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INTRODUCTION: The aim of this study was to develop a novel artificial intelligence (AI) system that can automatically

detect and classify protruded gastric lesions and help address the challenges of diagnostic accuracy

and inter-reader variability encountered in routine diagnostic workflow.

METHODS: We analyzed data from 1,366 participants who underwent gastroscopy at Jiangsu Provincial People’s

Hospital and Yangzhou First People’s Hospital between December 2010 and December 2020. These

patients were diagnosed with submucosal tumors (SMTs) including gastric stromal tumors (GISTs),

gastric leiomyomas (GILs), and gastric ectopic pancreas (GEP). We trained and validated a multimodal,

multipath AI system (MMP-AI) using the data set. We assessed the diagnostic performance of the

proposed AI systemusing the area under the receiver-operating characteristic curve (AUC) and compared

its performance with that of endoscopists with more than 5 years of experience in endoscopic diagnosis.

RESULTS: In the ternary classification task among subtypes of SMTs usingmodality images,MMP-AI achieved the

highest AUCs of 0.896, 0.890, and 0.999 for classifying GIST, GIL, and GEP, respectively. The

performance of the model was verified using both external and internal longitudinal data sets.

Compared with endoscopists, MMP-AI achieved higher recognition accuracy for SMTs.

DISCUSSION: We developed a system calledMMP-AI to identify protruding benign gastric lesions. This system can be

used not only for white-light endoscope image recognition but also for endoscopic ultrasonography

image analysis.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A893
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INTRODUCTION
Benign protruding lesions in the stomach account for approxi-
mately 62.5% of upper gastrointestinal lesions and can be clas-
sified into epithelial and submucosal lesions (1,2). Althoughmost
of these lesions are benign, someprotruded lesions, such as gastric
stromal tumors (GISTs) and some gastric ectopic pancreas
(GEP), have the potential to becomemalignant phenotypes (3,4).
Therefore, a proper diagnosis at the initial clinical evaluation is
critical for subsequent decision making (5).

During clinical practice, endoscopists often use a white-light
endoscope (WLE) as the initial examination tool to differentiate
gastric polyps from submucosal tumors (SMTs) (6). It has been
shown that GEP can be easily detected by routineWLE because of

its morphology (7,8), but other subtypes of SMTs remain difficult
to differentiate because of their similar visual appearance and
subtle differences (9). Endoscopic ultrasonography (EUS), an
advanced imaging tool, is considered as a supplementary mo-
dality for accurate evaluation of SMTs in the gastrointestinal tract
(2,10,11) because it can delineate individual histologic layers
and define the site most relevant to the tumor origin (12,13).
Moreover, endoscopic ultrasound-guided fine-needle biopsy al-
lows tissue diagnosis to guide further management (5). Never-
theless, diagnosis based on EUS findings requires extensive
training and experience of endoscopists, and inconsistent reading
and interpretation between endoscopists remains amajor clinical
challenge (14,15).

1Department of Gastroenterology, The First AffiliatedHospital of NanjingMedical University, Nanjing, China; 2Department of Gastroenterology, The AffiliatedHospital of
Yangzhou University, Yangzhou, China; 3Infervision, Beijing, China. Correspondence: Guoxin Zhang, PhD. E-mail: guoxinz@njmu.edu.cn. Yini Dang, MD.
E-mail: yeani_hi@126.com.
*Chang Zhu and Yifei Hua contributed equally to this work.
Received April 29, 2022; accepted November 11, 2022; published online November 26, 2022

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology

American College of Gastroenterology Clinical and Translational Gastroenterology

ARTICLE 1

EN
D
O
SC

O
P
Y

http://links.lww.com/CTG/A893
https://doi.org/10.14309/ctg.0000000000000551
mailto:guoxinz@njmu.edu.cn
mailto:yeani_hi@126.com


Recent advances in convolutional neural networks (CNNs)
have shown remarkable progress in screening medical images
(15). Previous studies have demonstrated promising applications
of artificial intelligence (AI) in the detection ofmalignant tumors,
such as GI cancer diagnosis, determination of tumor margin, and
prediction of invasion depth (16–18). Our research team pre-
viously developed a CNNmodel to detect esophageal protuberant
lesions (19), but stomach diseases are much more complex than
esophageal diseases. Therefore, we aimed to propose a novel
multimodal, multipath AI system (MMP-AI) and evaluate its
applicability for the classification of gastric benign protruded
lesions.

