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Abstract

As China’s political and economic centre, the Beijing–Tianjin–Hebei (BTH) urban agglomer-

ation experiences serious environmental challenges on particulate matter (PM) concentra-

tion, which results in fundamental or irreparable damages in various socioeconomic

aspects. This study investigates the seasonal and spatial distribution characteristics of

PM2.5 concentration in the BTH urban agglomeration and their critical impact factors. Spatial

interpolation are used to analyse the real-time monitoring of PM2.5 data in BTH from Decem-

ber 2013 to May 2017, and partial least squares regression is applied to investigate the lat-

est data of potential polluting variables in 2015. Several important findings are obtained: (1)

Notable differences exist amongst PM2.5 concentrations in different seasons; January

(133.10 mg/m3) and December (120.19 mg/m3) are the most polluted months, whereas July

(38.76 mg/m3) and August (41.31 mg/m3) are the least polluted months. PM2.5 concentra-

tion shows a periodic U-shaped variation pattern with high pollution levels in autumn and

winter and low levels in spring and summer. (2) In terms of spatial distribution characteris-

tics, the most highly polluted areas are located south and east of the BTH urban agglo-

meration, and PM2.5 concentration is significantly low in the north. (3) Empirical results

demonstrate that the deterioration of PM2.5 concentration in 2015 is closely related to a set

of critical impact factors, including population density, urbanisation rate, road freight volume,

secondary industry gross domestic product, overall energy consumption and industrial pol-

lutants, such as steel production and volume of sulphur dioxide emission, which are ranked

in terms of their contributing powers. The findings provide a basis for the causes and condi-

tions of PM2.5 pollution in the BTH regions. Viable policy recommendations are provided for

effective air pollution treatment.
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Introduction

The rapid urbanisation, industrialisation and modernisation that China has undergone have

improved household income and living standards but have also led to extensive and severe

issues of air pollution. In particular, air pollution has become a major environmental challenge

for most Chinese cities [1–5]. Various particulate matters (PMs) are recognised as key air pol-

lutants that have serious adverse impacts on human health. Scientific reports indicate that

excessive exposure to high PM concentrations reduces the expected human lifespan by 1–5.5

years [6]. In 2013, the WHO identified PMs as the leading cause of human cancer.

Atmospheric PM can be divided into several categories on the basis of their aerodynamic

diameters, namely, total suspended PM, PM with a particle size below 10 μm (PM10) and fine PM

(PM2.5) [7–8]. Fine PM2.5 with a diameter less than 2.5 mm is widely recognised as one of the

most detrimental airborne PMs because small particle pollutants can enter the lungs and alveolar

macrophage through breathing [9]. Long-term exposure to PM2.5 leads to high incidences of car-

diovascular and respiratory diseases and chronic bronchitis cases. According to the Global Burden

of Disease 2010 Comparative Risk Assessment, high PM2.5 concentrations have caused 3.1 million

deaths worldwide [10]. Despite the apparent reductions on ‘traditional pollutants’ (e.g. NO2 and

SO2) in recent years, PM2.5 has become a major air pollutant that threatens human morbidity and

mortality in developing countries [11–15]. Severe and frequent smog and haze weather (high

PM2.5 concentration) have also become major barriers for China in attracting foreign investments

and talents [16]. Although PM2.5 has been incorporated in the official monitoring and appraisal

system in Europe and North America for more than 30 years [17–19], China only included PM2.5

as a routine monitoring indicator in 2013. Numerous studies have focused on PM2.5 pollution in

developed and emerging economies [20–26]. Some studies showed that 20%–30% of PM2.5 in

Chinese cities originated from coal combustion [20, 22, 27, 28]. For example, Aldabe et al. (2011)

[29] investigated the chemical compositions and source apportionments of PM2.5 in North Spain,

Cesari et al. (2018) [26] studied seasonal variability in Southern Italy and Lonati et al. (2005) [30]

examined PM2.5 composition in Milan, Italy. Ram et al. (2008) [31] confirmed that the contribu-

tion of secondary organic carbon to PM2.5 is relatively high in developing countries, such as India.

Donkelaar et al. (2010) [32] developed the first global PM2.5 distribution map based on satellite

data. The data indicated that most polluted regions are mainly located in North Africa and East

Asia. In conclusion, relevant studies show that chemical compositions and source apportionments

of PM2.5 significantly vary in different regions and countries.

At the end of the last century, China officially incorporated PM10 and PM2.5 in its official

environmental monitoring and appraisal system [33]. Several studies showed that Beijing’s

annual average PM10 mass concentration maintained a consecutive upward trend, increasing

from 162 μg/m3 to 166 μg/m3 from 2000 to 2002 (Beijing Environmental Protection, 2004,

2005) [34, 35]. Beijing’s annual average PM2.5 concentration, which was measured at five sites,

was relatively high in 2000, varying from 87.6 μg/m3 to 111.9 μg/m3 [36]. From January 2004

to December 2012, high levels of PM10 and PM2.5 were obtained in Beijing, with annual mean

values of 138.5 ± 92.9 μg/m3 and 72.3 ± 54.4 μg/m3, respectively [37]. The Beijing–Tianjin–

Hebei (BTH) region is the largest urban agglomeration in North China and is the core eco-

nomic zone in China. According to China Environmental Status Bulletin 2015 [38], 70 cities at

the prefecture level and above in BTH and surrounding regions experienced 1710 episodes of

severe pollution in 2014, which accounted for 41% of the national total [39].

Mainstream literature on China’s air quality has focused on the chemical compositions of

air pollutants, namely, elemental constituents, organic compounds and major inorganic ions

[27, 28]. Several studies based on remote sensing and modelling techniques revealed that

PM2.5 concentrations in China’s urban areas are significantly higher than in rural areas [40,
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41]. Zhang et al. (2013) [22] indicated that motor vehicle ownership is the key contributing

factor to Beijing’s air pollution, accounting for 63% of the carbonaceous components on

PM2.5, whereas coal combustion is the main air pollutant source in Tangshan, accounting for

30% of PM2.5 compositions. Ma and Zhang (2014) [16] investigated the PM2.5 distribution

characteristics in China from 2001 and 2010 based on satellite data developed by Battelle

Memorial Institute. Their study confirmed that the spatial aggregation effects of PM2.5 are

apparent in China. Specifically, highly polluted areas are mainly concentrated in the BTJ

region, Yangtze River Delta (YRD) and the linking zones.

