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Abstract

Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important

questions inevolution requireknowingboth the topologiesand the rootsof trees.However,general algorithms forcalculating rooted

trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP)

(Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol.

4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen

T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly

enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene

and genomic sequences. Thesenew EP linear rooting invariants allow one todetermine rooted trees, even in the complete absence of

outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or

more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny

(Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493;

Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they

are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph

flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260).
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Introduction

Fully understanding the evolution of life on Earth requires

identifying the ancestor from which all others on the tree

evolved, that is, the root. A number of important unresolved

questions in evolution, including the origins of modern

humans (Reich et al. 2011), the rise of placental mammals

(Waddell et al. 1999; Madsen et al. 2001; Murphy et al.

2001a, 2001b; Scally et al. 2001), animal evolution

(Aguinaldo et al. 1997; Philippe et al. 2011), prokaryotic evo-

lution (Cox et al. 2008; Lake 2009), and even the beginnings

of life (Lake et al. 2009; Ragan et al. 2009), would benefit

from phylogenetic methods that can root a tree without

having to specify outgroups. And yet, there are no general

methods available for determining roots. Trees can be rooted

using outgroups and ancient gene duplications (Dayhoff et al.

1972), insertions and deletions (Rivera and Lake 1992), and

occasionally gene presences and absences (Lake and Rivera

2004; Simonson et al. 2005). But, these methods cannot be

applied to some of the most widely used molecular sequences,

including ribosomal RNAs (rRNAs), because useful gene dupli-

cations are rare. Furthermore, usable gene duplications and

indels are, in general, so infrequent that it is the exception

when trees can be rooted using them.

Phylogenetic reconstruction algorithms typically delete

rooting information because they assume, either implicitly or

explicitly, that evolutionary distances are symmetric, that is,

dij¼ dji, where dij is the evolutionary distance between taxon
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i and taxon j. Strictly speaking, the assumption of symmetric

distances is only valid if evolutionary processes are time revers-

ible—which they are not (Lake 1997). Assuming symmetric

distances thus removes valuable rooting information from

many types of sequence analyses. Here we show how to

root nucleotide sequences without making this assumption.

An alternative for rooting without an outgroup is to use a

likelihood-based approach with a nonreversible transition

state matrix (Barry and Hartigan 1987a, 1987b; Ferretti

et al. 1994; Hendy and Penny 1996; Evans and Zhou 1998).

That approach allows for a general model of evolutionary

change to be used, however branch lengths, transition

rates, and nucleotide distributions at the root must be esti-

mated or integrated out. In contrast, our approach does not

need to estimate these parameters, it is fast and simple to

implement, and may be easily extended to larger numbers

of taxa.

Evolutionary parsimony (EP) (Lake 1987a; 1987b) and its

extensions (Cavender 1989; Nguyen and Speed 1992) contain

rooting information because they do not assume that evolu-

tionary distances are symmetric. Instead, they are based on

the balanced transversion assumption, namely that transver-

sions from purines/pyrimidines produce approximately equal

numbers of pyrimidines/purines. Because DNA copying and

repair mechanisms can most readily distinguish differences

between the larger purines (A and G) and the smaller pyrim-

idines (C and U/T), those exchanges which substitute one

purine for another or one pyrimidine for another (transitions)

occur more frequently than those that substitute purines and

pyrimidines (transversions), as has been known for nearly

30 years (Brown et al. 1982). In addition because transversions

occur less frequently than transitions, they are more desirable

for investigating early events in evolution. Thus, methods

based on balanced transversions, or its modifications, provide

both rooting and topological information, and the slow evo-

lution of transversions makes them better suited for rooting.

Here we explicitly describe how to root trees using EP root-

ing invariants. The literature on both linear and polynomial

phylogenetic invariants and the related topic of Hadamard

conjugations, is rich, see as examples (Cavender and

Felsenstein 1987; Lake 1987a; Cavender 1989; Nguyen and

Speed 1992; Steel et al. 1993, 1998; Ferretti et al. 1994;

Sinsheimer 1994; Steel and Fu 1995; Hendy and Penny

1996; Sinsheimer et al. 1996; Waddell et al. 1997; Evans

and Zhou 1998; Allman and Rhodes 2003; Yap and Speed

2005), but to our knowledge there has been no work on using

linear invariants to root a phylogenetic tree. Extending and

simplifying Nguyen and Speed’s (1992) results, we show

that EP invariants can be classified into three major categories.

These classes can be used to: (1) test the EP assumptions (the

simplest example is a two-taxon test), (2) distinguish between

rooted trees (the simplest example is a three-taxon test), and

(3) distinguish between unrooted trees (the simplest example

is a four-taxon test). The EP invariants that solely contain root

information are explicitly derived, and posterior probabilities

are developed to determine three-taxon rooted trees.

The method is illustrated using a simple, but difficult exam-

ple, rooting the new animal phylogeny directly from short 18S

rRNA sequences in the absence of outgroups.