METHODS
Study design

A total of 1,366 patients who underwent WLE (GIF-Q260J,
Olympus, Tokyo, Japan; GIF-Q290J, Olympus) and/or EUS
(P2620, FUJI, Chiryu, Japan) between December 2010 and De-
cember 2020 were enrolled. The clinical diagnosis of benign
gastric protrusion lesions was confirmed based on the pathology
records. This retrospective study was approved by the Ethics
Committee of the First Affiliated Hospital of Nanjing Medical
University (Institutional Review Board No. 2021-SR-023). The
need for consent was waived owing to the retrospective nature of
this study. All authors had access to the research data and have
reviewed and approved the final manuscript.

To imitate realistic clinical practice procedures, our deep learning
method was developed as follows (Figure 1):

Training part was composed of 2 sections:
Section 1: Distinguishing subtypes of SMT using a multipath

system (either WLE or EUS).
Section 2: Ensembling the individual path in section 1 using a

hybrid system.
The validation part comprised internal (Jiangsu Provincial People’s

Hospital [JSPH]) and external (Yangzhou First People’s Hospital
[YZPH]) validation.

Data set preparation and image annotations

All endoscopic images were exported as a Joint Photographic
Experts Group from the electronic endoscope medical image
system, and the quality was reviewed by 2 experienced endo-
scopists with 5 years of experience (C.Z. and Y.F.H.). We ex-
cluded unqualified images based on the following criteria: (i)
compromised image quality, including but not limited to blur-
ring, noise, apparent mucus, foam, or food residues that affect the
diagnosis visually; (ii) images of other unrelated lesions; and (iii)
duplicate images.

Two endoscopists (C.Z. and Y.F.H.) were asked to outline the
boundaries of any protruded lesions present in the image, along
with the disease label based on the whole image. These masks
and image labels were subsequently reviewed by experienced
endoscopists (Y.W. and G.X.Z.). Finally, distributions of data
sets in each procedure are summarized in Supplementary Dig-
ital Content 9, Supplementary Table 1 (http://links.lww.com/
CTG/A893).

Construction of MMP-AI

We developed a system called MMP-AI to identify gastric be-
nign protruded lesions using endoscopic images. Detailed image

preprocessing and data augmentation are provided in Sup-
plementary Digital Content 1 (http://links.lww.com/CTG/
A893). In this study, we first implemented CNNs based on
ResNeXt, a 50-layer ResNet structure (20), for the classifica-
tion of gastric benign protrusions on WLE or EUS images
(subnetworks 1 and 2). Detailed model architecture and de-
scriptions are provided in Supplementary Digital Content 2
(http://links.lww.com/CTG/A893).

Furthermore, for ensembling multimodality gastroscopy im-
age interpretations, we applied the integrated deep convolutional
neural networks (DCNN)-long short-term memory network
(LSTM) model to discriminate subtypes of gastric submucosal
lesions on WLE and EUS images. As illustrated in subnetwork 3,
an attention-based bidirectional LSTMmodel was used to model
the temporal interactions between images within WLE/EUS or
across WLE/EUS. The detailed structure and description of the
LSTM model are presented in Supplementary Digital Content 3
(http://links.lww.com/CTG/A893).

Observation experiments

Twelve endoscopists who were not involved in annotating the
images participated in the observation experiment: 4 experts
(abundant EUS experience with over 5,000 gastroscopies), 4 se-
niors (basic EUS experience with over 1,000 gastroscopies), and 4
novices (inadequate EUS experience with fewer than 1,000 gas-
troscopies). All endoscopists were blinded to patients’ clinical
information and biopsy results. Each endoscopist independently
evaluated the digital WLE or EUS images and classified the
subtypes of protruded gastric lesions in the images.

