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Abstract

Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the accu-

mulation of undifferentiated white blood cells (blasts) in the bone marrow. Valosin-contain-

ing protein (VCP) is an abundant molecular chaperone that extracts ubiquitylated substrates

from protein complexes and cellular compartments prior to their degradation by the protea-

some. We found that treatment of AML cell lines with the VCP inhibitor CB-5083 leads to an

accumulation of ubiquitylated proteins, activation of unfolded protein response (UPR) and

apoptosis. Using quantitative mass spectrometry-based proteomics we assessed the

effects of VCP inhibition on the cellular ubiquitin-modified proteome. We could further show

that CB-5083 decreases the survival of the AML cell lines THP-1 and MV4-11 in a concen-

tration-dependent manner, and acts synergistically with the antimetabolite cytarabine and

the BH3-mimetic venetoclax. Finally, we showed that prolonged treatment of AML cells with

CB-5083 leads to development of resistance mediated by mutations in VCP. Taken

together, inhibition of VCP leads to a lethal unfolded protein response in AML cells and

might be a relevant therapeutic strategy for treatment of AML, particularly when combined

with other drugs. The toxicity and development of resistance possibly limit the utility of VCP

inhibitors and have to be further explored in animal models and clinical trials.

Introduction

The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic cascade in which ubi-

quitin E3 ligases transfer ubiquitin onto substrate proteins and thereby target them for degra-

dation [1]. Cancer cells are characterized by uncontrolled growth and frequently rely on rapid

protein turnover. Targeting the UPS has emerged as a therapeutic strategy for cancer: the pro-

teasome inhibitor bortezomib is approved for treatment of multiple myeloma (MM) and
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mantle cell lymphoma (MCL). More recently, additional proteasome inhibitors including car-

filzomib and ixazomib have been developed and approved for clinical use in MM [2–4].

Valosin-containing protein (VCP) (also known as p97 or CDC48 in yeast) is a key compo-

nent of the UPS that cooperates with a group of adaptor proteins to extract substrates from

multi-subunit protein complexes and cellular compartments, unfolds them, and subjects them

to degradation by the 26S proteasome. VCP ensures protein quality control within the endo-

plasmic reticulum (ER) by extracting misfolded proteins from the ER membrane in a process

termed endoplasmic reticulum-associated degradation (ERAD). VCP is also involved in the

regulation of autophagy, receptor-mediated endocytosis, and chromatin-associated degrada-

tion of proteins involved in DNA replication and DNA damage repair [5, 6].

VCP belongs to the adenosine triphosphates (ATPases)-associated with various cellular

activities (AAA+) family and is composed of two ATPase domains (D1 and D2) as well as the

N-domain [7]. VCP inhibition can be achieved by a range of small molecule inhibitors includ-

ing NMS-873 (allosteric, non-competitive mode of action) [8] and CB-5083 (reversible ATP

competitive mode of action), the latter being an orally-bioavailable compound developed by

Cleave Biosciences [9, 10]. Inhibition of VCP has been tested in diverse cancer cell lines and

tumor models: CB-5083 has been suggested to decrease cell growth in MM [11], acute lympho-

blastic leukemia (ALL) [12], and lymphoma [13, 14]. A recent study suggests that inhibition of

VCP disrupts the cellular DNA repair and thereby inhibits proliferation of AML cells [15].

Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the accu-

mulation of undifferentiated white blood cells (blasts) in the bone marrow. In adults, who

develop AML at the age of 60 or more, current treatment strategies are able to induce remis-

sions, however frequent relapses lead to 2-year survival rate of only 10%-50% [16]. Historically

AML has been treated with combination chemotherapy consisting of the antimetabolite cyto-

sine β-D-arabinofuranoside (cytarabine) and the anthracycline daunorubicin. More recently,

with the advent of high-throughput tumor genome sequencing, the genetic heterogeneity of

AML has been explored. Re-occurring genetic alterations identified in AML are mutations in

components of the signal transduction (e.g. FLT3, KIT, KRAS, NRAS), nulceophosmin-1

(NPM1), myeloid transcription factors, chromatin modifiers, tumor suppressors (e.g. TP53,

WT1) and genes associated with DNA methylation (e.g. TET1, TET2, IDH1, IDH2, DNMT3B,

DNMT1, DNMT3A) as well as gene fusions involving transcription factors. The identification

of reoccurring genetic alterations has spurred the development of targeted therapies for AML

and by now multiple drugs have entered the clinic: the tyrosine kinase inhibitors midostaurin

and gilteritinib have proven efficacious in the treatment of patients harboring FLT3 mutations

and mutation-specific inhibitors of IDH1 and IDH2 have shown promising activity in patients

with relapsed AML. The BH3-mimetic venetoclax that blocks the anti-apoptotic B-cell lym-

phoma-2 (Bcl-2) protein and has recently shown great promise in the treatment of patients with

relapsed AML including previously difficult to treat subgroups with TP53 alterations [10, 17].