Results

Principles of EP

For s aligned nucleic acid sequences, there are 4s different

nucleotide patterns that can be observed at any nucleotide

position, ignoring insertions and deletions. Thus when three

nucleic acid sequences are aligned there are 43
¼ 64 possible

patterns at each position of the alignment, for example, (AAA,

AAG, . . .). For EP, the set of aligned sequences is represented

as the number of times each of these patterns are observed

over the entire sequence and are denoted as xyz where x, y,

and z can take on nucleotide values A, G, C, and T (or U). N3 is

a vector with 64 entries containing the observed nucleotide

count spectrum for three taxa, N3¼ (#AAA, #AAG, . . . , #TTC,

#TTT), where # refers to the number of occurrences of each

pattern. The components of N3 for a hypothetical 30-mer se-

quence are shown in figure 1. In this example, the pattern TTT

is observed three times so that #TTT¼3.

EP’s major assumption, balanced transversions, is a

constraint placed on the transversion probabilities (Lake

1987a). It can be represented as four conditional probability

statements:

P AjCð Þ ¼ P GjCð Þ, P AjTð Þ ¼ P GjTð Þ, P CjGð Þ

¼ P TjGð Þ, P CjAð Þ ¼ P TjAð Þ
ð1Þ

where P(XjY) denotes the probability of observing

nucleotide X at some site in an existing organism’s sequence

given there was a Y at that site in the ancestral sequence. This

constraint implies that for infinitely long sequences, an equal

number of both possible transversions will occur along the

path from an ancestor to an existing taxon. For example in

figure 2, the expected number of A to C transversions will

equal the expected number of A to T transversions between

the root and taxon 1. In the next section, we illustrate how

balanced transversions constrain some invariants to equal

zero.

Illustrating the Balanced Transversions Assumption:
Two-Taxon Invariants

We demonstrate the application of EP rooting invariants by

considering the simplest possible rooted tree, the two-taxon

tree shown in figure 2. For two taxa there are two EP invari-

ants and one possible rooted tree. These are:

U1 ¼ #AC� #AT� #GC+#GT, ð2Þ

and
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U2 ¼ #CA� #CG� #TA+#TG: ð3Þ

We use the shorthand notation #(x�y)1(w�z)2 to represent

#xw� #xz�#yw + #yz, so that U1 can then be expressed as

#(A�G)1(C�T)2 and U2 as #(C�T)1(A�G)2. This notation can

be extended to any number of taxa. For three sequences

#(u� v)1(w� x)2(y� z)3¼ #uwy� #uwz�#uxy + #uxz�#

vwy + #vwz + #vxy�#vxz.

In figure 2, we illustrate why U1 and U2 have expected

value zero under the balanced transversions assumption.

First note that an odd number of transversions at a nucleotide

site leads to a net transversion along the path, and an even

number of transversions at a nucleotide site leads to either a

net transition or no net change along the path. Consider the

two-taxon, rooted tree in figure 2. The patterns AC, AT, GT,

GC, CA, CG, TA, and TG can only be present if a net transver-

sion has occurred along the path from the root to taxon 2

(branch 2), or along the path from the root to taxon 1 (branch

1), but not both (Lake 1987a).

U1 and U2 can be partitioned into four groups indexed by

the unknown nucleotide present in the ancestral sequence.

That is, U1¼U1
(A) + U1

(G) + U1
(C) + U1

(T) and

U2¼U2
(A) + U2

(G) + U2
(C) + U2

(T), where U(X) denotes the

counts derived from ancestral sequence positions containing

nucleotide X. If one can show that the expected values of U1
(X)

E (U1
A) = E (#R1

AY2
A) = 0

E (U2
A) = E (#Y1

AR2
A) = 0

1 ∈  (A,G) 

 Root = A 

2 ∈  (C,T) 

Transversion Transversion 

2 ∈  (A,G) 

Root = A 

1 ∈  (C,T) 

FIG. 2.—Two-taxon EP invariants. An example illustrating how balanced transversions require that the two-taxon invariants, U1 and U2, have expected

values of zero. Patterns in U1¼#R1Y2 and U2¼#Y1R2 arise from a net transversion in branch 1 or a net transversion in branch 2, but not net transversions in

both branches. This is true for all choices of ancestral nucleotide states. Under balanced transversions, the expected number of AC patterns equals the

expected number of AT patterns, the expected number of GCs equals the expected number of GTs, the expected number of CAs equals the expected

number of TAs, and the expected number of CGs equals the expected number of TGs. Therefore, U1 and U2 have expected values of zero, as is further

explained in the text.

FIG. 1.—Hypothetical aligned gene sequences for three taxa. An example illustrating how three aligned sequences can be reduced to a list of the

informative EP subpatterns that specifies the number of counts supporting each pattern. These counts can then be used to reconstruct the most likely rooted

tree for this hypothetical three-taxon comparison. The data in this example strongly support the G tree (rooted in taxon 3), as discussed in the text.

Rooting Gene Trees GBE

Genome Biol. Evol. 4(8):821–831. doi:10.1093/gbe/evs047 Advance Access publication May 16, 2012 823



and U2
(X) are zero for all nucleotides X, then U1 and U1 have

expected value zero.