Statistical analysis

All statistical analyses were performed using SPSS (version 22.0;
SPSS, Chicago, IL) and MedCalc version 15.0 for Windows
(MedCalc Software, Ostend, Belgium). Baseline clinical and de-
mographic characteristics were presented as mean 6 SD. The
DCNN models from multiple paths were assessed using the area
under the receiver-operating characteristic (ROC) curve
(AUROC), and 95% confidence intervals (CIs) were determined
following the DeLong method. Thereafter, confusion matrices
were drawn, and the overall accuracy, sensitivity, specificity,
negative predictive value (NPV), positive predictive value (PPV),
and F1 score of each target disease category were calculated. We
generated the gradient-weighted class activation map to visualize
the feature extraction as heatmaps. To compare the model’s
performance against that of the average endoscopists, we per-
formed the summary ROC (SROC) analysis across all enrolled
endoscopists. Statistical significance was set at P , 0.05.

RESULTS
Basic characteristics

The proposed models were trained and validated on data sets
from 2 individual centers: JSPH (2010–2020) and YZPH
(2010–2020). Detailed patient information is presented in Sup-
plementary Table 2 (http://links.lww.com/CTG/A893).

Section 1 (Subnetwork 1): SMT subtype classification in

WLE-path and EUS-path models

We trained WLE-path and EUS-path models in the system that
can categorize subtypes of SMTs into GIL, GEP, and GIST. De-
tailed information is presented in Supplementary Digital Content
9, Supplementary Table 4 (http://links.lww.com/CTG/A893).
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However, there were differences between the prediction results of
the 2 models, as shown in the confusion matrix (Figure 2).

Section 2 (Subnetwork 2): SMT subtype classification in the

ensemble model

To mimic the realistic clinical diagnosis workflow that endo-
scopists often refer to as multiple modalities for the accurate
identification of SMTs, we merged features learned from the
unimodalitymodel path and assembled them into a hybridmodel
implemented with LSTM. In this way, whenever patients pre-
sentedwith any singlemodality (WLEor EUS images), the system
was able to make a prediction based on the use case. Meanwhile,
for patients with paired WLE and EUS images, the system can
make further predictions based on the correlated information
between these 2 modalities in one patient. This is achieved by the
integrated bidirectional LSTMmodel in subnetwork 2 (details are
explained in methods).

As demonstrated in Figure 2, for the SMT classification tasks,
the hybridmodel achieved area under the curves (AUCs) of 0.890,
0.999, and 0.896 for GIL, GEP, and GIST, respectively. We also
calculated the overall accuracy, sensitivity, specificity, and other
measurement metrics (Table 1).

Internal validation of the hybrid model in SMT

subtype classification

We randomly selected 352 patients from our hospital between
2010 and 2015 as internal validation data set II. Gastroscopic
images of these patients were processed using the MMP-AI sys-
tem. For SMT subtype classification, the hybrid model achieved
the highest AUC value in GIST (AUC, 0.913; 95% CI,
0.881–0.942) and GIL (AUC, 0.904; 95% CI, 0.857–0.942). De-
tailed information is presented in Table 2.

Performance of MMP-AI vs 12 endoscopists

To compare the diagnostic efficacy of the proposed model and
endoscopists in protruded gastric lesions, an observational ex-
periment was conducted by 12 endoscopists (different from the
endoscopists who annotated the images), including 4 experts, 4
seniors, and 4 novices. The sensitivities and specificities of the
endoscopists were plotted on the ROC curve of the trainedmodel,
and the average performance of all 12 endoscopists was analyzed
and presented as an SROC curve, a meta-analysis reflecting the
diagnostic performance (21). We evaluated the classification
performance of human endoscopists with different years of ex-
perience in predicting the subclass of SMT. The results shown in