There have been also attempts to target components of the ubiquitin-proteasome system in

AML: the MDM2 (E3 ligase) antagonist RG7112 exerts antileukemic effects by stabilizing p53

(Roche, phase 1) [18]. Pevonedistat (TAK-924 or MLN4924) inhibits cullin-RING E3 ligases

by destabilizing neural precursor cell expressed developmentally down-regulated protein 8

(NEDD8)-activating enzyme (NAE), leading to ubiquitin activation inhibition and decreased

AML growth (Takeda, currently in phase 1, 2 and 3) [19]. Recently, inhibitors of VCP have

shown efficacy in preclinical AML models and a phase I trial with the VCP inhibitor CB-5083

has been performed (NCT02243917 and NCT02223598). However, the clinical development

of CB-5083 has been stopped due to off-target effects resulting in vision problems. An

improved molecule developed by the same company recently entered phase I for the treatment

of AML, MDS and solid cancers (NCT04402541 and NCT04372641) [15].
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In a targeted small-hairpin RNA (shRNA)-based genetic screen for UPS-related genes

required for AML cell proliferation and survival we identified VCP as a candidate gene. In this

work we demonstrated that VCP inhibition using the VCP inhibitors CB-5083 and NMS-873

leads to accumulation of ubiquitylated proteins, activation of the unfolded protein response

and induction of apoptosis in AML cells. We also showed a synergistic effect of VCP inhibition

with cytarabine and venetoclax that are currently used in the treatment of AML. Finally, we

established CB-5083 resistant cell lines to the investigate mechanism that can lead to develop-

ment of resistance against VCP inhibition. In summary, our results provide further insights

into the role of VCP inhibition in AML and show that mutations in VCP can provide a resis-

tance mechanism to VCP inhibitors in AML cells.

Results

VCP inhibition induces an unfolded protein response in AML cells

To assess the short-term effects of VCP inhibition, we treated acute myeloid leukemia (AML)

cells with the VCP inhibitors NMS-873 and CB-5083 as well as with the proteasome inhibitor

MG-132 for 16 hours (Fig 1). Inhibition of VCP induced a robust accumulation of ubiquity-

lated protein species in a dose-dependent manner in THP-1 (Fig 1A) as well as in a long-term

culture of primary AML cells (FFM05) (Fig 1B). The accumulation of ubiquitylated protein

species mirrored the effect induced by the proteasome inhibitor MG-132 (Fig 1A and 1B). We

further assessed the activation of the unfolded protein response (UPR) upon inhibition of

VCP in THP-1, a AML cell line with wild-type fms-like tyrosine kinase 3 (FLT3), and MV4-11,

a cell line carrying an FLT3-internal tandem duplication (ITD) mutation. Immunoblotting

revealed an increased expression of the UPR transducers immunoglobulin heavy chain-bind-

ing protein (BiP) (also known as 78 kDa glucose-regulated protein or GRP78), inositol-requir-

ing protein 1α (IRE1α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK),

and ER oxidoreductase 1 (Ero1)-α (Fig 1C). The levels of calnexin remained unchanged and

CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP), an apoptotic

marker, was detected neither in THP-1 nor in MV4-11 cells. Overall, these results show a

potent inhibition of the ubiquitin-proteasome system and an activation of the unfolded pro-

tein response in AML cells treated with the VCP inhibitor CB-5083.

VCP inhibition by CB-5083 alters the ubiquitin-modified proteome of

AML cells

In order to characterize the effects of VCP inhibition by CB-5083 on the ubiquitin-modified

proteome of AML cells and to uncover its substrates, we employed quantitative mass spec-

trometry-based proteomics. To this end, THP-1 and MV4-11 cells were metabolically labelled

with amino acids incorporating stable isotopes in cell culture (SILAC). For the analysis of the

ubiquitin-modified proteome, light labelled cells were treated with DMSO and heavy labelled

cells were treated with 200 nM CB-5083 for 6 hours. Subsequently, proteins from both cell

pools were isolated, mixed and digested into peptides using trypsin. Ubiquitin-modified pep-

tides were enriched using diGly-specific antibodies and subjected to liquid chromatography

and tandem mass spectrometry analysis (LC-MS/MS). Data analysis was performed using the

MaxQuant software package.

