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Abstract

Genetic risk prediction is an important problem in human genetics, and accurate prediction

can facilitate disease prevention and treatment. Calculating polygenic risk score (PRS) has

become widely used due to its simplicity and effectiveness, where only summary statistics

from genome-wide association studies are needed in the standard method. Recently, sev-

eral methods have been proposed to improve standard PRS by utilizing external informa-

tion, such as linkage disequilibrium and functional annotations. In this paper, we introduce

EB-PRS, a novel method that leverages information for effect sizes across all the markers

to improve prediction accuracy. Compared to most existing genetic risk prediction methods,

our method does not need to tune parameters nor external information. Real data applica-

tions on six diseases, including asthma, breast cancer, celiac disease, Crohn’s disease,

Parkinson’s disease and type 2 diabetes show that EB-PRS achieved 307.1%, 42.8%,

25.5%, 3.1%, 74.3% and 49.6% relative improvements in terms of predictive r2 over stan-

dard PRS method with optimally tuned parameters. Besides, compared to LDpred that

makes use of LD information, EB-PRS also achieved 37.9%, 33.6%, 8.6%, 36.2%, 40.6%

and 10.8% relative improvements. We note that our method is not the first method leverag-

ing effect size distributions. Here we first justify our method by presenting theoretical optimal

property over existing methods in this class of methods, and substantiate our theoretical

result with extensive simulation results. The R-package EBPRS that implements our

method is available on CRAN.

Author summary

Genetic risk prediction is of considerable importance in human genetics. Calculating

polygenic risk score (PRS) is the most commonly used approach due to its simplicity as

well as the computational efficiency. Many PRS calculation methods have been proposed

for accurate prediction by borrowing information from external panels or datasets. Here,

instead of external information, we propose a novel PRS method leveraging internal
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information, namely the effect size distributions, to improve prediction accuracy. Neither

parameter tuning nor external information is needed for our method. Extensive simula-

tions and real data applications demonstrate that our method has substantial improve-

ment over existing methods in terms of prediction accuracy.

Introduction

The onset of common diseases results from the combined effects of genetic and environmental

factors. The initial objective of genome-wide association studies (GWAS) is to identify genetic

variants, such as single nucleotide polymorphisms (SNPs), that are associated with human dis-

eases. In the past decade, GWAS have identified tens of thousands of genetic associations [1].

These identified associations have led to new insights on the etiologies of many diseases [2–4].

In addition to understanding the genetic basis of complex diseases, the association results pro-

vide us with an opportunity to develop genetic risk prediction models that are clinically useful.

With accurate risk prediction methods, we can better advise individuals on appropriate pre-

vention, screening, and diagnosis, and the estimated disease risk may also be helpful for treat-

ment. For example, individuals with high predicted risk of cardiovascular disease or diabetes

would be recommended for healthy diets, fitness regimens, as well as more regular check ups.

Calculating polygenic risk score (PRS) is a common genetic risk prediction approach

because of its simplicity and computational efficiency. PRS sums the number of risk alleles

among a set of SNPs, weighted by their effect sizes estimated from a certain cohort. We can

regard PRS as the estimated genetic liability to a disorder or a trait [5]. The standard PRS

method, namely the Pruning + Thresholding (P+T) method, selects SNPs after LD-clumping

and p-value thresholding. The observed effect sizes of selected SNPs, which can be directly

extracted from summary statistics, are used as weights. Hence, only GWAS summary statistics

are needed to calculate PRS, which is attractive since summary statistics are more accessible

than individual-level genotype data due to potential privacy and data sharing concerns. In the

following, we only focus on the PRS methods utilizing GWAS summary statistics.

To further improve prediction accuracy, several methods have been proposed to utilize

other information, such as LDpred (and LDpred-inf) that models the LD information

extracted from a reference panel [6]; AnnoPred that leverages diverse types of genomic and

epigenomic functional annotations [7]; and PleioPred and SMTpred that utilize pleiotropy

relationship with other traits/diseases [8, 9]. All of these methods need to borrow information

from external panels or datasets.

