vastus lateralis revealed a pre-intervention relationship 

between levels of PC induced ROS production and smaller, peripherally located lipid 

droplets (r=-0.72, p=0.01, N=11, Figure 2E). Additionally, the retention of smaller, 

peripherally located lipid droplets with overfeeding was associated with less PC induced 

ROS production (r=-0.62, p=0.04, N=11, Figure 2F).

Given the decline in smaller lipid droplets in our study and prior studies indicating that 

Perilipin 2 (PLIN2 and Perilipin 3 (PLIN3) are associated with larger and smaller lipid 

droplet sizes respectively (23), we report a significant decrease in PLIN3 protein with 

overfeeding (p=0.04, Figure 3A) and no change in PLIN2 protein content (data not shown). 

Using primary myotubes cultured from the donors from this study, we show that the increase 

in PLIN2 protein is dependent on incubation time (200μM Palmitate, Figure 3B). In relation 

to this, we found a correlation between changes in PLIN2 protein content in skeletal muscle 

and the decrease in smaller, peripherally located lipid droplets (r=-0.48, p=0.02, data not 

shown). Importantly, there was an inverse correlation between changes in PLIN2 protein 

content and changes in GDR (r=-0.43, p=0.03; Figure 3C).
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Smaller Lipid Droplet Depletion Was Associated with Reduced Akt Phosphorylation and 
Increased Ceramides

To understand the mechanisms responsible for the interaction between glucose disposal and 

lipid droplet redistribution, we found a significant reduction in the phosphorylation of Akt at 

S473 (p=0.05, Figure 4A) after overfeeding, which was associated with the depletion of 

smaller, peripherally located lipid droplets (r=0.47, p=0.04, data not shown). There were no 

differences in the phosphorylation of IRS1 at S1101 (data not shown). Given that a high 

ceramide content has been shown to reduce Akt phosphorylation independent of altering 

other aspects of the insulin signaling cascade (24), we measured the muscle content of 

ceramides and found it to be increased with overfeeding (p<0.001, Figure 4B) regardless of 

the subspecies (Figure 4C). Ceramide content was inversely related to S473-Akt 

phosphylation (r=-0.47, p=0.04, Figure 4D). In addition, mTOR protein content increased in 

skeletal muscle with overfeeding (p=0.05, Figure 4E).

Retention of Smaller Lipid Droplets is Associated with Higher Physical Activity and 
Resistance to Weight Gain Induced with Overfeeding

Prospectively, we found that those with higher baseline physical activity levels (PAL, r=0.64, 

p=0.002), higher metabolic equivalents (METs, r=0.47, p=0.03), and higher total daily 

energy expenditure (TDEE, r=0.50, p=0.01) were relatively protected against a decrease in 

smaller, peripherally located lipid droplets in response to 8 weeks of overfeeding. 

Importantly, participants with higher levels of smaller, peripheral lipid droplets, were also 

more resistant to weight gain during overfeeding (r=-0.44, p=0.03, Figure 5).

Discussion

Our study highlights for the first time that prospective examination of intramyocellular lipid 

content, on average, does not change with eight weeks of high-fat diet overfeeding. The 

participants of this study gained 7.6kg on average over the eight-week period and thus our 

original hypothesis was that overfeeding would result in increased IMCL. Surprisingly, there 

were no differences in IMCL measured in soleus, tibialis anterior, and vastus lateralis 

muscles (Figure 1A) regardless of fiber type examined in the vastus lateralis (Figure 1B). 

These results led us to investigate how alterations in lipid organization within muscle might 

influence insulin sensitivity.

IMCL is stored in the form of lipid droplets, thus implicating lipid droplet size and 

subcellular localization to be important in understanding skeletal muscle insulin resistance. 

Prior reports have shown reductions in lipid droplet size with weight loss associated with 

increased insulin sensitivity (25). Subcellular localization of lipid droplets has been shown to 

be different based on physically activity with highly active individuals having more lipid 

droplets around the periphery of the myofiber (26). Furthermore, stimulated contraction of 

muscle shows a preference for depleting lipid droplets around the outer bands of the 

myofiber with increased lipid oxidation (27). These insights led us to hypothesize that 

overfeeding would result in a reduction in the content of smaller, peripherally located lipid 

droplets, and that these reductions would be associated with worsening in insulin sensitivity. 

Indeed, there were significant reductions in the content of smaller sized lipid droplets around 
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the periphery of the myofiber (Figure 1B), as well as trends towards reductions of both 

centrally located lipid droplets (Figure S1A) and globally throughout the whole myofiber 

(Figure S1B). Our present study highlights a relationship between the change in glucose 

infusion rates with the change in the content of larger lipid droplets in the whole myofiber 

(Figure 1E) and centrally located lipid droplets (Figure S1C).