Using figure 2, we demonstrate that the expected value of

the partition U1(A) is zero. In the first tree in figure 2, the

ancestral state is A, so that the nucleotide patterns that com-

prise U1
(A)
¼#(A�G)1

(A)(C�T)2
(A) must have resulted from one

net transversion in branch 2 (A to C, or A to T) and a net

transition or no net change in branch 1 (A to G, or A to A). To

simplify the discussion, we introduce the notation

Yn¼ (C�T)n¼Cn� Tn for the pyrimidine difference operator,

Rn¼ (A�G)n for the purine difference operator. Using this

notation the two taxon invariants can be written as

U1¼ #R1Y2¼#(A�G)1(C�T)2 and U2¼#Y1R2. (Note also

that multiplication of these operators is commutative.) By

the balanced transversions assumption, the number of net A

to C transversions equals the number of net A to T transver-

sions in branch 2. Consequently, the expected value of #Y2
(A)

is zero, and the expected value of #R1
(A)Y2

(A) is zero. By similar

reasoning one can show that the expected values of #Y2
(G),

#R1
(C), #R1

(T) are zero, and therefore, U1
(G), U1

(C), and U1
(T)

have expected value zero. Hence, the sum

U1¼U1
(A) + U1

(G) + U1
(C) + U1

(T) has expected value zero

under the balanced transversion assumptions. By symmetry,

as shown on the right tree in figure 2, U2 also has expected

value zero when the balanced transversion assumptions hold.

Determining the Roots of Three-Taxon Trees

The principles and reasoning used in the previous section can

also be applied to derive the EP statistics for rooting trees. For

three taxa, there are three possible rooted trees and three

possible operators. The E tree is rooted in taxon 1, the F tree

is rooted in taxon 2, and the G tree is rooted in taxon 3. In

addition to the Yn and the Rn operators discussed above, we

utilize a third operator, Zn¼ (A+G�C�T)n, the transversion

difference operator.

The derivation of the expected value of the rooted EP in-

variant, UF2, is illustrated for the F and G trees in figure 3.

Invariant UF2 evaluates nucleotide patterns, R1Y2R3, at posi-

tions where the nucleotides in sequences 1 and 3 are purines

(Pu) and the nucleotide in sequence 2 is a pyrimidine (Py).

When the G tree is correct, then 1 and 2 are sister taxa and

UF2 has expected value zero as will be demonstrated with

reference to figure 3A.

We know from the two-taxon EP invariants, that a trans-

version must occur on either branch 1 or 2 in order to produce

the Pu1Py2 pattern. This is true for all values of the nucleotide

present at the node connecting taxa 1 and 2, as in figure 3A.

Because the two-taxon EP invariant U1¼ R1Y2 has expected

value zero for all four possible values, A, G, C, and T, of the

most recent common ancestor of any two-taxon tree, we

conclude that the 1, 2 clade of the three-taxon EP invariant,

UF1¼ (R1Y2) R3 must also have zero expected value.

Furthermore, because this value depends only on the value

of the most recent common ancestor, located at the interior

node of the F tree, it is therefore independent of any earlier

ancestral values present at the root of the three-taxon tree.

Thus, UF2 has zero expected value for all possible combina-

tions of nucleotides at the interior node and at the root of the

G tree (and similarly for the E tree—not shown). Thus for the E

and G trees (but not for the F tree):

UF2 ¼�U
Xð ÞðWÞ

F2 ¼ 0 for E and G trees onlyð Þ

X 2 Pu, Pyð Þ

W 2 Pu, Pyð Þ

ð4Þ

A E(U F2 )= 0 for the G tree  

B E(U F2 ) ≠ 0 for the F tree  

1 ∈ (A,G) 2 ∈ (C,T) 3 ∈ (A,G) 

1 ∈ (A,G) 2 ∈ (C,T) 3 ∈ (A,G) 

FIG. 3.—Three-taxon EP rooting invariants. An illustration of how

three-taxon EP rooting invariants provide rooting information. In this ex-

ample, for the UF2 rooting invariant, the unknown nucleotides at the root

of the tree and the interior node of the tree, as described in the text, must,

be either pyrimidines at the root and purines at the node, Py/Pu, or vice

versa. When the possible partitions of the roots that result in a transversion

are computed, we find that UF2 is unconstrained for the F tree, and that it

is constrained to 0 expected value for the G tree and, in like manner, for

the E tree (not shown). The expected values for all 12 invariants are sum-

marized in table 1.
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In contrast, when the F tree is correct, see figure 3B, the

three-taxon rooting invariant, UF2¼ R1Y2R3 is not constrained

to zero. This happens because the terminal two-taxon tree

relating taxa 1 and 3, corresponds to the operator R1R3

which is not an EP invariant, and hence is unconstrained.

Furthermore, the operator related to the branch leading to

taxon 2, Y2, is also unconstrained because transversions

have not necessarily occurred in branch 2. Thus their product,

UF2¼R1Y2R3, is unconstrained for the F tree.