Figure 1. The flowchart of the study design. The study consisted of 2 sections. The construction ofMMP-AI procedure included images for training, testing,
and validation. Finally, the performance of MMP-AI compared with endoscopists. EUS, endoscopic ultrasonography; GEP, gastric ectopic pancreas; GIL,
gastric leiomyoma; GIST, gastric stromal tumor; MMP-AI, multimodal, multipath artificial intelligence system; SMT, submucosal tumor; WLE, white-light
endoscopy.
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Figure 3 suggest that the hybrid model surpasses endoscopist-
level classification performance by showing the area under the
ROC curve (Figure 3). When comparing the overall accuracy
between the hybrid model and the average endoscopists, the
values were 83.50% vs 70.94% for GIST, 78.50% vs 71.76% for
GIL, and 98.30% vs 97.66% for GEP. Other classification metrics,

such as sensitivity, specificity, PPV, and NPV, are presented in
Table 2.

External verification for MMP-AI

A mature clinical AI system should maintain good performance
on other individual data sets. To examine the generalizability of

Figure 2. Performance of themultipath system to distinguish subtypes of submucosal tumors (SMTs). (a) Receiver-operating characteristic (ROC) curves and confusion
matrix of the white-light endoscope (WLE)-pathmodel. (b) ROC curves and confusionmatrix of the endoscopic ultrasonography (EUS)-pathmodel. (c) ROC curves and
confusionmatrix of the hybridmodel. AUC, area under curve; CI, confidence interval; GEP, gastric ectopic pancreas; GIL, gastric leiomyoma;GIST, gastric stromal tumor.
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ourMMP-AI, we applied themodel to an external validation data
set from a different hospital (YZPH) and compared the perfor-
mance of the model with that of endoscopists.

In the external validation data set, MMP-AI achieved the
highestAUCof 0.785 (95%CI, 0.883–0.945) in correctly classifying
GISTs compared with GILs (AUC, 0.736; 95% CI, 0.864–0.944)
andGEP (AUC, 0.903; 95%CI, 0.931–0.987) (Figure 4). The results
shown in Figure 4 suggest that the hybrid model surpasses
endoscopist-level classification performance by showing the area
under the ROC curve. When comparing the overall accuracy be-
tween the hybrid model and the average endoscopists, the values
were 72.30% vs 63.30% for GIST, 74.00% vs 70.53% for GIL, and
83.80% vs 73.60% for GEP. Other classification metrics, such as
sensitivity, specificity, PPV, andNPV, are provided in Table 2.We
also compared the performanceof theMMP-AI systemwith that of
4 endoscopists to make it more clinically relevant. It indicated that
the hybrid model surpasses endoscopists’ classification perfor-
mance as shown in theROCcurve (Supplementary Figure 3, http://
links.lww.com/CTG/A893).

A free-accesswebsitewas developed to test ourMMP-AI system
(https://infer-stomach.infervision.com/home/image). Any in-
vestigator could upload WLE or EUS images to perform this di-
agnostic system online (Supplementary Digital Content 5, http://
links.lww.com/CTG/A893).

DISCUSSION
In this study, we developed anMMP-AI system for the automated
detection of commongastric protrusions solely fromWLE images
(n5 6,406) or in combination with EUS images (n5 6,314). The
proposed model was validated using internal longitudinal and
external validation data sets, which demonstrated a high degree of
classification accuracy and outperformed 12 endoscopists at
different experience levels. Particularly, this AI-derived system
held diagnostic capacities not only for routine WLE images but
also for independent or combined EUS images. These findings
have proven robustness in differentiating common subtypes of

protruded lesions with the desired classification performance
(GIST, 83.50%; GIL, 78.50%; and GEP, 98.30%). The results
raised the possibility of AI-based tools in stratifying multimodal
images encountered in clinical practice. In addition, an open-
access website was used to test our model online.