The data demonstrated an increased ubiquitylation of diverse proteins including VCP itself,

its adaptors (FAF1), proteasome components (PSMA3, PSMC3), autophagy-related proteins

(AMBRA1, SQSTM1), transmembrane proteins (ANKRD13A, SMIM14) and DNA damage

response factors (DDB1, WRNIP1) (Fig 2A and 2B, S1 Table).
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Fig 1. Inhibition of VCP leads to accumulation of ubiquitylated proteins and activates the unfolded protein response (UPR) in human acute

myeloid leukemia (AML) cells. Immunoblot showing poly-ubiquitylated proteins in THP-1 cells (A) and in a primary human AML long-term culture

(FFM05) (B) after treatment with the VCP inhibitors CB-5083 or NMS-873 or the proteasome inhibitor MG-132. (C) Immunoblot showing expression

of UPR-associated proteins in THP-1 and MV4-11 cells after treatment with 200 or 500 nM CB-5083 overnight.

https://doi.org/10.1371/journal.pone.0266478.g001
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VCP inhibition with CB-5083 impairs growth and induces apoptosis in

AML cells

Subsequently, we tested whether short-term inhibition of VCP can induce apoptosis of AML

cells. We employed a dual staining with DNA-binding compound 7-aminoactinomycin D

(7-AAD) and phosphatidylserine-binding protein annexin V with flow cytometry-based read-

out. Similar to H2O2 used as a positive control, overnight treatment with 1 μM CB-5083 led to

pronounced apoptosis in MV4-11 cells (Fig 3A and 3B). No apoptosis was observed in cells

treated overnight with 200 nM CB-5083. In sum, higher concentrations of CB-5083 are capa-

ble of inducing an anti-leukemic effect via the apoptotic pathway.

CB-5083 impairs AML cell growth

Next, we asked whether VCP inhibition using the specific inhibitors CB-5083 and NMS-873

affects proliferation and survival of AML cells. To this end, cells were seeded in 96-well plates

with increasing concentrations of CB-5083 or NMS-873, and cell viability was assessed after 72

hours using a fluorimetric assay based on resazurin reduction. The IC50 values of CB-5083 in

the AML cell lines THP-1, MV4-11 and KG-1 ranged from 208 to 281 nM, whereas the IC50

values of NMS-873 were consistently one order of magnitude higher, ranging from 1.25 to

1.60 μM in the tested cell lines (Fig 4A and 4D). The long-term culture of primary AML cells

(FFM05) was slightly less sensitive to VCP inhibition with an IC50 value of 528 nM for CB-

5083 and 3.37 μM for NMS-873 (Fig 4A and 4D).

To assess potential effects of VCP inhibition on normal cells, we also determined the IC50

values for the VCP inhibitors in hematopoietic progenitors (CD34-positive cells isolated from

healthy donors) and in the human bone marrow-derived stromal cell line HS-5. In CD34-posi-

tive cells isolated from healthy donors the IC50 for CB-5083 ranged from 353 to 374 nM (Fig

4B and 4C). The IC50 value for CB-5083 in HS-5 cells was 356 nM (Fig 4C and 4D).

Taken together, CB-5083 exerts a dose-dependent effect on proliferation and survival in dif-

ferent AML cell lines. However, we also observed similar IC50 values for hematopoietic pro-

genitors and bone marrow stromal cells.

Fig 2. Dynamics of the ubiquitin-modified proteome in AML cells after VCP inhibition. (A) SILAC ratio distribution of all

quantified ubiquitylation sites in MV4-11 and THP-1 cells. (B) Scatter plot showing SILAC ratios of quantified ubiquitylation sites

in MV4-11 and THP-1 cells after treatment with the VCP inhibitor CB-5083.

https://doi.org/10.1371/journal.pone.0266478.g002
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Fig 3. Inhibition of VCP induces apoptosis in AML cells. (A) MV4-11 cells were treated with 200 nM or 1 μM CB-5083

overnight. Cells that were left untreated or treated with 500 mM H2O2 served as control. Induction of apoptosis was

assessed by dual staining with Annexin V and 7-AAD. Relative fluorescence of Annexin V and 7-AAD is shown for all

conditions. (B) Quantification of the data.

https://doi.org/10.1371/journal.pone.0266478.g003
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Fig 4. VCP inhibition reduces AML cell growth and survival. (A) AML cell lines THP-1, MV4-11, and KG-1 as well as the primary AML

long term culture FFM05 were treated with different concentrations of CB-5083 and NMS-873. Cell count was measured after 72 hours

and IC50 values for all cell lines were estimated. Additionally, IC50 values for CB-5083 were determined for CD34-positive cells from

donors (B) and for the human bone marrow stromal cell line HS-5 (C). (D) Summary of all determined IC50 values.

https://doi.org/10.1371/journal.pone.0266478.g004
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CB-5083 and cytarabine synergistically decrease AML cell survival