The following 12 three-taxon EP statistics contain root

information:

UE1 ¼ #R1Y2Y3 ð5Þ

UE2 ¼ #Y1R2R3 ð6Þ

UF1 ¼ #Y1R2Y3 ð7Þ

UF2 ¼ #R1Y2R3 ð8Þ

UG1 ¼ #Y1Y2R3 ð9Þ

UG2 ¼ #R1R2Y3 ð10Þ

UEF1 ¼ #R1Y2Z3 ð11Þ

UEF2 ¼ #Y1R2Z3 ð12Þ

UEG1 ¼ #R1Z2Y3 ð13Þ

UEG2 ¼ #Y1Z2R3 ð14Þ

UFG1 ¼ #Z1R2Y3 ð15Þ

UFG2 ¼ #Z1Y2R3 ð16Þ

There are two types of rooting statistics for three-taxon

trees. UE1 is a representative of one type and UEF1 is a repre-

sentative of the other type. It is easily seen from the definitions

above, that UE1, UF1, and UG1 are permutations of a common

pattern, and similarly for UE2, UF2, and UG2. Likewise, UEF1,

UEF2, UEG1, UEG2, UFG1, and UFG2 are permutations of the other

common pattern.

Unlike the two-taxon EP invariants, the expected values of

these three-taxon EP invariants depend on the position of the

root. If the E (or F, or G) trees are correct and if the assump-

tions of EP are met, then the 12 invariants will have the ex-

pected values that are summarized in table 1.

Analyzing the Hypothetical Example in Figure 1

If we return to the data generated in the hypothetical example

shown in figure 1, we can now estimate the root location

from the hypothetical sequences. From these data, we

calculate the values of each of the invariants, as shown in

table 2. The expected values of these EP root invariants

under each of the possible trees are also shown in the table.

Clearly, the observed values most closely match the values

expected if the G tree is correct, so we predict that the G

tree is the most probable tree. In Material and Methods, we

formalize this prediction by determining the posterior proba-

bility, the probability of a tree given the observed sequence

data. We find that the probability of the G tree is 99.68%, the

probability of the F tree is 0.20%, and the probability of the E

tree is 0.12%, results that overwhelmingly support the G tree.

EP invariants are not restricted to two-, three-, and four-

taxon trees (Lake 1987a; Cavender 1989; Nguyen and Speed

1992; Sinsheimer 1994), but can be extended to any number

of taxa using the notation developed here (see Sinsheimer

1994). We classify the EP statistics for any number of taxa

into three major categories according to their use in statistical

inference, namely: (1) for tests of EP assumptions, (2) for dis-

tinguishing between rooted trees, and (3) for distinguishing

between unrooted trees, topology (see Materials and

Methods for details).

A Second Example: Rooting rRNA Trees

Ribosomal rRNA sequences are particularly difficult to root

because the genes are short, paralogous genes are lacking,

and nucleotides evolve faster than amino acids often making

nucleotide sequences too divergent to be useful. Here we

demonstrate the usefulness of EP rooting using a particularly

difficult example: rooting a deep, three-taxon metazoan tree

using only partial 18S rRNA sequences.

Today the root of the multicellular animals is fairly well

known, and even the most challenging, deeper branching

parts of the metazoan tree are being reconstructed (Philippe

et al. 2011), unlike when the lophophorates were initially

shown to be protostomes (Halanych et al. 1995). Here,

using short 18S ribosomal DNA sequences and in the com-

plete absence of an outgroup, we show that the lophopho-

rates are protostomes, using three-taxon, EP rooting analyses.

In figure 4, three rooted trees correspond to the hypothesis

that the lophophorates are protostomes (G tree), deutero-

stomes (F tree), or an independent, earlier branching lineage

(E tree). Using slowly evolving 18S rRNA sequences of repre-

sentatives of these three groups, namely the inarticulate bra-

chiopod lophophorate, Glottidia pyramidata; the bivalve

protostome, Placopecten magellanicus; and the echinoderm

Table 1

Expected Values of the Three-Taxon EP Rooting Invariants

TREE UE1 UE2 UF1 UF2 UG1 UG2 UEF1 UEF2 UEG1 UEG2 UFG1 UFG2

E U U 0 0 0 0 U U U U 0 0

F 0 0 U U 0 0 U U 0 0 U U

G 0 0 0 0 U U 0 0 U U U U

Note.—U: unconstrained expected value.

Rooting Gene Trees GBE
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deuterostome, Antedon serrata. We first test the balanced

transversion assumption using the six goodness-of-fit invari-

ants for three taxa (see Materials and Methods). The test sta-

tistic has a chi-square distribution with 6 degrees of freedom

(Mood AM, 1974; Nguyen T, 1992). The null hypothesis of

balanced transversions is not rejected at the 5% significance

level in these data.

We then determine the posterior probability of each of the

rooted trees. There are 76 informative positions out of a total

of 1457 aligned 18S ribosomal DNA positions, that may be

used for determining the rooted tree that relates these three

organisms. The rooting statistics are shown table 3 for those

invariants that are constrained to zero expected value for the

E, F, and G trees, respectively. As described in the Materials
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FIG. 4.—Rooting a three-taxon metazoan tree. Posterior Bayesian support for the three possible, three-taxon, rooted metazoan trees obtained by

analysis of short, nonparalogous, 18S rDNA sequences is listed beneath each of the three rooted trees. In this example, the G tree, rooted in the branch

leading to the echinoderm, is strongly supported by the data (P¼ 99.51%), consistent with the current multicellular animal root, whereas the E and F trees

are not significantly supported, P¼0.46% and 0.03%, respectively.