Although deep learning-based algorithms have been widely
explored in the gastrointestinal field, most studies have focused
onmalignant tumors, and little attention has been given to benign
gastric lesions. For example, Laddha et al (22) reported a real-time
YOLOv3 model for gastric polyp detection while its differential
diagnostic capacity from other gastric protuberant lesions is
under investigation. Kim et al (23) and Minoda et al (24) also
developed CNN systems to detect GISTs based on EUS images,
with a reported sensitivity and specificity of 83.0% and 75.5%,
respectively, in an independent test data set. However, both DL
models focused on binary classification tasks and were based
solely on EUS images. Early detection and stratification of benign
gastric protrusion lesions on multimodal images remain chal-
lenging but have a great potential for accurate diagnosis and
target interventions. Therefore, this study aimed to develop an
MMP-AI-based system that is capable of automated detection of
common benign protuberant lesions and prediction of the sub-
types of SMTs (GIST, GIL, and GEP) using either WLE or EUS
images based on the use case. Notably, sensitivity, specificity, and
accuracy of our CNN system for the diagnosis of gastric stromal
tumors were better than those of tested byKim et al in the internal
verification and sequential verification (specificity: 83.3% vs
78.0%; sensitivity: 91.0% vs 79.0%; accuracy: 83.5% vs 78.5%), and
the sensitivity, specificity, and accuracy were similar to the results
observed by Kim in the external verification (specificity: 63.4 vs
78.0%; sensitivity: 80.2% vs 79.0%; accuracy: 72.3% vs 78.5%) (23).
In this regard, MMP-AI could be viewed as a powerful addition to
assist endoscopists and has the potential to be implemented in the
current workflow for the diagnosis of protrusion lesions.

Our MMP-AI system shows value in complex clinical settings
and real-world applications. Two internal validation data sets

Table 1. Performancemeasurements of the hybridmodel in internal testing data set I, internal validation data set II, and external validation

data set

AUROC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score AUPRC

Internal testing data set I

GIL vs others 0.890 78.50 86.10 75.30 59.60 92.80 0.768 0.792

GEP vs others 0.999 98.30 96.70 98.90 96.70 98.90 0.978 0.997

GIST vs others 0.896 83.50 83.60 83.30 80.70 85.90 0.834 0.867

Internal validation data set II

GIL vs others 0.904 86.80 74.30 89.90 64.20 93.50 0.803 0.760

GEP vs others 0.959 95.80 89.30 98.40 95.80 95.80 0.948 0.952

GIST vs others 0.913 86.60 93.50 79.20 82.70 91.90 0.864 0.901

External validation data set

GIST vs others 0.785 72.30 80.20 65.30 67.40 78.60 0.723 0.735

GIL vs others 0.736 74.00 59.10 75.60 20.00 94.70 0.570 0.190

GEP vs others 0.903 83.80 72.50 92.50 88.10 81.50 0.831 0.904

AUROC, area under the receiver-operating characteristic curve; AUPRC, area under the precision-recall curve; GEP, gastric ectopic pancreas; GIL, gastrointestinal
leiomyoma; GIST, gastrointestinal stromal tumor; NPV, negative predictive value; PPV, positive predictive value.
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from different time series and 1 external validation data set were
used to assess diagnostic robustness and generalizability. Per-
formancemetrics in both internal data sets (2015–2020, JSPHand
2010–2015, JSPH) showed excellent performance with an

accuracy of 86.60%, 86.80%, and 95.80% and an AUC value of
0.913, 0.904, and 0.959 for the detection of GIST, GIL, and GEP,
respectively. The versatility of the system was further proven
when using the external validation data set (2010–2015, YZPH),

Figure 3.Performance comparisons between theMMP-AI system and 12 endoscopists in internal validation data set II. GEP, gastric ectopic pancreas; GIL,
gastric leiomyoma;GIST, gastric stromal tumor;MMP-AI,multimodal,multipathartificial intelligence system;ROC, receiver-operating characteristic; SROC,
summary ROC.