The pyrimidine nucleoside analogue cytosine β-D-arabinofuranoside (cytarabine) is one of

the most widely used drugs for the therapy of patients with AML. Cytarabine is also frequently

combined with other cytostatic drugs or with specific inhibitors such as venetoclax to yield

synergistic effects [20, 21]. We set out to investigate whether there is a synergistic effect of the

VCP inhibitor CB-5083 and cytarabine. To this end, AML cell lines THP-1 and MV4-11 AML

were seeded into 96-well plates with different concentrations of CB-5083 and cytarabine. Cell

viability was assessed after 72 hours as described above and the data from the cell viability

assays were used as input for the SynergyFinder web tool in order to generate 2D and 3D syn-

ergy landscape maps [22]. A positive value of the δ score indicates synergy (Fig 5); the ZIP

model was used as a reference model (the expected response corresponds to an additive effect

as if the two drugs do not affect the potency of each other). The experiments showed a δ score

of 7.023 for THP-1 and 8.189 for MV4-11 cells, indicating that the two drugs (CB-5083 and

cytarabine) synergistically affect proliferation and survival of the tested cell lines.

In addition to cytarabine, we evaluated the BH3-mimetic venetoclax as a potential combi-

nation partner for CB-5083. The BH3-mimetic venetoclax blocks the anti-apoptotic B-cell

lymphoma-2 (Bcl-2) protein and thereby induces apoptosis in cancer cells. Recently, clinical

trials have demonstrated the efficacy of venetoclax for the treatment of patients with AML [21,

23]. We showed that VCP inhibition can lead to induction of apoptosis in AML cells (Fig 3).

Therefore, we also set out to investigate if the VCP inhibitor CB-5083 and the Bcl-2 inhibitor

Venetoclax synergistically reduce viability in AML cells. As in case of CB-5083/cytarabine, we

could observe a synergistic effect of CB-5083/venetoclax on AML cell proliferation/survival

with a more pronounced effect in THP-1 cells (Fig 5C and 5D).

Prolonged treatment of AML cells with CB-5083 leads to development of

resistance

We further tested whether prolonged treatment of AML cells can lead to resistance against

inhibition of VCP by CB-5083. To this end, MV4-11 cells were adapted stepwise to a growth in

presence of up to 1 μM CB-5083 over the course of three months. To assess the activation of

the UPR in cells consistently exposed to CB-5083 we monitored the expression of UPR mark-

ers in MV4-11 cells grown in absence and in presence of 200 or 500 nM CB-5083 (Fig 6A).

The expression of BiP, protein disulfide-isomerase (PDI), IRE1α and PERK was increased in

cells grown in presence of CB-5083 and correlated with the concentration of CB-5083 in the

media. We also detected an increased amount of polyubiquitylated protein species in cells

grown in the presence of CB-5083. The levels of calnexin remained unchanged whereas those

of Ero1-α were slightly lower. Of note, CCAAT/enhancer-binding protein (C/EBP)-homolo-

gous protein (CHOP), an apoptotic marker, was detected in neither parental nor in CB-

5083-resistant cells. An analysis of apoptosis using a 7-AAD/annexin V staining revealed no

induction of apoptosis in MV4-11 cells grown in the presence of 1 μM CB-5083 (Fig 6B and

6C).

After establishment of the resistant cell lines, we withdrew CB-5083 from the media for two

days and performed a 72-hour cell survival assay in order to determine the IC50 of CB-5083 in

these cells. The IC50 values in CB-5083-resistant cells were consistently higher than in the

parental cell line, ranging from 407 nM for cells grown in presence of 500 nM CB-5083 to

~5 μM in cells grown in presence of 1 μM CB-5083 (Fig 6D and 6E).

To detect whether the CB-5083-resistant AML cells might harbor mutations in VCP, we

isolated genomic DNA, amplified the relevant DNA regions by PCR and analyzed the

sequence by Sanger DNA sequencing. This analysis could identify a homozygous single
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Fig 5. CB-5083 and cytarabine or venetoclax synergistically decrease AML cell survival. (A-D) THP-1 and MV4-11 cell survival was

assessed in a 96-well format with increasing concentrations of CB-5083 and cytarabine or venetoclax. Following a 72-hour incubation,

CellTiter-Blue Reagent was added and fluorescence/cell viability was assessed. Cell viability data was used as input for the SynergyFinder

software to estimate synergy δ scores. Synergy landscape maps display δ scores for the indicated cells lines and drug combinations.

https://doi.org/10.1371/journal.pone.0266478.g005
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Fig 6. CB-5083-resistant MV4-11 cells exhibit features of permanent endoplasmic reticulum (ER) stress but no apoptosis.