Table 2

Expected and Observed EP Rooting Invariants for Hypothetical Sequence

If E tree is correct If F tree is correct If G tree is Correct

Invariant Expect Observe Invariant Expect Observe Invariant Expect Observe

UF1 0 0 UE1 0 0 UE1 0 0

UF2 0 1 UE2 0 1 UE2 0 1

UG1 0 4 UG1 0 4 UF1 0 0

UG2 0 4 UG2 0 4 UF2 0 1

UFG1 0 8 UEG1 0 6 UEF1 0 1

UFG2 0 �1 UEG2 0 3 UEF2 0 �1

Sinsheimer et al. GBE

826 Genome Biol. Evol. 4(8):821–831. doi:10.1093/gbe/evs047 Advance Access publication May 16, 2012



and Methods, we find that the posterior probability is 99.51%

for the G tree, the tree rooted in the branch leading to the

echinoderm; 0.03% for the F tree, the tree rooted in the

branch leading to the bivalve; and 0.46% for the E tree,

the tree rooted in the branch leading to the inarticulate

brachiopod. Because EP rooting uses a different type of se-

quence information than methods designed to test topolo-

gies, these analyses provide independent support for the,

now well-known result, that the lophophorates are proto-

stomes, and not deuterostomes (Halanych et al. 1995;

Philippe et al. 2011).

Discussion

EP rooting can recover rooted trees directly from nucleotide

sequences in the absence of outgroups, even when sequences

are relatively short. Given the large amounts of sequence data

available, this raises that possibility that outstanding problems

in rooted bilateral animal relationships may be resolved using

EP rooting. Furthermore, these rooting analyses are quite well

suited for Bayesian interpretations.

The three-taxon test, important and useful in its own right,

also illustrates the use of EP rooting invariants to target-spe-

cific aspects of phylogenetic reconstruction. EP invariants can

be classified into three groups based on the phylogenetic in-

formation they contain (Sinsheimer 1994). One class is the

goodness-of-fit invariants. A second class contains the invari-

ants with topological information but no root information,

and a third class contains the statistics with both root and

topological information.

As is now well known (Sinsheimer et al. 1996), Bayesian

predictions, such as those presented here, provide an attrac-

tive alternative to classical hypothesis tests for phylogenetic

reconstruction. Multiple hypotheses, as in the example here,

where three possible trees exist, are better suited to Bayesian

analysis than to classical hypothesis testing (Sinsheimer 1994;

Sinsheimer et al. 1996). Further, posterior probabilities esti-

mate the probability of each of the trees given the observed

data, a result that is far easier to interpret than the P value

outcomes of classical hypothesis testing (Burnham KP, 1998).

A major shortcoming of current phylogenetic analyses is

that the roots of many major groups are currently unknown

due primarily to the difficulty of obtaining useful outgroups.

And in some cases, such as the origin of life, outgroups are

simply not available. We hope that the EP rooting invariants

make even deeper explorations of the origin of life possible.

Materials and Methods

General Rules for Defining the Classes of EP Invariants

The same simplifying notation introduced in the previous sec-

tions can also be used for EP statistics of any number of taxa.

EP statistics are a form of linear invariants. All the work de-

scribed in this article refers to linear invariants, that is, invari-

ants which allow summing over nucleotide positions. The term

linear invariants will therefore be shortened to invariants. In

the general s-taxon case, EP statistics are linear combinations

of counts made up of the building blocks, U¼ #X1X2X3 . . . Xs,

where for at least one i 2 {1, . . . , s} Xi¼ (A�G)¼R, for at least

one j 2 {1, . . . , s} Xj¼ (C�T)¼Y, and for all other k 2 {1, . . . ,s}

Xk2 {R, Y, S, Z},where S¼A+G+C+T and Z¼A+G�C�T

(Cavender 1989; Nguyen and Speed 1992; Sinsheimer

1994; Sinsheimer et al. 1996). When Xk¼ (A+G+C+T)¼ S,

the nucleotides for the k-th taxon are summed over, effec-

tively ignoring that branch. Additional EP assumptions are

necessary to preserve balanced transversions when the k-th

taxon is ignored. These restrictions are P(AjT) + P(CjT)

¼ P(AjC) + P(TjC) and P(TjA) + P(GjA)¼ P(TjG) + P(AjG) and

similar constraints exist for the proportionally balanced trans-

version model (Cavender 1989; Nguyen and Speed 1992).

In the s-taxon case, where s> 2, EP statistics can be parti-

tioned into three classes. The first class is comprised of

goodness-of-fit statistics that are linear combinations of

counts, U¼#X1X2X3 . . . Xs where for exactly one i 2 {1, . . . ,

s} Xi¼R, for exactly one j 2 {1, . . . , s} Xj¼Yj, and for all other k

2 (1, . . . , s} Xk¼ (A+G+C+T)k. The second class are statistics

containing topological information but no rooting information

and are linear combinations of counts, U¼#X1X2X3 . . . Xs

where for exactly two taxa i, j 2 {1, . . . , s} Xi¼Xj¼ R, for

exactly two taxa m, n 2 {1, . . . , s} Xm¼Xn¼Y, and for all

Table 3

Expected and Observed Invariant Values for G. pyramidata, P. magellanicus, and A. serrata

If E tree is correct If F tree is correct If G tree is correct

Invariant Expected Observed Invariant Expected Observed Invariant Expected Observed

UF1 0 1 UE1 0 �4 UE1 0 �4

UF2 0 �1 UE2 0 0 UE2 0 0

UG1 0 �7 UG1 0 �7 UF1 0 1

UG2 0 5 UG2 0 5 UF2 0 �1

UFG1 0 �2 UEG1 0 13 UEF1 0 �1

UFG2 0 10 UEG2 0 �3 UEF2 0 1
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other k 2 (1, . . . , s} Xk¼ S. The statistics containing both root

position and topological information comprise the third class

and include all EP statistics that are not in Class 1 or 2.