Several studies have focused on the PM2.5 characteristics in the BTH region. Using data

from 1497 station-based monitoring sites, Shen and Yao (2017) [42] investigated the effects of

demographic and economic factors on PM2.5 concentration in four urban agglomerations,

namely, BTH, YRD, Pearl River Delta (PRD) and Chengdu–Chongqing (CC). The estimated

results indicated that a high correlation exists amongst population density, economic affluence

and PM2.5 concentration. Geography is another important determining factor for PM2.5 concen-

tration because high altitudes are usually associated with high PM2.5 concentrations. Zhou et al.

(2017) [43] investigated the impact of economic and ecological factors on PM2.5 concentrations

by using a two-stage distribution lag model. Their estimated results indicated that the emission

of atmospheric pollutants causes hysteresis effects on PM2.5 concentrations. Specifically, coal

consumption, industrial exhaust, value-added from heavy pollution industry and the ownership

of ‘yellow label car’, which are heavy-polluting vehicles, are the key sources of PM2.5 pollutant

emissions. On the basis of panel data in the last 10 years, Li and Yin (2017) [44] utilised a panel

threshold model to investigate the nonlinear changing patterns between socioeconomic develop-

ment and PM2.5 concentration. The study confirmed that the development of the manufacturing

and construction sectors and the growth of automobile volumes aggravate PM2.5 pollution when

the value-added of the tertiary industry is below the threshold value of 6,080 billion. Moreover,

the development of the second and third industries was noted to be an effective roadmap to alle-

viate PM2.5 pollution when the value-added of the tertiary industry exceeds 6,080 billion. Su and

Zhong (2015) [45] analysed the natural and man-made contributing factors of PM2.5 in nine key

economic circles in China, such as BTH, YRD, PRD and CC, by using a factor analysis method.

They concluded that the effects of human activities are more significant than those of natural fac-

tors, and industrial activities are the important contributing factors of PM2.5.

These findings also stimulated another key question regarding the seasonal and spatial

characteristics and critical impact factor of PM2.5 concentrations. However, considering the

insufficient long-term and large-scale PM2.5 concentration data [46], especially the lack of

real-time monitoring data [47], few studies have quantitatively estimated these factors in BTH

regions [5, 48]. Although the BTH urban agglomeration is recognised as one of the most

severely polluted regions in China [24, 49], analyses on the seasonal and spatial characteristics

of PM2.5 spanning a long period are limited [50–52].

The present study aims to estimate the PM2.5 concentration characteristics in the BTH

urban agglomeration. Specifically, the key objectives of this study are as follows: 1) to investi-

gate the relationships between seasons and PM2.5 concentrations (i.e. seasonal variation char-

acteristics), 2) to evaluate the spatial distribution of PM2.5 concentrations in different cities

and 3) to investigate the critical impact factors of PM2.5 concentrations. Real-time monitoring

data spanning December 2013 to May 2017 are collected from 80 atmospheric physics observa-

tion points by the China Meteorological Administration. Several studies have investigated

Beijing’s PM2.5 concentration [8, 27, 53]. However, the data sources of these studies were

mainly based on satellite images [47], and few studies collected PM2.5 real-time monitoring

data to significantly improve the estimation accuracy. The current study derives a reliable and

accurate estimation on the spatial and seasonal characteristics of PM2.5 concentration.
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This study provides novel contributions to existing literature as follows: 1) A unique PM2.5

data source with a long-time span from December 2013 to April 2017 is used. Real-time moni-

toring data are consistent with the reliable estimation of satellite data. 2) An array of novel and

promising techniques, namely, remote sensing techniques, spatial interpolation and partial

least squares (PLS) regression are employed, all of which provide an insightful analysis on

PM2.5 characteristics in the BTH region. Specifically, spatial interpolation is a powerful

approach to replace the traditional inversion method in reflecting PM2.5 concentrations at

near-ground level [54]. PLS regression is an effective approach to cope with the multicollinear-

ity issue when a large number of independent variables are included in the estimation. 3) Vari-

ous variables are considered in identifying the critical impact factors of PM2.5. Considering

that peripheral or distant sources commonly affect the air pollution of a city, this study pro-

vides a complete analysis on PM2.5 characteristics of a city and a region.

Data and research methods

Study area

The study area used is the BTH urban agglomeration, which is also called the Greater Beijing

region (Fig 1). This area is located in Northeast China, at longitude 113˚04’ to 119˚53’ east and

36˚01’ to 42˚37 ’ north. It measures 218,000 km2 and had more than 100 million residents as of

2016 (National Bureau of Statistics of China, 2016). The BTH urban agglomeration is the larg-

est urban agglomeration and the most developed economic centre in northern China. Beijing

is the political capital, cultural and information centre of China and is one of the largest mega-

cities worldwide, with more than 21 million people and 5.7 million vehicles in 2016 [55].

Given the importance of the Greater Beijing region, severe air pollution has been the leading

environmental challenge, with frequent occurrences of fog and haze. Related statistical consen-

sus indicate that the total annual mean values of Beijing’s PM10 and PM2.5 concentrations

from 2012 to 2015were 138.5 ± 92.9 μg/m3 and 2.3 ± 54.4 μg/m3, respectively [37].

Data sources

In terms of urban distribution and prefectural boundary, prefectural boundary layers at a scale

of 1:4,000,000 are obtained from the National Geomatics Centre of China.

Fig 1. Geographic information of the BTH urban agglomeration.

https://doi.org/10.1371/journal.pone.0201364.g001
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PM2.5 concentration data in the BTH urban agglomeration from December 2013 to May

2017 cover 12 cities, namely, Beijing, Tianjin, Tangshan, Zhangjiakou, Baoding, Handan,

Chengde, Qinhuangdao, Xingtai, Cangzhou, Langfang and Shijiazhuang (For details, see Fig 2

and S2 Table).

