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Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing

a heme group that reversibly binds oxygen. The composition of hemoglobin changes

during development in order to fulfill the need of the growing organism, stably maintaining

a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is

composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF)

is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative

defects in β-globin production cause two of the most common monogenic-inherited

disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases

and the relative accessibility of hematopoietic stem cells make them an ideal candidate

for therapeutic interventions based on genome editing. These strategies move in two

directions: the correction of the disease-causing mutation and the reactivation of the

expression of HbF in adult cells, in the attempt to recreate the effect of hereditary

persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity

of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far

on the regulatory mechanisms controlling the differential expression of globin genes

during development.

Keywords: β-hemoglobinopathies, genome editing, globin genes, hereditary persistence of fetal hemoglobin,

programmable endonucleases

INTRODUCTION

Historically, because of the abundance and accessibility of red blood cells, globins served as a
model for major discoveries later extended to other genes. In 1967, hemoglobin was the first
human complex protein crystallized (Muirhead et al., 1967); in 1980, the β-locus was the first
cloned gene cluster (Fritsch et al., 1980) and soon became the prototypical model of tissue-
specific and developmentally regulated genes. In 1987, the β-locus control region (LCR) was the
first long-distance position-independent enhancer characterized (Grosveld et al., 1987), and the
current looping model for the interaction of far apart regulatory regions owes much to the study
of globin gene sequential activation during development (Stamatoyannopoulos, 1991; Fraser and
Grosveld, 1998). The wealth of data accumulated on globin genes put them now at the frontline of
development of genome-editing approaches with therapeutic purposes.

THE GLOBIN GENES

In man, globin genes are organized in two clusters lying on chromosomes 16 (α cluster) and
11 (β cluster). A fine-tuned regulation maintains a 1:1 ratio of α-like and β-like chains during
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development to produce first HBZ (ζ2ε2, ζ2γ2), then HbE
(α2ε2), HbF (α2γ2), and finally HbA (α2β2) together
with a small amount of HbA2 (α2δ2), in a process called
hemoglobin switching.

At the molecular level, the hemoglobin switching involves
the establishment of sequential long-range chromatin physical
interactions between a common LCR and the different globin
promoters active at a given developmental time (with inactive
genes being looped out) in a structure called active chromatin
hub (ACH) (Carter et al., 2002; Tolhuis et al., 2002; Palstra
et al., 2003). The formation of ACH requires the presence
of transcription factors/cofactors that, by binding with the
correct affinity to their consensus on DNA, creates the
favorable condition for the expression of the gene of interest
(Wilber et al., 2011).

β-HEMOGLOBINOPATHIES

Qualitative or quantitative defects in the β-globin production
cause the most common monogenic diseases: sickle cell disease
(SCD) and β-thalassemia (Weatherall, 2008; Thein, 2013);
both diseases, in particular β-thalassemias, are very severe in
homozygous subjects, whereas symptoms are mild in carriers.
In SCD, the amino acid β6Glu>Val substitution leads to the
formation of long hydrophobic polymers of HbS that precipitate
within the cell under hypoxic conditions, conferring the typical
sickle shape. Sickle cells tend to stick, causing vessel obstruction
and, because of their fragility, they frequently undergo hemolysis,
finally leading to anemia.

In β-thalassemias, a wide spectrum of mutations causes
the reduction of β-globin, which can range in severity
from total absence (β0) to partial reduction (β+). Causative
mutations vary from large deletions to small insertions or
deletions (indels) and point mutations within the β gene.
β-thalassemia mutations impact on all the different steps of
the β gene expression regulation (Thein, 2013): transcription
(mutations within regulatory regions), RNA processing (splicing
mutations), and translation (ATG mutations, non-sense and
missense mutations). In rare cases, β-thalassemia is caused by
mutations outside the β-locus, in genes involved in the basal
transcription machinery XPD (Viprakasit et al., 2001) or in
the erythroid-specific transcription factor GATA1 (Yu et al.,
2002). The common output of β-thalassemia mutations is a
reduced production of functional β chains with the consequent
precipitation of the excess α chains causing hemolysis and
anemia. The presence of dysfunctional erythroid progenitors
causes ineffective erythropoiesis (Rivella, 2012) and impacts on
hematopoietic stem cells (HSCs) self-renewal (Aprile et al., 2020).