(A) Immunoblot showing induction of ER stress in inhibitor-resistant cells after a few months of continuous treatment with 200

and 500 nM CB-5083. (B and C) Flow cytometry analysis using Annexin V and 7-AAD staining showed decreased apoptosis in

CB-5083-resistant cell lines. (D and E) IC50 values for CB-5083 in the indicated cell lines upon withdrawal and re-treatment with

CB-5083. (F) Analysis of the coding sequence of VCP identified a variant (c.1591C>A p.I531L) in the cell line treated with 1 μM

CB-5083.

https://doi.org/10.1371/journal.pone.0266478.g006
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nucleotide variant in exon 13 of VCP (c.1591C>A p.I531L) in cells grown in presence of 1 μM

CB-5083 (Fig 6F). The identified variant is located in the second ATPase domain (D2) of VCP.

Discussion

Treatment of patients with AML remains a challenge and novel therapies are urgently needed.

In a targeted shRNA-based genetic screen for UPS-related genes required for AML cell sur-

vival, we identified VCP as a candidate gene.

In this study we employed the specific VCP inhibitor CB-5083 to demonstrate that inhibi-

tion of VCP in AML cells leads to accumulation of ubiquitylated proteins, activation of the

UPR and reduces survival of multiple AML cells lines. Previous studies have indicated that

VCP inhibition decreased the survival of multiple cancer cell lines: CB-5083 has been reported

to diminish cell survival of human multiple myeloma [11], human acute lymphoblastic leuke-

mia [12] and human mantle cell lymphoma [14]. A recent study also investigated the effect of

VCP inhibition on AML cells [15].

The mechanisms how inhibition of VCP affects AML cell survival remain incompletely

understood. To gain further insights into the mechanism of action we employed quantitative

mass spectrometry-based proteomics to identify substrates of VCP in AML cells. Our results

reveal that VCP targets multiple components of the ubiquitin-machinery as well as proteins

involved in autophagy and DNA damage repair/response. These findings are in line with a

recently published study that links VCP to the cellular DNA repair in AML cells [15].

We further demonstrate that combinations of the VCP inhibitor CB-5083 with the antime-

tabolite cytarabine or the Bcl-2 inhibitor venetoclax act synergistically in killing different AML

Interestingly, also another recently published study highlights a synergistic effect of VCP and

Bcl-2 inhibition [15].

We also investigated if prolonged treatment of AML cells with CB-5083 can induce devel-

opment of resistance: Aim of the unfolded protein response is to restore ER protein homeosta-

sis however prolonged unfolded protein response can lead to induction of apoptosis. CHOP is

considered a central regulator of ER stress induced apoptosis and its expression can be induced

by the PERK–eIF2α–ATF4 as well as IRE1α–TRAF2 signaling axis. Interestingly, we observed

reduced levels of PERK and IRE1α in cells that have been exposed to the VCP inhibitor CB-

5083 for extended time periods (Figs 1C and 6A). The reduced expression levels of these pro-

teins might be a result of the adaptation to persistent ER stress and potentially prevent induc-

tion of apoptosis. At concentrations above 1 μM we observed acquisition of a resistance

mutation in the ATPase domain of VCP (p.I531L). Resistance-conferring mutations in the D1

and D2 region of VCP have been described before [9, 23, 24] but to our knowledge the resis-

tance mutation reported in this study has not been described before (Table 1).

Table 1. Potential CB-5082 resistance mutations characterized in this and previous studies.

Study Cancer type (cell line) Variants (domain)

This study Acute myeloid leukemia (MV4-11) p.I531L (D2)

Bastola et al. (2017) Ovarian cancer (OVSAHO) p.E470K (D1-D2 linker)

p.E470D (D1-D2 linker)

p.Q603� (D2)

p.N616Mfs�63 (D2)

Anderson et al. (2015) Colorectal cancer (HCT116) p.P472L (D1-D2 linker)

p.Q473P (D1-D2 linker)

p.V474A (D1-D2 linker)

p.N660K (D2)

p.T688A (D2)

Wei et al. (2018) Colorectal cancer (HCT116) p.P472L (D1-D2 linker)

https://doi.org/10.1371/journal.pone.0266478.t001
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In summary, we demonstrate that inhibition of VCP in AML cells induces a potent

unfolded protein response and apoptosis and decreases cell proliferation. We observe synergis-

tic effects in cells treated with CB-5083 and cytarabine as well as with CB-5083 and the Bcl-2

inhibitor venetoclax. These results suggest that inhibition of VCP alone or in combinations

with other drugs might serve as a therapeutic strategy in patients suffering from AML. Clinical

development of CB-5083 was terminated because an off-target effect resulting in vision prob-

lems has been observed (NCT02243917 and NCT02223598). However, an improved molecule

developed by the same company is currently in phase I trials for the treatment of AML, MDS

and solid cancers (NCT04402541 and NCT04372641). We also observed that VCP inhibition

affects proliferation of CD34-positive hematopoietic progenitors and that prolonged treatment

with the VCP inhibitor CB-5083 induces development of resistance, possibly limiting the clini-

cal utility of VCP inhibitors.