In this article, we explore whether we can improve the standard PRS method without using

information from external panels or datasets. We give a positive answer to this question in this

article by proposing EB-PRS, a novel PRS approach based on Empirical Bayes theory, borrow-

ing information across markers to improve prediction accuracy. Instead of using a prespecified

prior distribution in standard Bayesian modeling, the Empirical Bayes approach estimates the

prior distribution from the data. Here we first utilize the GWAS summary statistics to infer the

overall distribution of effect sizes and then leverage this distribution to improve the standard

PRS method by minimizing the prediction error.

Compared to the existing genetic risk prediction methods, our method has the following

advantages:

1. Our method does not need to tune parameters, avoiding the use of training data to select

the best performing parameters.
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2. Compared to other improved PRS methods such as LDpred and AnnoPred, we do not need

external panels or datasets.

3. We note that we are not the first one proposing to utilize effect size distributions for PRS

calculations. Some methods in this category also have no tuning parameters or external

input, such as the methods proposed in So and Sham (2017) [10] and Mak et al. (2016) [11].

We theoretically construct the optimal PRS in terms of minimizing the prediction error,

thus our method has theoretical superiority compared with the existing methods in this cat-

egory. Better experimental performance also supports our theoretical results.

We demonstrate the better performance of our method through both simulations and real

data applications to six complex diseases including asthma (AS), breast cancer (BC), celiac dis-

ease (CEL), Crohn’s disease (CD), Parkinson’s disease (PD), and type 2 diabetes (T2D).

Results

Simulation experiments

Simulation based on independent SNP assumption. We first performed simulations

to investigate the performance of our method when the markers are independent. In these

simulations, we fixed the number of independent SNPs to m = 10, 000 and the causal SNP pro-

portion was set to 0.1. For each SNP, its allele frequency was simulated from a uniform distri-

bution U(0.05, 0.95) and its effect size was drawn from a point-normal mixture distribution,

i.e., μ* 0.9δ0 + 0.1N(0, 0.001Ne). We further set the prevalence of the disease κ to be 1%. To

explore the relationship between the prediction performance of our method and the sample

sizes of training datasets, we varied the sample size from 2,000 to 8,000. We first set the con-

trol-to-case ratios (CCRs) to 1 in the training datasets. In order to simulate under a setting

consistent with real data, we also performed simulations with lager CCRs (ranging from 2

to 4).

Because SNPs were simulated independently, there is no need to consider LD among SNPs

in this scenario. Therefore, we will only compare our method with a simplified P+T method in

which the pruning step is not carried out. The p-value threshold of the P+T method was varied

among {1, 5e − 01, 5e − 02, 5e − 03, 5e − 04, 5e − 05, 5e − 06}. We simulated 100 controls and

100 cases as our testing dataset. For each individual in the simulated testing dataset, the PRSs

generated from the EB-PRS, P+T, So et al.’s and Mak et al.’s methods were calculated. We eval-

uate the prediction performance by using both the squared correlation between the PRSs and

the observed phenotypes (predictive r2), and the area under the receiver operating characteris-

tic (ROC) curve (AUC). For the P+T method, we report the results with the best performing

parameters. We ran experiments in each setting 10 times and compared the average perfor-

mances of four methods. Fig 1 shows the average predictive r2 of EB-PRS, P+T and the method

from So et al. Results for using biobank-level sample sizes are in S1 Fig. We omit the results of

Mak et al.’s method because it is far less competitive here. Fig 2 is the ROC curves under differ-

ent CCRs when the sample size is 2,000. The average predictive r2 and AUCs for the four meth-

ods in different settings are summarized in S1 Table.