The definitive cure for β-hemoglobinopathies is HSC
transplantation, a treatment available only for the few patients
who have an HLA-matched donor. Despite intense efforts, the
only drug of some efficacy remains hydroxyurea (Yu et al.,
2020), used to treat SCD (Platt, 2008) and, less successfully,
β-thalassemia (Koren et al., 2008; Pourfarzad et al., 2013).
Although the condition of β-diseased patients have greatly
improved in the last years (Taher et al., 2009), there is a clear need

of new approaches, the most innovative of them being based on
genome modifications.

THE LESSON FROM NATURE:
HEREDITARY PERSISTENCE OF FETAL
HEMOGLOBIN

The term hereditary persistence of fetal hemoglobin (HPFH)
indicates a heterogeneous spectrum of spontaneous mutations,
collectively named by their effect, i.e., the maintenance of the
expression of fetal γ-globin in adult stages (Forget, 1998). HPFH
alleles, when coinherited with β-hemoglobinopathies, greatly
improve the condition of patients, 30% of HbF expression being
considered a significant curative threshold able to prevent α free
chains polymerization in β-thalassemias andHbS precipitation in
SCD (Steinberg et al., 2014). Moreover, δβ-thalassemias, in which
δ and β genes are deleted and γ-globin is reactivated, in general
to a lesser extent than in HPFH, show that even a relatively
low level of γ-globin has beneficial effects on β-thalassemias
(Ottolenghi et al., 1982).

HPFH mutations can be broadly divided in three categories:
large deletions affecting the structure of the β-locus; point
mutations within the γ promoter that identify “hot-spot”
HPFH sequences (−200, −175, −158, -distal CCAAT box); and
mutations non-linked with the β-locus (Forget, 1998). Two of
these non-linked loci, identified by genome-wide association
analysis (GWAS), correspond to BCL11A gene, the most
important repressor of γ-globin (Menzel et al., 2007; Sankaran
et al., 2008; Uda et al., 2008) and to its key activator KLF1
(Borg et al., 2010; Zhou et al., 2010). More recently, knock-out
studies in HUDEP cells led to the identification of LRF gene (also
known as ZBTB7A), which represses γ-globin independently
from BCL11A (Masuda et al., 2016). HPFHmutations within the
β-locus greatly increase the expression of one or both γ genes in
cis, whereas non-linked HPFH are associated with lower γ-globin
levels (Forget, 1998).

The integration of the genetic data on HPFH with molecular
studies led to the identification of the target sequences
amenable for therapeutic genome editing (see below). In 1992,
a pioneer study in mice transgenic for the human β-locus first
demonstrated that it is indeed possible to reproduce HPFH
(Berry et al., 1992).

THERAPEUTIC GENOME MODIFICATIONS:
THE CHOICE OF THE MODIFICATION

In principle, different therapeutic genomic modifications can be
envisaged to cure β-hemoglobinopathies (Figure 1A):

(1) The addition to the defective cell of an intact β gene,
that, once delivered and integrated in the genome of the target
hematopoietic stem cell, will produce the missing β chain under
the control of an exogenous regulatory cassette, designed to
ensure stable, erythroid-specific, and high-level expression. This
approach (not discussed in this review), thanks to intensive
efforts in developing safe and efficient vectors and in the
improvement of their delivery, reached very significant results
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FIGURE 1 | (A) Schematic representation of the different editing strategies developed to cure β-hemoglobinopathies. These approaches are oriented to correct the

mutated β-globin gene, to reactivate the expression of the fetal γ gene in adult cells or to lower α-globin expression. The reactivation of γ can be obtained via the

introduction of different modifications mimicking HPFH caused by large deletions within the β locus or by mutations within the γ promoter that disrupt the binding site

of a repressor or create the binding site of an activator. As an alternative, the disruption of the erythroid-specific enhancer of the γ repressor BCL11A abolishes its

expression in erythroid cells, thus resulting in γ overexpression. A different approach relies on the forced interaction of the LCR with the γ promoter obtained by

exploiting the self-dimerization property of a fusion ZnF-LDB1 protein recruited on these regions. The detrimental effect of the α:β chain imbalance can be mitigated by

mutating the MCS-R2 α-globin enhancer, in order to reduce α expression. These different strategies exploit different enzymes/cellular pathway described in the text:

HDR, homology-directed repair; BE, base editing; NHEJ, non-homologous end joining; MMEJ, microhomology end joining. (B) Schematic representation of the

deletions within the β-locus discussed in the text. Ovals represent the BCL11A (red) and the polypyrimidine (gray) sites thought to be responsible for γ repression.
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(Ikawa et al., 2019; Magrin et al., 2019). Importantly, the
optimization of protocols developed by gene addition approaches
represents a knowledge asset fundamental for bringing genome
editing approaches to clinical application.