Table 2. Performance of multipath artificial intelligence system vs 12 endoscopists in internal validation data set II

Integrated model

Endoscopists

Average Experts Seniors Novices

GIL

Accuracy (%) 78.50 71.76a 74.59 71.49 69.21

Sensitivity (%) 86.10 23.84a 28.47 20.83 22.22

Specificity (%) 75.30 92.06 94.12 92.94 89.12

PPV (%) 59.60 60.65 75.05 60.03 42.28

NPV (%) 92.80 74.69a 75.95 74.09 74.03

F1 0.768 0.279a 0.365 0.246 0.225

GEP

Accuracy (%) 98.30 97.66a 98.14 97.31 97.52

Sensitivity (%) 96.70 93.89a 95.00 93.33 93.33

Specificity (%) 98.90 98.90 99.18 98.63 98.90

PPV (%) 96.70 96.74 97.58 95.83 96.82

NPV (%) 98.90 98.03a 98.38 97.84 97.86

F1 0.978 0.952a 0.962 0.945 0.949

GIST

Accuracy (%) 83.50 70.94a 74.38 69.63 68.87

Sensitivity (%) 83.60 87.58 91.36 87.73 83.64

Specificity (%) 83.30 57.07a 60.23 54.55 56.44

PPV (%) 80.70 63.87a 66.15 62.60 62.85

NPV (%) 85.90 87.32 90.21 87.62 84.13

F1 0.834 0.730a 0.765 0.721 0.704

GEP, gastric ectopic pancreas; GIL, gastrointestinal leiomyoma; GIST, gastrointestinal stromal tumor; NPV, negative predictive value; PPV, positive predictive value.
aSignificant differences compared with the integrated model (P, 0.05).
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which reflects the various practical applications in real clinical
scenarios. Moreover, we used the SROC curve to assess the effi-
ciency of the MMP-AI and endoscopists. This study involved 12
endoscopists from 5 hospitals to reduce selection bias. The di-
agnostic capability of the MMP-AI was comparable with that of
experienced endoscopists (number comparisons). Because the
cultivation of experienced endoscopists often requires time and
experience, the availability of a cloud-based AI diagnostic system
allows fast and accurate endoscopy examination-based diagnosis
in primary care settings. In addition, this approach could broaden
access, irrespective of regional resource variations between urban
and rural areas, leading to improved patient outcomes and po-
tential cost savings.

The innovative design of algorithms is important for the
success of our deep learningmodel. In this study, we innovatively
applied attention-based ResNest50 and LSTMnetworks based on
the characteristics of this heterogeneous data set. The ResNest
network was used to effectively extract the features of the WLE
and EUS images, which ensured the high accuracy of the algo-
rithm in the single-modality mode. Meanwhile, to improve the
usefulness and robustness of the model, we further used merged
features of theWLE and EUS images to establish the LSTMmodel
for sequential learning, which constructed the relationship be-
tween multimodal image features and focused on more valuable
image representations to produce accurate predictions.

However, this study has several limitations. First, this was a
retrospective study, and only static images were used for model
training. The robust performance of the MMP-AI cannot reflect
real-time clinical applications. We designed a prospective trial to
modify and validate the DCNN system in real-world clinical
settings. Second, the sample size for each type of lesion was un-
even, particularly the small number of GIL cases, which is related
to its low incidence. Third, the MMP-AI system was trained and
validated on images obtained using Olympus devices, which
might restrain the use of other brands (e.g., Fuji and Pentax). In
future studies, wewill continue to collectmore images using other
devices.

We developed an efficientMMP-AI systembased onWLE and
EUS images that can help doctors identify protruded gastric le-
sions, circumventing the problem of a lack of EUS in less de-
veloped areas.
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Study Highlights

WHAT IS KNOWN

3 The diagnosis of gastric benign protruded lesions remains a
challenging task.

3 The data processing ability of artificial intelligence (AI) has
been applied to diagnostic imaging in endoscopy fields.

3 There are few studies of AI focusing on gastric benign
protruded lesions.

WHAT IS NEW HERE

3 We developed a system called multipath AI system (MMP-AI)
to identify gastric benign protruded lesions

3 MMP-AI held diagnostic capacities not only to routine white-
light endoscope images but also to independent or combined
endoscopic ultrasonography images.

3 MMP-AI demonstrated a high degree of classification
accuracy and outperformed endoscopists.

3 Anopen-accesswebsite has beenpublished to test ourmodel
online.
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