Examples of Class 3 statistics include the three-taxon statistics

(4)–(15), the four-taxon statistic #R1Y2S3Z4 and the five-taxon

statistic S1R2Y3R4S5. In the interest of saving space these clas-

sifications are not proven here, but can be found elsewhere

(Sinsheimer 1994; Sinsheimer et al. 1996).

The hypothesis tests for goodness-of-fit using the Class 1

statistics (Nguyen and Speed 1992), and for topology using

Class 2 statistics are easily generalized to s taxa (Sinsheimer

1994). For more than three taxa, the s-taxon statistics contain-

ing rooting information can also be used to infer the correct

rooted tree. In practice, however, inference becomes much

more complicated. The expected value patterns of these sta-

tistics contain topological information as well as root informa-

tion. In addition, the number of statistics increases rapidly as

the number of taxa increases. For example, there are 92 sta-

tistics that contain information to infer the correct four-taxon

rooted tree.

Statistical Inference Using EP Rooting Invariants

In this section we derive the posterior probabilities for infer-

ence of the correct three-taxon rooted tree. The three possible

rooted trees correspond to three alternative hypotheses

(figs. 3 and 4), namely HE: tree E is the true tree, HF: tree F

is the true tree, and HG: tree G is the true tree. Under the

principles of EP, the hypotheses can be expressed in terms of

the expected values of the components of U (table 1). We

assume all three trees are equally probable in the absence of

prior sequence data, that is, P(Hr)¼1/3 where r 2{E,F,G}. By

Bayes theorem, the probability of a rooted tree given the ob-

served data can be expressed as:

P Hr jUð Þ ¼
P UjHrð ÞP

t2fE, F, Gg

P UjHtð Þ
ð17Þ

where P(UjHr) is the probability of the observed sequence data

given tree r is the true tree. Because we assume each of the

rooted trees is equally probable a priori, these posterior prob-

abilities are equivalent to Akaike weights (Burnham and

Anderson 1998).

Let M be the vector of expected values, E(U) and let mk the

expected value of k-th statistic comprising U, Uk. One ap-

proach to inference is to approximate P(UjHr) by the multivar-

iate normal density, f ðUjHr , M̂r , �rÞ where M̂r , is the sample

estimate of E(U) under Hr and �r is the sample estimate of the

12 by 12 variance–covariance matrix under Hr (Mood et al.

1974). Equation (17) then yields

P Hr jUð Þ ¼
j�r j

�1=2 exp �1=2 U�Mrð Þ
T ��1

r U�Mrð Þ
� �

P
t2fE, F, Gg

j�t j
�1=2 exp �1=2 U�Mtð Þ

T ��1
t U�Mtð Þ

� �
ð18Þ

The matrix �r is composed of estimates of the variances and

covariances of the EP statistics. Expressions for these estimates

are derived in the next section.

Variances and Covariances of the Three-Taxon Rooting
Invariants

We first formalize the definition of an EP statistic. For s

aligned taxa, there are 4s possible combinations of the

four nucleotides at each site. The data consist of the ob-

served nucleotide spectrum Ns, a 4s vector tallying each of

these combinations over the observed sites. The sum of the

counts, N ¼
P4s

i¼1 Ni, is equal to the total number of aligned

nucleotides. Ignoring site-to-site variation, Ns is modeled as a

4s multinomial. We restrict attention to statistics that are

linear combinations of these counts, with coefficients �1,

0, or 1. Let Ur denote such a statistic. Ur can be written

concisely as vector products, N, Vh i ¼
P4s

i¼1 NiVi, where V is

a vector of length 4s whose components that are �1, 0, or

1. Ur is an EP statistic of tree � if its expected value is zero

when tree � is the true tree. An invariant vector of tree �,

Vq, is any non-zero vector that, when multiplied by Ns gen-

erates an EP statistic Ur when tree t is the true tree. For

example, the two-taxon statistic, U1 is the vector product of

N2 and V1¼ (0,0,1,�1,0,0,�1,1,0,0,0,0,0,0,0,0), and U2 is

the product of N2 and V2¼ (0,0,0,0,0,0,0,0,1,

�1,0,0,�1,1,0,0).

For linear invariants, Uj and Uk the expected value of Uj,

the variance of Uj and the covariance of Uj and Uk can be

calculated by recalling that for multinomial counts, Nm and

Nq, E(Nm)¼Npm, Var(Nm)¼Npm(1�pm), and Cov(Nm,

Nq)¼�Npmpq (Mood et al. 1974).