(2) The exact correction of the mutation causing the disease
(gene editing), with the advantage of having the β gene
expressed under the endogenous regulatory sequences, thus
ensuring a perfectly regulated and stable expression with no
risk of insertional mutagenesis. This procedure is particularly
attractive for point mutations such as the β6Glu>Val SCD-
causing mutation or for some β-thalassemia mutations, with
the caveat that their extreme heterogeneity would require the
design of patient-specific editing strategies. Under this aspect,
this approach is worth only for mutations with high frequencies
in given populations, as for the HBB −28A>G β-thal mutation
in Southeast Asia or for the β039C>T and β+thal IVS-I-110G>A
mutations in the Mediterranean area (https://www.ithanet.eu/)
(Kountouris et al., 2014).

In an extended perspective, the substitution of the mutated
β gene with a wild-type β gene by homologous recombination
could combine gene addition and gene editing to create a
“universal” substitution cassette, which would minimize the risk
of insertional mutagenesis (Cai et al., 2018).

(3) The introduction within the genome of modifications
mimicking HPFH, in order to reactivate the expression of the
fetal γ-globin gene and to compensate for the missing/defective
β-globin expression.

(4) The reduction of the expression of α-globin, an
important β-thalassemia modifier, as demonstrated by the milder
clinical outcome of patients coinheriting α- and β-thalassemia
(Thein, 2008; Mettananda et al., 2015). Reduced α levels
indeed reduce the α:β chain imbalance, which represent a
major problem in β-hemoglobinopathies. This effect has been
achieved experimentally by deleting the MCS-R2 α enhancer
(Mettananda et al., 2017).

THE ADVENT OF PROGRAMMABLE
ENDONUCLEASES IN THE EDITING OF
GLOBIN GENES: THE SEARCH FOR THE
BEST COMPROMISE BETWEEN
PRECISION AND EFFICIENCY

In 1985, Oliver Smithies first exploited homologous
recombination (HR) to introduce an exogenous DNA sequence
within the β-locus (Smithies et al., 1985), demonstrating the
feasibility of this approach. Since then, HR was used to generate
gene knock-out models (including the KO of GATA1 (Pevny
et al., 1991) and KLF1 (Nuez et al., 1995; Perkins et al., 1995)),
by inserting exogenous DNA in the desired target. However, the
very low efficiency of gene targeting, the consequent need of
selecting the modified cells, and the technical difficulties of the
method discouraged clinical applications (Vega, 1991).

The scenario radically changed with the advent of
programmable endonucleases: zinc finger (ZnF) and TALENs
first and now, CRISPR/Cas9 and its derivatives (Cornu et al.,

2017; Komor et al., 2017). These nucleases introduce double-
strand breaks (DSBs) with extreme specificity at the target
genomic position. CRISPR/Cas9 is the most flexible system: its
cutting specificity relies on a short guide RNA (sgRNA) and only
requires the additional presence of an adjacent genomic proto-
spacer adjacent motif (PAM) for its cut [this limit is actually
being solved by the “near-PAM-less"-engineered CRISPR-Cas9
variants (Walton et al., 2020)]. In order to minimize possible
off targets, different solutions are under study: better algorithms
for the prediction of optimal DNA targets, optimized sgRNAs,
engineered proto-spacers and Cas enzymes improved on the
basis of thermodynamical models (Chen, 2019).

Once generated, DSBs are resolved by different DNA repair
cellular pathways:

(i) The homology-directed repair (HDR) high-fidelity system
that uses a donor template (the sister identical chromatid in
physiological conditions) to repair DSBs when cells are in S and
G2 phases. The implication is that HDR is poorly efficient in
non-dividing HSC (Dever and Porteus, 2017), the target cell for
therapeutic correction of β-hemoglobinopathies.

(ii) The non-homologous end joining (NHEJ) error-prone
system acting in all cell cycle phases that inserts small indels
at the site of the lesion, resulting in the disruption of the
target sequence.

(iii) The microhomology end-joining (MMEJ) (Wang and
Xu, 2017) error-prone system, which exploits small homology
domains to align the broken filaments and close the gap. This
molecular mechanism introduces deletions encompassing the
microhomology regions flanking the break sites.