This monitoring dataset is obtained from the atmospheric physics sites of the 12 cities by

the Ministry of Environmental Protection of China. The remote sensing data from the Atmo-

spheric Composition Analysis Group (2016) [56] are initially used in BTH region. Compared

with the remote sensing data on PM2.5 (Atmospheric Composition Analysis Group, 2016)

[56], spatial interpolation has higher accuracy than remote sensing data in reflecting PM2.5

concentrations at near-ground level in this study.

These data are measured by 80 monitoring stations distributed throughout the BTH region

(Fig 3). Each monitoring station automatically measures monthly PM2.5 concentrations.

Cangzhou, which is a small city, has three air quality monitoring stations. Other cities have

more than five air quality monitoring stations that are distributed from the suburbs to down-

town. The annual average of PM2.5 concentration for each monitoring station is calculated

Fig 2. Geographic allocation of the 12 cities in the BTH urban agglomeration.

https://doi.org/10.1371/journal.pone.0201364.g002
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based on the hourly real-time data. Beijing, Tianjin and Hebei have 12, 15 and 53 atmospheric

physics observation points, respectively. Table 1 describes the geographic information on sev-

eral atmospheric physics observation points. The geographic information of all observation

points is shown in S1 Table. In terms of data standardisation, the collected PM2.5 values at

2:00, 8:00, 14:00 and 20:00 from different observation points are averaged to derive the daily

Fig 3. Geographic allocation of 80 atmospheric physics observation points.

https://doi.org/10.1371/journal.pone.0201364.g003

Table 1. Geographic information on some atmospheric physics observation points.

City Observation Point Longitude Latitude

Beijing Wanshougong West 116.3747278 39.88565298

Tianjin Municipal inspection centre 117.1655924 39.10485468

Baoding Huadian 115.520781 38.8918471

Source: China Meteorological Administration

https://doi.org/10.1371/journal.pone.0201364.t001
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and monthly PM2.5 concentrations of a city. The PM2.5 concentration of 12 sites is the average

of 80 sites.

Table 2 describes an array of PM2.5-related variables summarised from an extensive litera-

ture review. These variables are tested to identify the critical impact factors for PM2.5 concen-

tration. Existing studies on identifying the key contributing factors of PM2.5 concentration in

China have mainly focused on demographic and economic aspects and other chemical air pol-

lutants. Yang and Chen (2017) [57] used independent variables, namely, coal consumption,

cement production, automobile volume, population and gross domestic product (GDP). Lu

et al. (2017) [58] incorporated the following variables in their estimation, namely, population

density, annual volume of bus passengers, road freight, proportion of secondary industry to

overall GDP, volume of SO2 emissions and volume of industrial soot emission. Ma and Xiao

(2017) [59] considered urbanisation, energy consumption structure[60] and construction

areas in their investigation. On the basis of an extensive literature review, 12 potential contrib-

uting factors for PM2.5 concentrations are identified (Table 2).

The possible critical impact factors of PM2.5 concentration are selected (Tables 2 and 3),

discussed and included in the estimation model. Since independent variable data in 2016 and

Table 2. Potential critical impact factors for PM2.5 concentration.

Abbreviation Variable Unit Reference

PD Population density Persons/KM2 [1, 2, 4, 5]

UR Urbanisation rate % [1, 2, 4, 5]

RFV Road freight volume 10000 tons [26, 29, 61–63]

SIGDP Secondary industry GDP 100 millions [30]

OEC Overall energy consumption 10000 tons of standard coal [20, 22, 27, 28, 31, 41]

SP Steel production 10000 tons [20, 22, 27, 28, 30, 31, 33]

VOSDE Volume of sulphur dioxide emission Ton [20, 22, 27, 28, 30, 31, 33]

VOISE Volume of industrial soot (dust) emission Ton [20, 22, 27, 28, 30, 31, 33]

CP Cement production 10000 tons [20, 22, 27, 28, 30, 31, 33]

MVO Motor vehicle ownership 10000 units [29, 33, 61]

RPTV Road passenger traffic volume 10000 persons [29, 61]

RNGC Residential natural gas consumption 10000 cubic metres [60]

https://doi.org/10.1371/journal.pone.0201364.t002

Table 3. Statistic description (2015).

Variable Std. Deviation Mean Minimum Maximum

PD 264.25 578.89 96.73 870.29

UR 25.77 44.23 7.10 86.51

RFV 12913.84 20361.00 4152.00 38704.00

SIGDP 2134.57 2182.93 445.09 7723.60

OEC 123147.06 39054.27 472.52 430000.00

SP 3587.67 2800.52 31.85 11179.00

VOSDE 57232.31 81347.50 22070.00 214723.00

VOISE 47176.04 63778.92 12987.00 191713.00

CP 784.35 889.35 141.06 2781.00

MVO 165.84 209.15 60.56 561.90

RPTV 13441.63 9055.83 1163.00 49931.00

RNGC 53139.42 22124.42 666.00 189188.00

Data Resource: National Bureau of Statistics of the People’s Republic of China (2016 a, b)

https://doi.org/10.1371/journal.pone.0201364.t003
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2017 has yet been published by the statistic consensus, this study used the latest data of 2015 in

the PLS model to analyse the critical factors for PM2.5 concentration (For details, see S3

Table).

Population density. A comparison of PM2.5 concentrations with population reveals inter-

esting findings that should be considered. Shijiazhuang, which is the most polluted city, fea-

tures a relatively high population density of 788.14 persons/km2. Handan, the second most

polluted city, has the highest population density of 870.29 persons/km2. Zhangjiakou, which

has the best air quality, presents a low population density of 127.46 persons/km2. Chengde,

with a similar pollution level as Shijiazhuang, also manifests a low population density of 96.73

persons/km2 (Fig 4). A common pattern exists in which population density forms a certain

positive relationship with PM2.5 concentration. However, this pattern is affected by various

critical impact factors that lead to certain variations. Therefore, a detailed investigation on crit-

ical PM2.5 factors should be conducted for a thorough analysis of such particles.