�j ¼ EðUjÞ ¼ N
X4s

i¼1

Vj, ipi ð19Þ

Var Uj

� �
¼ N

X4s

i¼1

V2
j, ipi �

X4s

i¼1

Vj, ipi

 !2
0
@

1
A ð20Þ

CovðUj , UkÞ ¼ N
X4s

i¼1

Vj, iVk, i
pi �

X4s

i¼1

Vj, ipi

X4s

i¼1

Vk, ipi

 !
ð21Þ

Estimates of the expected value, variance, and covariance

follow from substituting the sample estimate of pi, pi¼Ni/N,

into equations (19–21):

�̂j ¼
X4s

i¼1

Vj, iNi ð22Þ

VârðUjÞ ¼
X4s

i¼1

V2
j, iNi�

�̂2
j

N
ð23Þ

CôvðUj , UkÞ ¼
X4s

i¼1

Vj, iVk, iNi�
�̂j�̂k

N
ð24Þ
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When mj is constrained to be zero, (22)–(24) reduce to:

�̂j ¼ 0 ð25Þ

VârðUjÞ ¼
X4s

i¼1

V2
j, i

Ni ð26Þ

CôvðUj , UkÞ ¼
X4s

i¼1

V
j, i

V
k, i

Ni ð27Þ

Equations (25–27) were used to construct the test statistics

(eqs. 5–16, 17) for the three-taxon case. The expressions for

the variances and covariances can be easily calculated by in-

troducing rules of multiplication for the simplified notation

based on the Kronecker product representation of V andP4s

i¼1 VjiVkiNi ¼ Uj � Ukwhere � is multiplication branch by

branch,

X1Y2Z3 � R1S2T3 ¼ X � Rð Þ1 Y � Sð Þ2 Z � Tð Þ3 ð28Þ

Within any branch i, the rules of multiplication, *, are:

A� Gð Þ � A� Gð Þ ¼ A+Gð Þ ð29Þ

C� Tð Þ � C� Tð Þ ¼ C+Tð Þ ð30Þ

A+G+C+Tð Þ � A+G+C+Tð Þ ¼ A+G+C+Tð Þ ð31Þ

A� Gð Þ � C� Tð Þ ¼ C� Tð Þ � A� Gð Þ ¼ 0 ð32Þ

A� Gð Þ � A+G+C+Tð Þ

¼ A+G+C+Tð Þ � A� Gð Þ ¼ A� Gð Þ
ð33Þ

C� Tð Þ � A+G+C+Tð Þ

¼ A+G+C+Tð Þ � C� Tð Þ ¼ C� Tð Þ
ð34Þ

A+G� C� Tð Þ � A+G� C� Tð Þ ¼ A+G+C+Tð Þ ð35Þ

A� Gð Þ � A+G� C� Tð Þ

¼ A+G� C� Tð Þ � A� Gð Þ ¼ A� Gð Þ
ð36Þ

C� Tð Þ � A+G� C� Tð Þ

¼ A+G� C� Tð Þ � C� Tð Þ ¼ � C� Tð Þ
ð37Þ

A+G� C� Tð Þ � A+G+C+Tð Þ ¼ A+G+C+Tð Þ

� A+G� C� Tð Þ ¼ A+G� C� Tð Þ:
ð38Þ

where we have dropped the subscript i to reduce the clutter in

the notation. If for any branch i (W*V)i¼ 0, then Uj � Uk¼0.

Using these rules, any of the variance or covariance terms of

matrix Vr (eq. 18) can be determined, for example, using the

transversion, purine and pyrimidine difference operator

notation:

Côv UE1, UEF2ð Þ ¼#R1Y2Y3 � #Y1R2X3 �
�̂E1�̂EF2

N

¼#0102ðT� CÞ3 �
�̂E1�̂EF2

N

¼�
�̂E1�̂EF2

N

Following the same logic, we can derive the expressions for

the covariances and variances for three taxa:

VârðUE1Þ ¼ #ðA+GÞ1ðC+TÞ2ðC+TÞ3 �
�̂2

E1

N

VârðUE2Þ ¼ #ðC+TÞ1ðA+GÞ2ðA+GÞ3 �
�̂2

E2

N

VârðUF1Þ ¼ #ðC+TÞ1ðA+GÞ2ðC+TÞ3 �
�̂2

F1

N

VârðUF2Þ ¼ #ðA+GÞ1ðC+TÞ2ðA+GÞ3 �
�̂2

F2

N

VârðUG1Þ ¼ #ðC+TÞ1ðC+TÞ2ðA+GÞ3 �
�̂2

G1

N

VârðUG2Þ ¼ #ðA+GÞ1ðA+GÞ2ðC+TÞ3 �
�̂2

G2

N

VârðUEF1Þ ¼ #ðA+GÞ1ðC+TÞ2ðA+G+C+TÞ3 �
�̂2

EF1

N

VârðUEF2Þ ¼ #ðC+TÞ1ðA+GÞ2ðA+G+C+GÞ3 �
�̂2

EF2

N

VârðUEG1Þ ¼ #ðA+GÞ1ðA+G+C+TÞ2ðC+TÞ3 �
�̂2

EG1

N

VârðUEG2Þ ¼ #ðC+TÞ1ðA+G+C+TÞ2ðA+GÞ3 �
�̂2

EG2

N

VârðUFG1Þ ¼ #ðA+G+C+TÞ1ðA+GÞ2ðC+TÞ3 �
�̂2

FG1

N

VârðUFG2Þ ¼ #ðA+G+C+TÞ1ðC+TÞ2ðA+GÞ3 �
�̂2

FG2

N

CôvðUE1, UEF1Þ ¼ �#ðA+GÞ1ðC+TÞ2ðC� TÞ3 �
�̂E1�̂EF1

N

CôvðUE1, UEG1Þ ¼ �#ðA+GÞ1ðC� TÞ2ðC+TÞ3 �
�̂E1�̂EG1

N

CôvðUE2, UEF2Þ ¼ #ðC+TÞ1ðA+GÞ2ðA� GÞ3 �
�̂E2�̂EF2

N

CôvðUE2, UEG2Þ ¼ #ðC+TÞ1ðA� GÞ2ðA+GÞ3 �
�̂E2�̂EG2

N

CôvðUF1, UEF2Þ ¼ �#ðC+TÞ1ðA+GÞ2ðC� TÞ3 �
�̂F1�̂EF2

N

CôvðUF1, UFG1Þ ¼ �#ðC� TÞ1ðA+GÞ2ðC+TÞ3 �
�̂F1�̂FG1

N

CôvðUF2, UEF1Þ ¼ #ðA+GÞ1ðC+TÞ2ðA� GÞ3 �
�̂F2�̂EF1

N

CôvðUF2, UFG2Þ ¼ #ðA� GÞ1ðC+TÞ2ðA+GÞ3 �
�̂F2�̂FG2

N

CôvðUG1, UEG2Þ ¼ �#ðC+TÞ1ðC� TÞ2ðA+GÞ3 �
�̂G1�̂EG2

N

CôvðUG1, UFG2Þ ¼ �#ðC� TÞ1ðC+TÞ2ðA+GÞ3 �
�̂G1�̂FG2

N

CôvðUG2, UEG1Þ ¼ #ðA+GÞ1ðA� GÞ2ðC+TÞ3 �
�̂G2�̂EG1

N

CôvðUG2, UFG1Þ ¼ #ðA� GÞ1ðA+GÞ2ðC+TÞ3 �
�̂G2�̂FG1

N

and for all other Uj and Uk combinations,

CôvðUj , UkÞ ¼ �
�̂

j
�̂

k

N
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Goodness-of-Fit Invariants and Test Statistics

For three taxa, there are 6 goodness-of-fit invariants,

U12A¼#R1Y2S3, U12B¼#Y1R2S3, U13A¼ #R1S2Y3, U13B¼

#Y1S2R3, U23A¼ #S1R2Y3, and U23B¼ #S1Y2R3 (Nguyen

1992; Sinsheimer 1994.). Let U be the vector of

goodness-of-fit invariants. We approximate the density of U

with a multivariate normal density and denote the sample

estimate of the six by six variance–covariance matrix as �̂.

The test statistic has a quadratic form, UT �̂�1U, and has a

chi-square density with 6 degrees of freedom (Rao 1973),

which provides a test of the null hypothesis that all the

goodness-of-fit invariants are zero. (More generally, when

there are r taxa there are r(r�1) goodness-of-fit invariants

and the corresponding test statistic has a chi-square density

with r(r�1) degrees of freedom).

As in the case of the rooting invariants, we use the within

branch multiplication rules (in particular eqs. (29–34)) to derive

the entries of �̂. The variance of U12A is

VârðU12AÞ ¼ #ðA+GÞ1ðC+TÞ2ðA+G+C+TÞ3 �
�̂2

12A

N and the

variance of U12B is VârðU12BÞ ¼ #ðC+TÞ1ðA+GÞ2ðA+

G+C+TÞ3 �
�̂2

12B

N . The variances for the other goodness-of-fit

invariants have the same forms, just with permuted taxon

labels. The dependence among invariants is reflected in the

covariances, the off diagonal terms of this matrix:

CôvðU12A, U13AÞ ¼ #ðA+GÞ1ðC� TÞ2ðC� TÞ3 �
�̂12A�̂13A

N

CôvðU12B, U13BÞ ¼ #ðC+TÞ1ðA� GÞ2ðA� GÞ3 �
�̂12B�̂13B

N

CôvðU12A, U23BÞ ¼ #ðA� GÞ1ðC+TÞ2ðA� GÞ3 �
�̂12A�̂23B

N

CôvðU12B, U23AÞ ¼ #ðC� TÞ1ðA+GÞ2ðC� TÞ3 �
�̂12B�̂23A

N

CôvðU13A, U23AÞ ¼ #ðA� GÞ1ðA� GÞ2ðC+TÞ3 �
�̂13A�̂23A

N

CôvðU13B, U23BÞ ¼ #ðC� TÞ1ðC� TÞ2ðA+GÞ3 �
�̂13B�̂23B

N

and for all other Uj and Uk combinations,

CôvðUj , UkÞ ¼ �
�̂

j
�̂

k

N (Nguyen T, 1992; Sinsheimer, 1994.)

(Rao, 1973).
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