On these premises, the design of HDR recombination-based
therapeutic strategies is difficult because of the requirement for a
codelivered donor DNA template, of the low efficiency of HDR
in HSCs and of the competition of the unwanted NHEJ and
MMEJ error-prone repair systems. Despite these problems, the
correction of the SCD mutation in HSCs was obtained by using
both ZnF (Hoban et al., 2015) and CRISPR nucleases (Dever
et al., 2016). However, the efficiency of the correction, assessed
in HSCs in vitro, dramatically decreased after transplantation
in vivo, confirming that HSCs are more resistant to HDR-based
editing than more mature progenitors (Hoban et al., 2015) and
that a selection step could be required to enrich for HSC-edited
cells, capable of long-term correction in vivo (Dever et al., 2016).
Instead, NHEJ is more flexible and allow to reach an efficiency
up to≈90% of edited HSCs that is maintained in vivo (Genovese
et al., 2014; Chang et al., 2017; Charlesworth et al., 2018; Psatha
et al., 2018; Wu et al., 2019).

The “perfect” editing should leave no trace, to avoid
unintended off-target mutations and should at the same time
guarantee high editing efficiency with reduced toxicity for HSCs.
To reach this goal, an intense optimization work has been
focused on the different steps of the genome editing procedure:
the development of new editing reagents [single-strand DNA
donor templates (Park et al., 2019), modified sgRNA (De Ravin
et al., 2017; Park et al., 2019), pre-complexed ribonucleoproteins
(RNPs) (Gundry et al., 2016)] and their integration in improved
platforms for their delivery (Lino et al., 2018; Lattanzi et al.,
2019; Schiroli et al., 2019). This massive effort finally led to
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the generation of selection-free HSCs of therapeutic potential
(Genovese et al., 2014; DeWitt et al., 2016; Porteus, 2016; Yu et al.,
2016; Wu et al., 2019).

THE EDITING OF GLOBIN GENES
INSPIRED BY HPFH

NHEJ has been used to generate two classes of HPFH-inspired
mutation: large deletions within the β-locus, to remove putative
γ-globin repressive regions, and small indels within the γ-globin
promoter or within the regulatory regions driving the erythroid
expression of the γ-globin repressor BCL11A (Bauer et al.,
2013; Canver et al., 2015). Large deletions focus around the

critical “HPFH γδ-region” 5
′

to the δ gene, deleted with different
breakpoints in several HPFH [https://www.omim.org/entry/
141749; https://www.ithanet.eu/; (Kountouris et al., 2014)]. This
region is generally lost in deletions involving δ and β genes and
causing HPFH, whereas it is retained in δβ-thalassemia deletions,
which similarly remove δ and β genes but with little increase
of γ-globin expression. This observation led to hypothesize that
this region contains an element capable to repress the γ genes
in cis. The CRISPR-mediated deletion corresponding to the
12.9-kb Sicilian HPFH, spanning from 3.2 kb upstream of the

δ gene to the 3
′

flanking region of the β gene, gave indeed a
HPFH phenotype (increase in γ-globin with concomitant drop
of β-globin expression) in HUDEP cells and in human ex vivo
HSC-derived erythroblasts (Ye et al., 2016). The same result
(γ-globin increased and β-globin decreased) was obtained by
the CRISPR-mediated deletion (or inversion) of a large 13.6-
kb region starting downstream to the pseudo-β1 (HBBP1) gene
and extending into the β gene (Antoniani et al., 2018). The

5
′

border of this deletion corresponds to the 5
′

breakpoint of
the Corfù δβ-thal 7.2-kb deletion (Wainscoat et al., 1985) that
ends in the δ gene and is not associated with HPFH in vivo in
humans (except in some rare cases, in homozygotes, in which
an additional independent mutation in the downstream β gene
is present (Kulozik et al., 1988). The CRISPR-mediated deletion
of the 7.2-kb Corfù region and of two smaller internal regions
of 3.5 and 1.7 kb, centered around a BCL11A binding site and
a polypyrimidine stretch (Figure 1B), thought to mediate γ-
globin repression (Sankaran et al., 2011), resulted in a very
little γ-globin increase (Antoniani et al., 2018; Chung et al.,
2019). These results indicate that the 1.7-kb element and its
surrounding sequences per se are not an autonomous γ-globin
silencer, as also suggested by previous studies (Galanello et al.,
1990; Calzolari et al., 1999; Gaensler et al., 2003; Chakalova
et al., 2005). Instead, they suggest a more complex scenario,
where the competition with β-globin expression, the perfect
distance/order between intergenic enhancer/repressor, and the

enhancers delimitating the locus (the LCR and the 3
′

DNAseI
hypersensitive site), all together concur to the correct γ/β
gene expression (and to γ-globin increase, when perturbed
in HPFH).