Industrial and energy aspects. The estimation results reveal that PM2.5 concentration in

the BTH urban agglomeration exhibits a distinctive spatial distribution characteristic. Related

literature shows that coal combustion accounts for 20%–30% of PM2.5 pollution in Chinese cit-

ies [20, 22, 27, 28]. In winter, PM2.5 concentration is usually high because coal is used as the

main energy for winter heating. In summer, the situation significantly differs in the BTH

urban agglomeration. For example, motor vehicles account for 63% of the carbonaceous com-

ponents of PM2.5 in Beijing, while coal combustion accounts for 30.3% of PM2.5 compositions

because it is used as the major energy source for industrial production in the city [22]. There-

fore, the present study uses industrial dust and industrial SO2 emissions as parameters to

investigate the air pollution contributions of heating and industrial development. Tangshan

shows the highest volumes of industrial SO2 emission, which amounted to 214,723 t in 2016,

followed by Shijiazhuang and Handan with 113,652 and 110,193 t, respectively. Xingtai and

Handan represent the top two contributors of industrial dust emissions, accounting for

191,713 and 100,738 t, respectively. Fig 5 shows the volume of industrial soot (dust) and sul-

phur dioxide emissions of 12 cities in BTH.

Transportation. Several studies argue that transportation exerts a significant adverse

influence on air pollution [29]. On the basis of available data from statistical consensus, ‘pas-

senger and freight volume of highway traffic’ are used as a parameter for measuring PM2.5

Fig 4. PM2.5 concentration and population density per km2 in 2015. (Unit: μg/m3 refers to the left axis, and Persons/

km2 refers to the right axis).

https://doi.org/10.1371/journal.pone.0201364.g004
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pollution from transportation. Data suggest that polluted cities are generally associated with

high road freight volume. For example, Shijiazhuang, Tangshan and Handan, which are the

most polluted cities, are associated with relatively high freight volumes with 3,695,410,000,

363,580,000 and 387,040,000 t, respectively.

Research methods

The research framework and main research steps are illustrated in Fig 6.

Spatial interpolation. PM2.5 concentration is a scalar description of atmospheric state sig-

nificantly affected by local human activities. Although remote sensing has been improved by

techniques such as regional correlations in recent years, several studies indicate that spatial

interpolation is a powerful approach to replace the inversion method, leading to higher accu-

racy than remote sensing data in reflecting PM2.5 concentrations at near-ground level [40, 54,

64–67]. To address this limitation, spatial interpolation is employed and the results of the

Fig 6. Research framework.

https://doi.org/10.1371/journal.pone.0201364.g006

Fig 5. Volume of industrial soot (dust) and sulphur dioxide emissions in 2015 (Unit: Ton).

https://doi.org/10.1371/journal.pone.0201364.g005
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inversion method are considered as references. Interpolation methods used in regional-scale

factors include inverse distance interpolation (IDW) and Kriging interpolation method

(OKM). OKM is a more widely recognised method for dealing with interpolation points than

IDW [22].

This study uses OKM to simulate seasonal variations of PM2.5 in the 12 cities of the BTH

urban agglomeration. The supporting concept of OKM is that the interpolation results at the

target point are the weighted sum of known attribute values of the samples [68]. In the study

area, x represents the spatial location of point x. z(xi) (i = 1, 2, � � �, n) represents the property

value of sampling point xi (i = 1, 2, � � �, n), and annual mean PM2.5 concentration is the prop-

erty value of point xi. Then, the interpolation result at target point x0 is z(x0):

zðx0Þ ¼
Xn

i¼1

lizðxiÞ:

Where λi (i = 1, 2, � � �, n) depends on undetermined coefficients. Assuming that the entire

study area satisfies the second-order stationary assumption, that is, ‘the mathematical expecta-

tion of z(x) exists and is equal to the constant, that is, E[z(x)] = m’, the covariance function of

variables z(x) exists and only depends on lag value (h), that is, Cov[z(x),z(x +h)] = E[z(x)z(x +

h)] − m2 = C(h).

On the basis of unbiased expectation E[z�(x0)] = E[z(x0)], E[z�(xi)] refers to the spatial vari-

ation of PM2.5 concentration in BTH by OKM in point xi, E[z�(x0)] denotes the spatial varia-

tion of PM2.5 concentration in BTH by OKM in point x0, and z(x0) is the PM2.5 concentration

in point x0. We can conclude that
Pn

i¼1
li ¼ 1. For regionalised variables that satisfy the sec-

ond-order stationary conditions, the estimated variance can be calculated using the following

formula:

s2

E ¼ E½z�ðx0Þ � zðx0Þ�
2
� fE½z�ðx0Þ � zðx0Þ�g

2
¼
Pn

i¼1

Pn
j¼1

liljCi;j � 2
Pn

i¼1
liCi;0 þ C0;0:

To obtain the minimum variance estimation under unbiased conditions, that is,

MinfVar ½z�ðx0Þ � zðx0Þ� � 2m
Pn

i¼1
ðli � 1Þg.

The weight coefficients should satisfy the following equations:

(Pn
i¼1

liCovðxi; xjÞ þ m ¼ Covðx0; xiÞ
Pn

i¼1
li ¼ 1

:

Then, we can calculate the value of λi (i = 1, 2, � � �, n) and obtain the attribute value z�(x0) at

sample point x0.

1. The degree of correlation between t1 and u1 should be the maximum.

The two conditions can be summarised as follows:

Varðt 1Þ ! max

Varðu 1Þ ! max

Varðt 1; u1Þ ! max

After the first principal components t1 and u1 are extracted from X and Y, PLS performs

linear regressions of X and Y on t1. In the PLS estimation, components t1 and u1 have typical

component characteristics. A significant linear relationship between t1 and u1 indicates that X

has a notable correlation with Y, and PLS is appropriate for estimating the contribution of X to
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Y. The algorithm is terminated when the regression equations reach satisfactory levels. Other-

wise, the residuals of X and Y after regression on t1 are used to extract the next principal com-

ponent. The algorithm iterates until the results reach satisfactory levels.