To understand the mechanisms responsible for the interaction between glucose infusion rates 

and lipid droplets redistribution, we first examined the canonical insulin signaling pathway, 

which showed a significant reduction in the phosphorylation of Akt-S473 (Figure 2A), but 

not phosphorylation of IRS1- S1101. Given this observation, we aimed specifically to 

understand why Akt might be altered without changes in IRS1 and focused on ceramide 

targets that are known to disrupt insulin signaling at the Akt level independent of altering 

other aspects of the signaling cascade (24). Additionally, studies in humans have shown that 

increased ceramide content in muscle is associated with insulin resistance (28). Our study 

did show that ceramide content significantly increased in muscle following overfeeding 

(Figure 2B and 2C); however, it should also be noted that though the average levels of 

ceramides increased significantly, insulin sensitivity only trended towards a decrease (Table 

1). Ceramide content, though, was inversely related to S473-Akt phosphylation (Figure 2D). 

Given recent investigations implicating mTOR signaling in ceramide induced inhibition of 

Akt activity (29), we investigated levels of mTOR and found a significant increase in mTOR 

protein content (Figure 2E) after overfeeding. Based on these results, we postulate that 

increases in intramyocellular ceramide content were responsible for the inhibition of insulin 

signaling. In addition since smaller, peripherally located lipid droplets are preferentially 

oxidized (27), we speculate that the depletion of these lipid droplets would be linked to 

either reductions in lipid oxidation, inefficiencies in lipid oxidation, or both, which in turn 

would contribute to the accumulation in ceramide content.

Isoenergetic high fat consumption has been shown to increase lipid oxidation (30), and thus 

we examined any associations between lipid oxidation and lipid droplet size/localization. 

Baseline levels of smaller, peripherally located lipid droplets were associated with whole 

body lipid oxidation as indicated by the inverse correlations with sleep RQ. However, we 

found that decreases in the content of smaller lipid droplets after overfeeding were 

associated with increased whole body lipid oxidation as well as ex vivo lipid oxidation in 

vastus lateralis muscle. In connection to this, an increase in lipid oxidation after the high fat 

diet is often incomplete resulting in the production of oxidative lipotoxic species (31, 32), 

and smaller lipid droplets is more so associated with less lipotoxic fat oxidation. To explore 

this further, we measured the production of reactive oxygen species (ROS) from palmitoyl-

carnitine (PC) using extracted mitochondria from the vastus lateralis and found that pre-

intervention levels of PC induced ROS production were inversely associated with smaller, 

peripherally located lipid droplets. Additionally, the retention of smaller, peripherally 

located lipid droplets with overfeeding was associated with less PC induced ROS production 

suggesting that smaller, peripherally located lipid droplets produce more efficient, less 

lipotoxic oxidation with overfeeding.

In order to further understand connections between lipid droplet size and lipid oxidation, we 

examined the alterations in key lipid droplet associated proteins within the skeletal muscle. 

Covington et al. Page 8

Obesity (Silver Spring). Author manuscript; available in PMC 2018 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lipid droplet associated proteins (particularly the perilipin family (23)) have been shown to 

coat lipid droplets based on their size (33) and have also been shown to play a role in lipid 

oxidation. Recently, we have shown that PLIN3 is positively associated with both whole 

body in vivo and skeletal muscle ex vivo lipid oxidation (34). Given our study shows a 

decline in smaller lipid droplets after overfeeding and prior studies showing an association 

between PLIN3 and smaller lipid droplets (23), a significant decrease in PLIN3 protein 

content with overfeeding (Figure 3A) is in line with present literature. Additionally, the 

expression of PLIN2 is associated with larger lipid droplets (23). Though prior studies have 

shown PLIN2 to become expressed with increasing duration of lipid incubation using mice 

and mouse cell lines (35), we show for the first time using primary myotubes cultured from 

the donors from this study that the increase in PLIN2 protein is dependent on incubation 

time (200μM Palmitate, Figure 3B). Based on these data, we speculate that as smaller lipid 

droplets were being depleted, perhaps lipid droplets that remained were being packaged with 

PLIN2. Though we did not see a change in PLIN2 protein content with overfeeding, we saw 

an inverse correlation between a decrease in smaller, peripherally located lipid droplets and 

changes in PLIN2 protein content. Importantly, there was an inverse correlation between 

changes in PLIN2 protein content and changes in glucose disposal rate (Figure 3C) 

suggesting that larger, PLIN2 coated lipid droplets may be associated with incomplete lipid 

oxidation, thus resulting in the accumulation of ceramides and ROS production and 

disruption of insulin signaling.