The effects of distorting the architecture of the β-locus can
be turned in an advantage: Dr. Blobel and colleagues obtained a
great increase in γ-globin (with β-globin reduction) by tethering

LDB1 to the LCR and to the γ-globin promoter, thus forcing
their looping (Deng et al., 2014). This result again highlights
the importance of the competition between γ and β genes for
the LCR.

HPFHmutation mapping within the γ-globin promoter alters
the binding of transcription factors/cofactors. Theoretically, the
γ-globin upregulation can be obtained either by increasing
the binding of an activator or by decreasing the binding of
a repressor. Both cases are observed in HPFH. Mutations at
positions −198, −175, and −113 create new binding sites for
erythroid transcriptional activators [KLF1 (Wienert et al., 2017),
TAL1 (Wienert et al., 2015), GATA1 (Martyn et al., 2019),
respectively]. Other mutations clustered around position −200
and around the distal CCAAT box (−115) reduce the binding of
the γ-globin repressors LRF and BCL11A, respectively (Liu et al.,
2018; Martyn et al., 2018).

Consistently, the CRISPR-mediated disruption of these two
binding sites resulted in a relevant increase in γ-globin expression
(Traxler et al., 2016; Weber et al., 2020). Of note, the editing
of the −158 (“XmnI-Gγ-site”), known to be influenced by a
QTL on chromosome 8 (Garner et al., 2002), only marginally
increased γ-globin expression (Weber et al., 2020), suggesting
that possible background effects might be taken into account
when considering editing for therapeutic purposes.

The existence of two highly homologous γ-globin genes poses
specific editing issues: the double-stranded DNA cut at the
gRNA recognition sites in the HBG2 and HBG1 promoters
could result in NHEJ-mediated joining of the two ends with
loss of the intergenic (≈5 kb) genomic sequence in variable
proportion (Traxler et al., 2016; Antoniani et al., 2018). Thus,
the editing of these γ-globin regions can result either in the
mutation of a single or both HBG genes or in the deletion of the
intergenic region, with different resulting percentages of γ-globin
induction. Moreover, given the presence of short repeats within
the promoter, MMEJ can also occur (Traxler et al., 2016; Weber
et al., 2020).

NHEJ can also be used to destroy the specific erythroid
expression of repressors, such as BCL11A or, in principle, of LRF
(both proteins have important roles in other hematopoietic cell
types that must be preserved). On this front, four clinical trials
based on targeting a GATA1-binding site within the intronic+58
(Canver et al., 2015) erythroid-specific BCL11A enhancer are
ongoing (Hirakawa et al., 2020).

Theoretically, all the different genes involved in the γ-globin
repression identified so far, including BCL11A, LRF, SOX6,
and DRED are possible targets for genome editing, with the
general caveat that their ablation should not perturb stem
cell viability, their engraftment and differentiation potential.
For example, the ubiquitous knockdown of BCL11A impairs
normal HSC function and lymphopoiesis (Luc et al., 2016);
LRF (Maeda et al., 2009), SOX6 (Cantu et al., 2011), and KLF1
(Nuez et al., 1995; Perkins et al., 1995) are instead required
for proper erythroid differentiation. In this latter case, the need
of fine-tuning the downregulation of the γ-globin repressor
in order to lead to an appreciable γ-globin increase while
maintaining a correct erythroid differentiation could represent
an insurmountable obstacle.
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Overall, the success obtained in reactivating γ-globin
expression at therapeutic levels demonstrates that this strategy
can work. Theoretically, the possibility to generate multiple
HPFH mutations could further increase γ-globin expression.

Importantly, beside the final goal of its clinical application,
the relative ease-of-use of the CRISPR-based editing techniques
represents a formidable tool to answer the unsolved questions on
the molecular mechanisms regulating the hemoglobin switching.