Material and methods

Inhibitors

CB-5083, NMS-873 and MG-132 were purchased from Selleck Chemicals, cytosine β-D-arabi-

nofuranoside (cytarabine) was purchased from Sigma-Aldrich. All inhibitors were dissolved in

dimethyl sulfoxide (Sigma-Aldrich).

Antibodies

The following primary antibodies were used (dilution 1:1,000): mouse monoclonal ubiquitin

antibody (P4D1) (cat. no. sc-8017, Santa Cruz); rabbit monoclonal β-actin antibody (D6A8)

(cat. no. 8457, Cell Signalling); ER stress sampler kit (cat. no. 9956, Cell Signalling) containing

BiP (C50B12) (cat. no. 3177), calnexin (C5C9) (cat. no. 2679), Ero1-α (cat. no. 3264), IRE1α
(cat. no. 3294), CHOP (L63F7) (cat. no. 2895), PERK (D11A8) (cat. no. 5683), and PDI anti-

body (C81H6) (cat. no. 3501). The following secondary antibodies were used (dilution

1:10,000): peroxidase AffiniPure F(ab’)2 fragment goat anti-rabbit IgG (H+L) and peroxidase

AffiniPure F(ab’)2 fragment goat anti-mouse IgG (H+L) (cat. no. 111-036-003 and 115-036-

003, Jackson ImmunoResearch Laboratories).

For flow cytometry, dye coupled antibodies CD11b-APC (cat. no. 130-098-088, BD),

CD34-PE (8G12) (cat. no. 345802, BD), and CD45-V450 (cat. no. 642275, BD) were used for

direct detection (dilution 1:100).

Cell culture

Acute monocytic leukemia cell lines THP-1 and MV4-11 were obtained from DSMZ and bone

marrow stromal cell line HS-5 from ATCC. Cell culture reagents were obtained from Thermo

Fisher Scientific unless otherwise stated.

Acute myeloid leukemia (THP-1 and MV4-11) were maintained in RPMI 1640 medium

supplemented with 10% (v/v) heat-inactivated FBS, 2 mM L-glutamine, penicillin and strepto-

mycin in a humidified incubator at 37˚C and 5% CO2. Establishment of FFM05 cells has been

previously described [25]. FFM05 cells were maintained in X-Vivo medium (Lonza) supple-

mented with 10% (v/v) FBS HyClone, 2 mM L-glutamine, and human recombinant growth

factory: thrombopoietin (TPO) (25 ng/ml), stem cell factor (SCF) (50 ng/ml), FMS-related

tyrosine kinase 3 ligand (FLT3-I) ligand (50 ng/ml), and interleukin-3 (IL-3) (20 ng/ml) (Mil-

tenyi Biotech).
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Donor samples and CD34+ mononuclear cell enrichment

CD34+ mononuclear cells were isolated from peripheral blood samples after G-CSF stimula-

tion. Use of the samples for research purposes was approved by the Ethics Committee of the

University of Frankfurt (statement 329–10) and donors gave written consent for use of the

samples. For purification, cell samples were diluted with PBS and carefully transferred on top

of Ficoll-Paque (cat. no. 17-5442-02, GE Healthcare). Following a gradient centrifugation at

400×g for 30 min. at room temperature, the upper plasma layer was removed, and the inter-

phase was collected for CD34+ cell enrichment using the CD34 MicroBead Kit (cat. no. 130-

046-702, Miltenyi Biotech) according to the manufacturer’s instructions. After magnetic sepa-

ration, cells were centrifuged and resuspended in complete X-Vivo medium.

For assessment of purity, cells were stained with fluorescent dye coupled antibodies

(CD11b, CD34 and CD45 antibody) and Fixable Viability Dye eFluor 780 (cat. no. 65-0865-14,

eBioscience). Flow cytometry analysis was performed on a LSRFortessa flow cytometer (BD

Biosciences) and data was analyzed using the FACSDiva software (BD Biosciences).

After assessment of purity, the cells were seeded in 96-well plates for survival assays (see

below).