Finally, given the observations between lipid droplet size and lipid oxidation as well as that 

increased lipid oxidation with physical fitness (36), we aimed to determine if physical fitness 

is related to lipid droplet size. Individuals with higher pre-intervention PAL, METs, and 

TDEE were protected against a decrease in the number of smaller, peripherally located lipid 

droplets with eight weeks of overfeeding. Furthermore, a higher content of smaller, 

peripheral lipid droplets prior to overfeeding was negatively associated with an overfeeding 

induced weight gain (Figure 5).

One of the limitations of this study, given the translational nature of this investigation, is that 

our data rests on correlational analyses between lipid droplet size and location within the 

myofiber and various components of human metabolism. However, this limitation should not 

by itself make the data that we have presented any less valuable given the fact that all our 

data is based exclusively in human tissue collected from a clinical investigation. In addition, 

our study was only performed in healthy men and thus not completely translatable to the 

population as a whole. We originally aimed to recruit an equal proportion of men and 

women to our study, but we were not able to recruit and retain enough female participants to 

this high fat overfeeding study, thus restricted our focus to only male participants. Finally, 

this study was conducted in healthy individuals without insulin resistance or type 2 diabetes, 

which could thus limit our understanding to the progressive pathophysiology relating to 

individuals who already have T2D and still maintain unhealthy eating practices.

Overall, our investigation in lean men indicates that the size and location of lipid droplets, 

rather than the total IMCL content, is a determinant factor for the magnitude of the increase 

in insulin resistance and the resistance to weight gain with obesogenic overfeeding. We have 

shown that smaller, peripherally located lipid droplets are reflective of better physical fitness 
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and efficient lipid oxidation, which mirrors prior investigations of myofiber lipid droplet 

location in trained athletes (26). Given the athlete’s paradox, whereby highly trained athletes 

possess large quantities of IMCL and yet possess high insulin sensitivity (2), IMCL alone is 

not the only culprit behind skeletal muscle insulin resistance. Our data suggest that 

packaging of lipid into smaller, peripherally located lipid droplets may hold more benefit for 

improving insulin sensitivity in individuals with type 2 diabetes (Figure 5B). Future 

investigations should be aimed at remodeling lipid droplet size and location to treat insulin 

resistance, as well as other factors that regulate lipid droplet size and packaging in relation to 

lipid oxidation in skeletal muscle.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject

• Increased content of intramyocellular lipid in skeletal muscle is associated 

with insulin resistance in individuals with type 2 diabetes

• Alterations in lipid droplet size have been shown in skeletal muscle following 

weight loss

What this study adds

• Total content of intramyocellular lipid does not change in skeletal muscle 

after 8 weeks of overfeeding induced weight gain

• Changes in lipid droplet size with weight gain are associated with alterations 

in insulin sensitivity and lipid oxidation
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Figure 1. Overfeeding associated increases in the content of large myofiber lipid droplets is 
related to reductions in insulin sensitivity
A) Total intramyocellular lipid (IMCL) content in the soleus and tibialis anterior via 

magnetic proton resonance spectroscopy and B) in the vastus lateralis using oil red o 

staining in frozen tissue from biopsy did not increase with overfeeding (N=29 soleus and 

vastus lateralis, N=28 tibialis anterior). C) Lipid droplet size from the vastus lateralis were 

determined as centrally vs. peripherally located droplets, and the content of small lipid 

droplets located peripherally decreased (p=0.005, N=25). D) Representative image of 

histological cross-sections of the myofibers stained with oil red o from the same participant 

before and after overfeeding. Red lined borders indicate the demarcation between central 

and peripherally location and the outer border of the myofiber. Arrows indicate the large 

lipid droplets that accumulated with overfeeding in this participant. E) Inverse relationship 

Covington et al. Page 14

Obesity (Silver Spring). Author manuscript; available in PMC 2018 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the percent change in larger lipid droplets throughout the entire fiber and the 

percent change in glucose disposal rate (GDR) with overfeeding (r=-0.47, p=0.02, N=23). 