BEYOND CRISPR/CAS9: PRIME-CAS AND
BE-CAS

The use of HDR to correct β-disease mutations is limited
by its low efficiency and by the downstream activation of
p53, which can induce toxicity and, even worse, the possible
selection of potentially harmful p53low cells (Haapaniemi
et al., 2018; Ihry et al., 2018). To overcome this problem,
a new generation of engineered Cas9 that do not introduce
DBSs (also avoiding unwanted NHEJ/MMEJ events triggered
by the DBSs) and do not require donor DNA are under
development. They rely on catalytically inactive Cas9 fused to
a modified reverse transcriptase (prime editing) or to base-
specific DNA deaminase enzymes [base editors (BEs)]. As for
many innovations, these newcomers in the CRISPR toolbox

have been tested on β-disease mutations. Prime editing has
been used to correct the β6Glu>Val SCD mutation artificially
introduced in HEK-293T cells (Anzalone et al., 2019). Dr.
Bauer and colleagues recently demonstrated the versatility of
BE by disrupting the GATA1-binding site within the +58
BCL11A erythroid-specific enhancer. The obtained HSC-edited
cells express HbF at levels similar to those obtained by the
NHEJ-mediated disruption of the same site and are capable of
multi-lineage repopulation in serial transplantation experiments
(Zeng et al., 2020). In addition, the simultaneous multiplex
edit of the β-thal −28 A>G mutation in the TATA box
of the β promoter increased β-globin production in the
same cells.

Instead, Beam Therapeutics recently presented data relative
to two therapeutic approaches based on BE, the first recreating
an HPFH mutation and the second converting HbS into HbG-
Makassar, a naturally occurring human variant that does not
cause sickling1.

Although at present the issues of unwanted bystander/off
target mutations remain to be explored, it is clear that Prime
editing and BE represent important new instruments for genome

1https://investors.beamtx.com/news-releases/news-release-details/beam-

therapeutics-reports-additional-data-asgct-annual-meeting

FIGURE 2 | Overview of the different steps of HSC autologous transplantation and of its major critical issues. In the case of β-hemoglobinopathies, ineffective

erythropoiesis and a compromised bone marrow microenvironment sensibly reduce the yield of CD34+HSCs amenable for the editing process, posing a serious

problem in a clinical-scale setting. Different mobilization protocols are currently used to maximize the yield of harvested hematopoietic stem progenitor cells (HSPCs)

that must also include backup cells to be reinfused into the patient in case of engraftment failure. Editing should ensure efficiency (in terms of complete allelic

correction and percentage of edited cells) and, at the same time, minimize the exposure to editing reagents, to reduce the risk of unwanted mutations. Editing

manipulations must preserve the population of CD34+ long-term repopulating cells. Before the reinfusion of the edited cells, the patient is treated with myeloablative

agents to maximize the engraftment of the edited cells within the bone marrow niche. The conditioning regimen should be designed to guarantee the optimal

risk-benefit balance between toxicity and efficacy of the engraftment, in order to achieve a stable, long-term therapeutic bone marrow repopulation.
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editing, with the perspective to become even more attractive
with the ongoing development of BE enabling more transition
substitutions (Komor et al., 2018).

CONCLUDING REMARKS

The number of genome-editing tools is rapidly increasing
(Papasavva et al., 2019; Doudna, 2020), holding the promise to
reach in the near future a safe, precise, and efficient editing
of β-disease mutations, via different strategies. The availability
of different molecular options (HDR, NHEJ, and BE based,
Figure 1) poses the problem of the evaluation of the pros and
cons of each strategy (Ikawa et al., 2019; Papasavva et al.,
2019): HDR-based approaches could ensure a higher precision
at the expenses of HSC correction efficiency, whereas NHEJ is
more efficient but less precise. Base editing, which does not
require double-strand breaks, could be a safer option when
a nucleotide substitution is required. Beside the choice of
the optimal genetic modification, other issues remain open,
first of all those related to unforeseeable genotoxicity (with
the serious concern of inducing hyperproliferative/leukemic
mutations in HSCs), the efficiency of the correction and the
optimization of the delivery of genome editing reagents to target
cells in conditions that preserve their stemness. Moreover, the
clinical translation of these approaches requires the definition
of scalable protocols to obtain under non-invasive conditions, a
sufficient number of autologous HSCs amenable for the editing
procedures and capable of optimal engraftment (in addition
to backup cells to be reinfused in the patient in the case of
engraftment failure) (Figure 2). This last point involves the
identification of the best preparative conditioning regimen of
the patient to allow efficient engraft of the corrected HSCs
within the recipient niche (Psatha et al., 2016). Despite these
difficulties, the recent announcement of the curative response
of the first three patients (carrying a transfusion-dependent

β-thalassemia and the SCD mutation) with CRISPR-Cas9-
edited cells targeting BCL11A (CRISPR Therapeutics and Vertex
CTX001 clinical trial2&3), clearly highlights the clinical potential
of gene therapy. The advent of this new era urges the need to
make these approaches affordable and available in low-resource
settings/countries, where a large number of patients is waiting
for a cure.
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