Cross-validation (Qh
2) is used as the measurement criterion to determine whether the

regression results reach the satisfactory level. For the number of extracted principal compo-

nents h, rounding observation i (i = 1,2, � � �, n) for each time, (i = 1,2, � � �, n), the PLS model is

built with the remaining (n−1) observations. Then, observation i is substituted in the fitted

PLS regression equation to obtain the predicted value of yj (j = 1,2, � � �, q) at observation i,

and the predicted value is recorded as cyðiÞjðhÞ. The above calculation is repeated for each i

(i = 1,2, � � �, n). The sum of the squared errors (SSE) for dependent yj is obtained when h prin-

cipal components are extracted and PRESSjðhÞ ¼
Pn

i¼1
ðyij � cyðiÞjðhÞÞ

2
is recorded. Then, the

sum of SSE for Y = [y1, y2, � � �, yq] is obtained and PRESSðhÞ ¼
Pq

i¼1
PRESSjðhÞ is recorded. All

observations are likewise used to fit the regression equation with h principal components. At

this time, the prediction value for observation i is noted as cyðiÞjðhÞ. The sum of SSE for yj is

defined as SSjðhÞ ¼
Pn

i¼1
ðyij � cyðiÞjðhÞÞ

2
, and the sum of SSE for Y is defined as SSðhÞ ¼

Pq
j¼1

SSjðhÞ. Cross-validation is defined as Qh
2 = 1 − PRESS(h)/SS(h − 1) Thus, a cross-valida-

tion test is performed before the end of each modelling step. The model estimation reaches a

satisfactory level of precision and the extraction of components is stopped if Qh
2 < 1 − 0.952 =

0.0975 is satisfied at step h. If Qh
2� 0.0975 is satisfied at step h, then the marginal contribution

of the extracted principal component th is significant, and step (h+1) should be calculated.

After m principal components t1, t2, � � �, tm are finally extracted from X, PLS first performs

a regression of yk on t1, t2, � � �, tm and converts it in the regression equation of yk on x1, x2, � � �,

xp.

The specific procedures of the PLS algorithm are summarised as follows:

Step 1. To simplify the calculation and eliminate the effects of different units of variables, this

study first standardises the original data matrices (X and Y), which are denoted by E0 and

F0.

Step 2. Let t1 be the first principal component extracted from E0. The regression of E0 and F0

on t1 is performed as follows:

E0 ¼ t1p0
1
þ E1; F0 ¼ t1r0

1
þ F1:

Where p1 and r1 refer to regression coefficient vectors, and E1 and F1 represent the corre-

sponding residual matrices. The accuracy of the regression equation is calculated. The algo-

rithm is terminated when the regression equations reach satisfactory levels. Otherwise, let E0 =

E1 and F0 = F1, and iterate the component extraction and regression analysis. Cross validation

(Qh
2) is used to evaluate the model until the expected accuracy is obtained.

Step3. The number of regression components should be selected. The number of regression

components included in the PLS model is important because it directly affects the fitting

accuracy of the model. It should be carefully selected based on cross validation (Qh
2). If Qh

2

is higher or equal to 0.0975, then the marginal contribution of component th is significant

and contributes to the precision of estimation results.

Step4. The regression equation of E0 and F0 on t1, t2, � � �, tm is derived if the model extracts m

principal components. The following regression equation is developed through inverse

transformation.
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In the calculation of PLS, the principle component th should both represent the variation

information of X (xj (j = 1, 2, . . ., p)) and explain the information of Y (yk (k = 1, 2, � � �, q)) as

much as possible. To measure the explanatory power of th for interpreting X and Y, we define

various explanatory powers of th as follows:

1. The explanatory power of th to interpret X: Rd X; thð Þ ¼ 1

p

Pp
j¼1

Rdðxj; thÞ;

2. The cumulative explanatory power of t1, t2, � � �, tm to interpret X: RdðX; t1; tmÞ ¼Pm
h¼1

RdðX; thÞ;

3. The explanatory power of th to interpret Y: Rd Y; thð Þ ¼ 1

q

Pq
k¼1

Rdðyk; thÞ;

4. The cumulative explanatory power of t1, t2, � � �, tm to interpret Y: RdðY; t1; tmÞ ¼Pm
h¼1

RdðY; thÞ.

A significant advantage of PLS regression is the reliable choice of variables. When indepen-

dent variable xj is used to explain the set of dependent variables Y, the variable importance in

projection VIPj can be used to measure the importance of xj in interpreting Y [69].

The expression of VIPj is VIPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
RdðY;t1 ;tmÞ

Pm
h¼1

RdðY; thÞw2
hj

q
, where p represents the number

of independent variables, and whj is the linear combination coefficient of the principal compo-

nent th. For principle component th, th = wh1x1+wh2x2+� � �+whpxp. For h = 1,2, � � �,m,

Pp
j¼1

w2
hj ¼ 1. The explanatory power of xj to Y is transferred by th. Formula VIP2

j ¼

p
Pm

h¼1
RdðY;thÞw2

hjPm
h¼1

RdðY;thÞ
indicates that when the values of Rd(Y;th) and w2

hj are large, VIP2
j will also

gain a large value.

Formula
Pp

j¼1
VIP2

j ¼
Pp

j¼1

p
Pm

h¼1
RdðY;thÞw2

hjPm
h¼1

RdðY;thÞ
¼

p
Pm

h¼1
RdðY;thÞPm

h¼1
RdðY;thÞ

Pp
j¼1

w2
hj ¼ p indicates that if the VIPj

of all independent variables xj(j = 1,2, . . .,p) equals 1, then they all play the same role in inter-

preting Y. Otherwise, xj exerts a significant effect on interpreting Y when VIPj> 1.