Graphs represents mean±SEM, *p<0.05.
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Figure 2. Alterations in lipid droplet size is related to changes in lipid oxidation
A) Baseline content of small, peripherally located lipid droplets are more associated with 

whole body fat oxidation as evident by inverse relationships with 24 hour respiratory 

quotient (RQ, r = -0.35, p = 0.09, N = 24) and B) sleep RQ (r = -0.57, p = 0.004, N = 24). C) 
Changes in smaller lipid droplet content tended to correlate positively with changes in 24 hr. 

respiratory quotient (RQ) (r = 0.38, p = 0.07, N = 23), and D) correlated inversely to ex vivo 
total palmitate oxidation (r = -0.58, p = 0.04, N = 12). E) Smaller, peripherally located lipid 

droplets at baseline are inversely associated with palmitate produced mitochondrial reactive 

oxygen species (ROS) production (r = -0.72, p = 0.01, N = 11). F) Changes in the content of 

smaller, peripherally located lipid droplets inversely correlated to changes in palmitate 

stimulated reactive oxygen species (ROS) production ex vivo from isolated mitochondria (r 

= -0.65, p = 0.03, N = 11).
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Figure 3. Alterations in lipid droplet size is related to changes in perilipin 2 and perilipin 3 
protein expression with overfeeding
A) Perilipin 3 (PLIN3) protein content decreased with overfeeding (p=0.04, N=27). B) 
Baseline human primary myotubes treated with 200μM of palmitate showed that PLIN2 is 

expressed later over a time course of 2 hours. C) Changes in PLIN2 protein content 

correlated inversely with glucose disposal rate (GDR, r=-0.43, p=0.03, N=25). Graphs 

represent mean±S.E.M, *p<0.05.
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Figure 4. Decreases Akt activity is associated with increased accumulation of ceramide content
A) Decreases in the activity of protein kinase B (PKB/Akt) before and after overfeeding; 

p=0.05, N=22). B and C) Muscle total ceramide content and ceramide species increased 

with overfeeding (p<0.001, all subspecies, N=29). D) The percent change in total ceramide 

content with overfeeding inversely correlated to the change in Akt activity with overfeeding 

(r=-0.47, p=0.04, N=22). E) The protein content of mammalian target of rapamycin (mTOR) 

increased significantly in skeletal muscle with overfeeding (p=0.05, N=27). Graphs 

represent mean±S.E.M, *p<0.05; ***p<0.001.
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Figure 5. Pre-intervention levels of smaller, peripherally located lipid droplets in muscle was 
associated with less weight gain during overfeeding
A) Participants who had higher pre-intervention levels of smaller, peripherally located lipid 

droplets gained less weight with overfeeding, indicating that participants who have smaller, 

peripherally located lipid droplets are resistant to weight gain with overfeeding (r=-0.44, 

p=0.03, N=25). B) Schematic diagram examining the effects of diet-induced alterations in 

skeletal muscle lipid droplet morphology.
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Table 1

Baseline Post-Overfeeding

Mean ± SD Mean ± SD

Anthropometric Characteristics

Weight (kg) 82.8 ± 9.2 89.7 ± 9.4a

% Fat 19.7 ± 4.9 22.5 ± 5.2a

FM (kg) 16.4 ± 4.8 20.4 ± 5.6a

FFM (kg) 66.0 ± 7.4 69.5 ± 7.4a

SAT (kg) 4.1 ± 1.4 5.3 ± 1.7a

VAT (kg) 0.59 ± 0.50 0.95 ± 0.59a

Metabolic Characteristics

24 hour RQ 0.90 ± 0.02 0.88 ± 0.03b

GDR (mg/min/EMBS) 10.92 ± 2.17 10.48 ± 2.39b

EGP (mg/min/kg) 0.06 ± 0.16 0.28 ± 0.30a

EGP % suppression 96 ± 10 82 ± 20a

Serum measures

Glucose (mg/dL) 90.4 ± 5.2 91.5 ± 7.2

Insulin (μU/mL) 6.6 ± 4.1 7.1 ± 5.2

FFA (nmol/L) 0.27 ± 0.09 0.30 ± 0.10

Triglycerides (mg/dL) 87.3 ± 61.5 100.0 ± 73.0a

Total Cholesterol (mg/dL) 176.6 ± 20.9 196.5 ± 30.0a

HDL-C (mg/dL) 56.1 ± 13.0 56.9 ± 11.1

LDL-C (mg/dL) 103.1 ± 20.0 119.6 ± 26.4a

Cholesterol/HDL 3.34 ± 1.00 3.58 ± 0.93a

HDL/LDL 0.57 ± 0.20 0.50 ± 0.16a

Study characteristics of the 25 male participants who had lipid droplet analysis performed at baseline and after 8 weeks of overfeeding,

a
p<0.05;

b
p<0.10. FM, fat mass; FFM, fat free mass; SAT, abdominal subcutaneous adipose tissue; VAT, visceral adipose tissue; RQ, respiratory quotient; 

GDR, glucose disposal rate (from a 50mU/min/m2 insulin infusion); EGP, endogenous glucose production (n=19); EMBS, estimated mean body 
size (FFM+17.7); FFA, free fatty acids; HDL, high density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol.
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