Apoptosis assays

Apoptosis assays were performed using the FITC Annexin V Apoptosis Detection Kit with

7-AAD (cat. no. 640922, BioLegend). To this end, 1 million cells were washed with PBS/2%

FCS, centrifuged at 1,200 rpm for 5 min. at room temperature and resuspended in 400 μl

Annexin V Binding Buffer (AVBP). Subsequently, samples were divided into 4 aliquots. One

aliquot served as an unstained control, and the other aliquots were combined with either FITC

Annexin V, 7-AAD, or both. Following incubation for 15 min. at room temperature, 400 μl

AVBP was added and the cells were analyzed on the flow cytometer. The following emission

filters were used: 7-AAD G-610/20, Annexin V B-530/30. Compensation was enabled for the

channel G-610/20 minus % B-530/30 (spectral overlap 0.30%).

Cell survival assays, IC50 determination and synergy calculation

Cell viability was assessed using the CellTiter-Blue Cell Viability Assay (Promega) according to

manufacturer’s instructions. Briefly, cells were seeded in triplicate in 96-well plates and inhibi-

tors were added at the indicated concentrations and incubated for 72 hours. Fluorescence was

measured 4 h after the addition of the CellTiter -Blue Reagent. Experiments were repeated

three times unless otherwise indicated.

Baseline fluorescence (medium only) was subtracted from all values, and concentration

data was log-transformed in order to determine IC50 values using GraphPad Prism. The fol-

lowing function was used: log(agonist) vs. response—Find ECanything; effective concentration

(ECF) parameter F = 50.

For assessment of synergy, cells were treated with CB-5083 and cytarabine or venetoclax

combinations within a 96-well plate. R-based SyngeryFinder software was used to evaluate the

synergy between CB-5083 and cytarabine or venetoclax as described previously [22].

Protein isolation and immunoblot

Cells were washed twice in PBS, lysed in modified RIPA buffer (50 mM Tris-HCl pH 7.5, 1

mM EDTA, 0.1% Na-deoxycholate, 150 mM NaCl, 1% NP-40, protease inhibitor cocktail, 5

mM β-glycerophosphate, 5 mM NaF, 1 mM Na-orthovanadate, 10 mM N-ethylmaleimide),
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and centrifuged at 15,000×g for 15 min. at 4˚C. Protein concentrations were estimated using

Bradford Reagent (AppliChem).

Protein extracts were combined with 4× Laemmli Sample Buffer (Bio-Rad), boiled for 10

min at 70˚C, resolved on MiniPROTEAN TGX pre-cast 4–15% SDS-polyacrylamide gels (10-

or 15-well), and transferred onto Hyperfilm enhanced chemiluminescence (ECL) nitrocellu-

lose membranes (GE Healthcare). Following the transfer, membranes were blocked with 5%

milk in TBST, and probed with primary and secondary antibodies. For visualization Super-

Signal West Femto Maximum Sensitivity ECL Substrate (Thermo Fisher Scientific) and an

Odyssey imaging system (LI-COR Biosciences) were used.

Mass spectrometry-based proteomics

SILAC (stable isotope labelling with amino acids in cell culture) was performed as described

previously [26]. Briefly, cells were washed and resuspended in light and heavy SILAC media—

arginine/lysine-free RPMI supplemented with dialysed FCS (lot no. 14J422, cat. no. F0392,

Sigma-Aldrich). The following light/heavy isotopes of amino acids were used: arginine-0

(light) (cat. no. A6969, Sigma-Aldrich); arginine-10 (heavy) (cat. no. CNLM-539-H-1, Cam-

bridge Isotope Laboratories); lysine-0 (light) (cat. no. L8662, Sigma-Aldrich); and lysine-8

(heavy) (cat. no. CNLM-291-H-1, Cambridge Isotope Laboratories). Cells were then cultured

in 6-well plates for approximately 4 weeks. For assessment of proteome dynamics after VCP

inhibition, cells were treated with 200 nM CB-5083 or DMSO for 6 (ubiquitylome analysis) or

24 h (proteome analysis), washed, centrifuged, and lysed in a modified RIPA buffer.

Ubiquitylome analysis was performed as described previously [27]: proteins were precipi-

tated in fourfold excess of ice-cold acetone and subsequently re-dissolved in denaturation

buffer (6 M urea, 2 M thiourea in 10 mM HEPES pH 8.0). Cysteines were reduced with 1 mM

dithiothreitol and alkylated with 5.5 mM chloroacetamide [28]. Proteins were digested with

endoproteinase Lys-C (Wako Chemicals) and sequencing grade modified trypsin (Sigma).