Results and discussion

Seasonal variation characteristics of PM2.5 concentration

The average PM2.5 concentration in the BTH urban agglomeration shows a notable periodical

U-shaped variation from December 2013 to May 2017. The annual average PM2.5 concentra-

tion in all cities is 77.79 mg/m3. The monthly variation of PM2.5 concentrations in the BTH

region (Fig 7) shows that the PM2.5 concentration is below 35 mg/m3 for only 8.3% of the time

(Interim target-1 of WHO, 2005). Specifically, PM2.5 concentration is high in autumn and win-

ter and low in spring and summer. This finding is consistent with other findings on China’s

PM2.5 [51, 66, 70]. PM2.5 concentration from January to May shows a downward trend and

from June to September maintains a stable level at 35–65 μg/m3, which is slightly lower than

those from January to May. PM2.5 concentration from October to December exhibits an

upward trend, with an increase from 58.95 μg/m3 to 144.8 μg/m3. The highest average PM2.5

concentration occurs in February 2014 at 142.43 μg/m3, whereas the lowest average PM2.5 con-

centration occurs in August 2016 at 35.46 μg/m3. The highest PM2.5 concentrations are

recorded in December in Shijiazhuang (276.30 mg/m3), whereas the lowest PM2.5 concentra-

tions are recorded in September in Qinhuangdao (14.90 mg/m3). Therefore, a high PM2.5 con-

centration condition generally occurs from October to January, especially in December. The

change in PM2.5 concentration every year is regular from January to December. Estimation

results in the BTH urban agglomeration are consistent with observations.
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Interpolation results add evidence that PM2.5 concentration in the BTH urban agglomera-

tion exhibits a pronounced characteristic of seasonal variation. From December 2013 to May

2017, PM2.5 concentration is significantly high in autumn and winter and low in spring and

summer. Coal burning in Northern China for winter warming can be expected to be the main

contributor to the highest concentration of PM2.5 in the country [20, 22, 27, 28]. Average

PM2.5 concentration measures 135.6 μg/m3 in winter and 64.1 μg/m3 in summer, and the total

mean values of PM2.5 in spring and autumn are 81.5 and 89.6 μg/m3, respectively.

Related studies have recorded that coal consumption for heating in autumn and winter is

the main reason for the difference in values [66]. Coal combustion remains the main way of

heating for residents in winter. Thus, government in the BTH regions are proactively promot-

ing coal substation schemes, such as urban gasification projects. Coal is ‘dirty’ energy, and

emissions of particle pollutants are enormous in winter. Meteorological factors also contribute

to high PM2.5 in winter [39]. Specifically, rainfall in winter is scarce relative to the other sea-

sons, the flushing effect of rainfall to air is little, inhalable particles are easily suspended in air

and low temperature in winter is not conducive to the diffusion of PM2.5 particles.

This study employed OKM to analyse the seasonal variation of PM2.5 concentration of 12

cities in the BTH urban agglomeration from December 2013 to December 2014. The Ministry

of Environmental Protection of the People’s Republic of China (2018) [38] categorises PM2.5

concentration into five classes: (1) 0–50 ug/m3, (2) 50–100 ug/m3, (3) 101–200 ug/m3, (4) 200–

300 ug/m3 and (5) 300–500 ug/m3. Fig 8 shows that PM2.5 concentration for every month is

below the fourth classification of 200–300 ug/m3. The most heavy air pollution areas are

recorded in the southern and eastern parts of the BTH region, especially Shijiazhuang City.

Spatial variation characteristics of pm2.5 concentration

PM2.5 concentration in the BTH urban agglomeration shows a significant spatial variation (Fig

9), which is also recorded in some studies [51, 52, 70]. From 2014 to 2016, PM2.5 concentration

is significantly high in the south and east of BTH urban agglomeration, particularly in Shijia-

zhuang. The mean value of PM2.5 concentration in Shijiazhuang amounts to 104 μg/m3. PM2.5

Fig 7. Seasonal variations of PM2.5 concentration of 12 cities in the BTH urban agglomeration (Unit: μg/m3).

https://doi.org/10.1371/journal.pone.0201364.g007
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Fig 8. Spatial–temporal variation of PM2.5 concentration from January 2015 to December 2015 (Unit: μg/m3).

https://doi.org/10.1371/journal.pone.0201364.g008

Characteristics and critical factors of PM2.5 concentration in Beijing-Tianjin-Hebei urban agglomeration

PLOS ONE | https://doi.org/10.1371/journal.pone.0201364 September 20, 2018 14 / 24

https://doi.org/10.1371/journal.pone.0201364.g008
https://doi.org/10.1371/journal.pone.0201364


concentration is significantly low in the north, particularly in Zhangjiakou. The mean value of

PM2.5 concentration in Zhangjiakou measures 34 μg/m3. From 2014 to 2016, the annual PM2.5

concentration in the BTH urban agglomeration slightly decreases. By means of 3km satellite

aerosol optical depth (AOD) database and geographically and temporally weighted regression

(GTWR) modelling, He et al., (2018) [66] also add evidence to the fact that air pollution in the

BTH urban agglomeration generally showed a decreasing trend from January 2013 to Decem-

ber 2015.

As shown in Fig 10, the remote sensing data is used to analyse the relationship between

PM2.5 concentration and population density, landform, geography and elevation. Remote

sensing data (Fig 10) shows that PM2.5 concentration is low in mountainous and basin regions,

such as Zhangjiakou and Chengde, which are situated more than 1000 feet above sea level.

High sea level is an advantageous landform for blocking the invasion of PM2.5 from peripheral

regions [71]. Regions at high sea levels are also subject to northern and northwest winds,

which benefit the dissemination of PM2.5 pollutants.

Estimation results of PLS regression

Two key plots are considered when examining the performance of PLS regression. The first is

t1/t2 oval plot.

As the first two extracted linear combinations of x1, x2, . . ., xp, t1 and t2 represent the key

information of X variables and exhibit remarkable explanatory power for Y variables [71,72].

The underpinning logic is straightforward: when all t1/t2 points are covered in the oval, raw

data are homogenous and appropriate for model calculations [72]. Fig 11 shows that all the 12

observations of sample points are covered in the oval, indicating that the PLS model is suitable

for use in this study.

Another plot that should be considered is the t1/u1 scatter plot. When t1/u1 of the sample

data shows a nearly linear relationship, PLS is appropriate for studying the issue [73]. As

shown in Fig 12, the scattering of sample data generally shows a linear relationship. Thus, the

PLS model is suitable for use in this study.

Fig 9. Spatial variation of PM2.5 concentration in 2014, 2015 and 2016 (a, b and c) (Unit: μg/m3).

https://doi.org/10.1371/journal.pone.0201364.g009

Characteristics and critical factors of PM2.5 concentration in Beijing-Tianjin-Hebei urban agglomeration

PLOS ONE | https://doi.org/10.1371/journal.pone.0201364 September 20, 2018 15 / 24

https://doi.org/10.1371/journal.pone.0201364.g009
https://doi.org/10.1371/journal.pone.0201364


Fig 10. Remote sensing of BTH.

https://doi.org/10.1371/journal.pone.0201364.g010

Fig 11. t1/t2 oval plot.

https://doi.org/10.1371/journal.pone.0201364.g011
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Table 4 illustrates the overview results of PLS regression. The PLS regression is estimated

by using SIMCA-P (a data analytic software). Two principle components are extracted accord-

ing to the value of cross validation. When two components are extracted, ‘R2X(cum) = 0.510’

indicates that the two components exhibit explanatory powers for 51.0% of the variance of

independent variables. ‘R2Y(cum) = 0.681’ indicates that the two extracted components

explain 68.1% of the information on dependent variables, indicating the acceptable explana-

tion power of the PLS method.

VIP is a critical parameter for measuring the fitting performance of the PLS model [33, 69].

It quantifies the statistical significance of independent variables (X) in explaining dependent

variables. When the VIP value of a variable is higher than 0.8, then the variable is ‘important’

and exhibits significant explanatory powers on the independent variables [69]. Table 5 presents

the significance of 12 independent variables in evaluating the PM2.5 index amongst 12 cities of

the BTH region.

Table 5 shows that the VIP values of most variables reach more than 0.8, that is, most vari-

ables are significant in explaining the PM2.5 concentration. The VIP values of population den-

sity, urbanisation rate and road freight volume are higher than 1.0. These results indicate that

the variables are the three top contributors to PM2.5 concentration in the 12 sample cities of

the BTH urban agglomeration. The VIP values of secondary industry GDP, overall energy con-

sumption, steel production and volume of sulphur dioxide emission are higher than 0.8.

Therefore, these factors are also major drivers of PM2.5 pollutant emission. The rest of the vari-

ables with VIP values in the spectrum of 0.5–0.8 cannot be assessed or are unimportant drivers

of pollutant emission [72].

The VIP value of population density is 1.774, which is the highest explanatory power for

PM2.5 concentration. The VIP value of urbanisation rate in explaining PM2.5 concentration is

1.476, which ranks second, as shown in Fig 13. Previous studies have demonstrated that PM2.5

concentration is particularly high in large cities and urbanised regions [1, 2, 4, 5]. BTH is one

Fig 12. t1/u1 scatter plot.

https://doi.org/10.1371/journal.pone.0201364.g012

Table 4. Overview of PLS regression results.

Number of components R2X(cum) R2Y(cum)

1 0.339 0.424

2 0.510 0.681

https://doi.org/10.1371/journal.pone.0201364.t004
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of the most urbanised, populous and developed urban agglomerations in China, and human

activities, such as transport, productions of secondary industry and energy consumption, are

intensive in this region. Active human activities demand considerable resource and energy

and create significant traffic daily. Numerous studies have reported that vehicular exhaust is

the main source of PM2.5 [61]. Coal and oil, as cost-effective energy, have long been used as

main fuels for the secondary industry in developing countries [30]. In particular, in industrial

zones of BTH, coal consumption is the main fuel for energy- and emission-intensive sectors,

such as those of steel, cement and glass, which are key materials for China’s remarkable infra-

structure build-up in the past decades. Coal combustion is the main air pollution source in this

region [59].

The VIP value of road freight volume totals 1.157 in explaining PM2.5 concentration. Previ-

ous studies have demonstrated that road vehicular exhaust is highly related to PM2.5 concen-

tration [26, 29, 62, 63]. According to literature, road freight volume, particularly those of

heavy-duty trucks, is the main air pollution source in the transportation sector in some cities

[64]. However, in the current study, the VIP value of road passenger traffic volume reaches

only 0.504, which is much less than that of road freight volume. Therefore, this factor is not a

primary air pollutant source.

The VIP value of the secondary industry GDP totals 0.953 in explaining PM2.5 concentra-

tion. In the industrial zones of BTH, such as Tangshan, coal is the main energy in different

Table 5. VIP values of factors.

Abbreviation Corresponding variable VIP value

PD Population density 1.774

UR Urbanisation rate 1.476

RFV Road freight volume 1.157

SIGDP Secondary industry GDP 0.953

OEC Overall energy consumption 0.890

SP Steel production 0.889

VOSDE Volume of Sulphur Dioxide Emission 0.864

VOISE Volume of Industrial Soot(dust) Emission 0.784

CP Cement production 0.762

MVO Motor vehicle ownership 0.749

RPTV Road passenger traffic volume 0.504

RNGC Residential natural gas consumption 0.295

https://doi.org/10.1371/journal.pone.0201364.t005

Fig 13. Variable importance plot.

https://doi.org/10.1371/journal.pone.0201364.g013
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sectors because of their copious coal deposits. However, carbonaceous aerosols are the main

source of PM2.5. Coal combustion and sulphur dioxide are the dominant sources of carbona-

ceous aerosols [61]. Secondary industry, heating for residences in winter and electricity from

coal-fired stations rely heavily on coal combustion [20, 22, 27, 28]. Thus, the VIP value of overall

energy consumption in explaining PM2.5 concentration is high at 0.890. The VIP value of steel

production in BTH in explaining PM2.5 concentration is 0.889, because metal elements corre-

spond to other sources of PM2.5 in China. The process of producing steel requires significant

coal combustion and releases abundant metal elements and sulphur dioxide into air [61]. Stud-

ies have recorded that PM2.5 concentrations exhibit a notable and positive relationship with

associated air pollutants, such as SO2, NO2 and O3, and suggested that those atmospheric pollut-

ants can evolve from primary pollution to secondary pollution and form a vicious cycle [39, 74].

As China’s political and economic centre, the particulate matter (PM) pollution in the Bei-

jing-Tianjin-Hebei (BTH) urban agglomeration attracts extensive attention of the scholars.

Many recent studies investigate PM2.5 concentration characteristics in the BTH region by

using various methods and data sources. Similarities and new evidences of empirical findings

of this study are compared with those of related studies.