Protease digestion was stopped by addition of trifluoroacetic acid to 0.5%, and precipitates

were removed by centrifugation. Peptides were purified using reversed-phase Sep-Pak C18

cartridges (Waters) and eluted in 50% acetonitrile. For ubiquitin remnant peptide enrichment,

20 mg of peptides was re-dissolved in immunoprecipitation buffer (10 mM sodium phosphate,

50 mM sodium chloride in 50 mM MOPS pH 7.2). Precipitates were removed by centrifuga-

tion. Modified peptides were enriched using 40 μl of di-glycine-lysine antibody resin (Cell Sig-

naling Technology). Peptides were incubated with the antibodies for 4 h at 4˚C on a rotation

wheel. The beads were washed three times in ice-cold immunoprecipitation buffer followed by

three washes in water. The enriched peptides were eluted with 0.15% trifluoroacetic acid in

water, fractionated in six fractions using micro-column-based strong-cation exchange chro-

matography (SCX) [29], and desalted on reversed-phase C18 StageTips [30].

Peptide fractions were analyzed on a quadrupole Orbitrap mass spectrometer (Q Exactive

Plus, Thermo Fisher Scientific) equipped with a UHPLC system (EASY-nLC 1000, Thermo

Fisher Scientific) as described previously [31]. Peptide samples were loaded onto C18

reversed-phase columns (15 cm length, 75 μm inner diameter, 1.9 μm bead size) and eluted

with a linear gradient from 8 to 40% acetonitrile containing 0.1% formic acid in 2 h. The mass

spectrometer was operated in data-dependent mode, automatically switching between MS and

MS2 acquisition. Survey full scan MS spectra (m/z 300–1,700) were acquired in the Orbitrap.

The 10 most intense ions were sequentially isolated and fragmented by higher energy C-trap

dissociation (HCD) [32]. An ion selection threshold of 5,000 was used. Peptides with unas-

signed charge states, as well as with charge states< +2, were excluded from fragmentation.

Fragment spectra were acquired in the Orbitrap mass analyzer.
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Raw data files were analyzed using MaxQuant (version 1.6.17.0) [33]. Parent ion and MS2

spectra were searched against a database containing 88,473 human protein sequences, human

protein sequences obtained from the UniProtKB using Andromeda search engine. Spectra

were searched with a mass tolerance of 6 ppm in MS mode, 20 ppm in HCD MS2 mode, strict

trypsin specificity and allowing up to three miscleavages. Cysteine carbamidomethylation was

searched as a fixed modification, whereas protein N-terminal acetylation, methionine oxida-

tion, N-ethylmaleimide modification of cysteines (mass difference to cysteine carbamido-

methylation), and di-glycine-lysine were searched as variable modifications. Site localization

probabilities were determined by MaxQuant using the PTM scoring algorithm as described

previously. The dataset was filtered based on posterior error probability (PEP) to arrive at a

false discovery rate of below 1% estimated using a target-decoy approach [34]. Di-glycine

lysine-modified peptides with a minimum score of 40 and delta score of 6 are reported and

used for the analyses.

Secondary statistical analysis was performed using the R software environment (version 4.1.1).

Generation of resistant cell lines

For generation of CB-5083-resistant cells, MV4-11 cells were cultured with increasing concen-

tration of CB-5083 (200 nM to 1.5 μM). For the analysis of the VCP sequence, genomic DNA

was extracted from cell pellets using the Blood & Cell Culture DNA Midi Kit (cat. no. 13343,

Qiagen). Coding sequences of VCP were PCR-amplified using the primers listed below. The

PCR products were cleaned up using the NucleoSpin Gel and PCR Clean-up Kit (cat. no.

740609.250, Macherey-Nagel) and analysed by Sanger sequencing using M13 primers (Micro-

synth Seqlab). DNA sequence alignment was performed with CLC Sequence Viewer (Qiagen).

Name Forward primer sequence Reverse primer sequence

VCP-Ex-

11_12

TGTAAAACGACGGCCAGTGGGTCTTTGAGGC
AGCATA

CAGGAAACAGCTATGACTGACTCACCCTGGA
CCAAGT

VCP-Ex-13 TGTAAAACGACGGCCAGTAATGGAGGGGATG
CTTCTG

CAGGAAACAGCTATGACGCCCTCAGGCAAAT
CAATAC

VCP-Ex-14 TGTAAAACGACGGCCAGCATGCTGGTTTCGG
ATTTCT

CAGGAAACAGCTATGACGCCTGAGGACTCAT
GCAAGT

VCP-Ex-15 TGTAAAACGACGGCCAGGGGTTGGTCTAAAG
GGAAGG

CAGGAAACAGCTATGACTCTCCATGATTGGCA
CATCT

VCP-Ex-16 TGTAAAACGACGGCCAGTTTCCAGAGTGCAT
TGACAAGT

CAGGAAACAGCTATGACTTTGGTGTAGGTCCCC
AAAG
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