First, some findings of this research are generally consistent with conclusions of existing

studies. For example, this study reconfirmed that the annual PM2.5 concentration experienced

a slight downturn in recent years, which is also recorded by He et al (2018) [67]. For temporal

characteristics of PM2.5 concentration, the study captured a periodic U-shaped variation pat-

tern in BTH urban agglomeration with high pollution levels in autumn and winter and low

levels in spring and summer. Yan et al. (2018) [51] also recorded a pronounced characteristic

of seasonal variation. They found that the concentrations increased from late autumn to early

winter and that the PM2.5 concentration decreased rapidly from late winter to early spring. For

spatial aspects, empirical results of this study find that the south and east of the BTH urban

agglomeration where are densely populated are suffered with highest PM2.5 concentration and

that PM2.5 concentration is significantly low in the north. Similar spatial characteristics are

also recorded in existing studies [52, 67].

Second, this study employed data with a long period from December 2013 to May 2017,

which ensures robust and complete understandings on PM2.5 concentration characteristics in

the region. Most studies on the BTH urban agglomeration used either one year cross-sectional

data or daily time series data [50, 51, 70] or outdated data before 2015 [67]. For example, based

on daily monitoring data from 1 January 2014 to 31 December 2014, Liu et al. (2018) [50]

investigated dynamic interactions and relationships between PM2.5 concentrations in different

cities. Estimation results based on a short period of data undermined the understandings on

the temporal characteristics of PM2.5. In addition, since 2015, Chinese government has com-

mitted great efforts and resources in PM2.5 treatment and special focuses are dedicated in the

BTH region. Findings with data before 2015 cannot reflect the recent characteristic of PM2.5

concentrations and effectiveness of PM2.5 treatment.

Third, this research combines the satellite sensing data and monitoring sites data. Some

academics carried out their studies based on satellite sensing data [52,67,75], meanwhile others

used the data obtained from surface monitoring stations [51, 70]. In this study, the surface

monitoring data of 12 cities in the regions are measured by 80 monitoring stations distributed

throughout the BTH region, which is used for statistical modeling. In addition, remote sensing

data is processed by OKM method to uncover the temporal and spatial characteristics. The

remote sensing data are also used to analyze the relationship between PM2.5 concentration and

landform, geography and elevation. Remote sensing data (Fig 10) shows that PM2.5 concentra-

tion is low in mountainous and basin regions, which are situated more than 1000 feet above

sea level.
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Fourth, this study focused on the driving factors of PM2.5 concentration, besides one goal of

investigating the temporal and spatial characteristics. Related studies on the BTH regions are

generally salient on diving facts of PM2.5 concentration. For example, Zheng et al. (2018) [70]

focused on improvement of the real-time forecast. Liu et al.(2018) [50] aim to visualize the

dynamic interactions and relationships between PM2.5 in different cities in the BTH regions.

Yan et al. (2018) [51] investigated the spatiotemporal pattern of PM2.5 concentrations in

China. In this study, a large number of socioeconomic factors are included in the investigation.

Partial least squares (PLS) method to explore the critical driving factors of PM2.5, which is

rarely used in PM2.5 research. Estimation bias caused by multicollinearity of raw data can be

avoided and it can lead to a robust estimation results. Empirical results demonstrate that the

deterioration of PM2.5 concentration in 2015 is closely related to a set of critical impact factors,

including population, transport, industry production, and energy consumption aspects.

Conclusion

PM2.5 is a challenging and urgent air pollutant that should be fully treated in China. The BTH

region is heavily exposed to serious PM2.5 pollution. Previous studies are limited by the lack of

real-time monitoring data and poor consideration of multicollinearity issues amongst depen-

dent variables. This study aims to quantitatively measure the spatial–seasonal concentration

characteristics of PM2.5 and identify critical impact factors. Empirical findings reveal the fol-

lowing. (1) Notable differences in PM2.5 concentrations exist amongst different seasons. Spe-

cifically, a periodical U-shaped variation trend with high pollution levels is found in autumn

and winter and one with low levels is observed in spring and summer. (2) An apparent spatial

distribution pattern exists in which PM2.5 concentration in the south is higher than in the

northern regions in BTH. (3) The deterioration of air pollution is closely related to several crit-

ical impact factors, including population density, urbanisation rate, road freight volume, sec-

ondary industry GDP, overall energy consumption and industrial pollutants (e.g. steel

production and volume of sulphur dioxide emission).

Numerous viable and concrete police recommendations are provided for effective PM2.5

treatment. 1) Decentralisation policy is a viable alternative policy for improvement of PM2.5

treatment. Decentralisation policy is an effective approach for downsizing urban population

and relieving congestion [76, 77]. Empirical studies verify a tight relation between population

density and PM2.5 concentration. For example, rapid population influx in Beijing leads to

PM2.5 concentration deterioration due to associated energy consumption and production.

Population and emission-intensive industries should be decentralised outward under the

cooperated plan of BTH integration. 2) Expansions of high-energy consumption and emission

industries should be constrained. Non-coal or renewable energies, such as natural gas, solar,

biomass and wide and regular hydro power, should be encouraged for wide commercialisation

and deployment. Statuary standards for energy use efficiency and pollutant emission should be

reinforced to raise the consciousness and capability of enterprises on PM2.5 treatments. 3)

Mass transportation should be encouraged by the government and the public. For example, a

complete and convenient mass transportation facility should be developed by the government

to improve public ridership rate; the number of fuel-based motor vehicle ownership should be

restricted; non-fuel cars, such as pure electric and plug-in new energy, should be encouraged;

and diverse low-emission transportation modes, such as walking, cycling, car sharing and sub-

way, should be used by urban residents. 4) Winter is the most heavily polluted season in the

BTH region. Heating and vast coal combustion are associated, to a large extent, to contributing

to high PM2.5 emission. In addition, meteorological conditions in winter are not conducive to

the purification and diffusion of PM2.5 particles, thus adding to PM2.5 pollution. Ma and
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Zhang (2014) [16] emphasised that the wide use of imported low-calorie coal and lignite in

industrial and domestic sectors are particularly adverse for treatments of PM2.5 pollution. The

Chinese government should reduce the use of low-calorie coal and promote energy substations

for clean heating energy. 5) PM2.5 pollution is more serious in the south than in the north. The

government should formulate an industrial restructuring scheme to avoid excessive concentra-

tion of polluting industries in certain regions, plan scientific reallocation for highly polluting

industries and upgrade the energy use efficiency of industrial sectors.
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