Population genetics data suggest that there are more SNPs with low minor allele frequencies

(MAF) than those with high MAF [12]. To mimic this more realistic situation, we also simulate

genotype data with allele frequencies from a scaled Beta distribution within (0.05, 0.95), where

the density function is

pðf Þ ¼
1

0:9Bða; bÞ
ð
f � 0:05

0:9
Þ
a� 1
ð
0:95 � f

0:9
Þ
b� 1
: ð1Þ
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Here we set shape parameters a = b = 0.8. The results of the simulation experiment are shown

in S2 Fig. In addition, in real data, if the training and testing samples come from different pop-

ulations, the allele frequencies of SNPs may be different, together with the causal variants and

their effect sizes. Thus, we present the results when the distribution allele frequencies in the

training set (uniform distribution) and the testing set (Beta distribution) are different, in S3

Fig. In addition, we specify the effect size of each causal SNP in the testing population different

with their original value in the training population, and the difference between them follows a

normal distribution N(0, 0.0005Ne). The results showing the performance of different methods

in divergent effect sizes can be seen in S4 Fig. We summarize the AUC and predictive r2 under

different CCRs in Supplementary S2–S4 Tables. In addition, we present the performances of

the four methods under different causal SNP proportions in Supplementary S5 Table. Under

all circumstances of simulations, EB-PRS outperformed the other three methods.

Fig 1. The average predictive r2 of the EB-PRS, P+T and So et al.’s method under different training sample sizes in simulation experiments with

independent SNPs. Here the control-to-case ratio is set to one. EB-PRS always outperformed the other methods. The error bar indicates the standard

deviation of predictive r2 across 10 times simulations.

https://doi.org/10.1371/journal.pcbi.1007565.g001
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Simulations based on real genotypes. In order to evaluate the performance of our

method for depenent SNPs (i.e., SNPs are in LD), we conducted simulations based on individ-

ual-level genotype data accessed from the database of Genotypes and Phenotypes (dbGaP) [13,

14] (study accession number phs000021). This schizophrenia study dataset included 2,729

samples, and consisted of 729,454 SNPs. The CCR for the schizophrenia dataset is 1.2. We ran-

domly selected 0.1% SNPs to have effects on disease and set the prior of the case proportion to

0.5. For these SNPs, their log-ORs (β) for associated SNPs were assumed to follow a normal

distribution N(0, 0.04). The phenotype of each individual was generated according to the fol-

lowing formula:

log
Pðy ¼ 1jxÞ
Pðy ¼ 0jxÞ

� �

¼
X

i2C

bixi; ð2Þ

where C is the set of causal SNPs. With this setting, the corresponding heritability in the

observed scale is 49.2%.

Here we compare EB-PRS with six other methods including unadjusted PRS, P+T,

LDpred-inf, LDpred, So et al.’s method, and Mak et al.’s method. We used genotype data of

Fig 2. ROC curves of EB-PRS, P+T and methods from So et al. and Mak et al. under different CCRs in

simulations with independent SNPs, when the training sample size is 2,000. We use the bootstrap-based method

presented in Robin et al. [36] to compare the difference of AUC. We show the p-values of comparing the AUC of

EB-PRS and P+T method.

https://doi.org/10.1371/journal.pcbi.1007565.g002
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individuals with European ancestry from the 1000 Genomes Project as the reference panel for

both LDpred-inf and LDpred. For LDpred, we set the proportion of causal SNPs from {1,

3e − 01, 1e − 01, 3e − 02, 1e − 02, 3e − 03, 1e − 03, 3e − 04, 1e − 04, 3e − 05, 1e − 05}. The five-

fold cross validation was used to evaluate the prediction performance of different methods.

For each training dataset, we calculated the summary statistics from the genotype data and uti-

lized them to derive PRSs. The performance is measured using both the predictive r2 and

AUC. For the P+T and LDpred, we report the results with the best performing parameters.

Fig 3 shows the predictive r2 of the seven methods using five-fold cross validation. We can

see that EB-PRS is the best among the seven approaches. The exact values of predictive r2 and

AUC are shown in Table 1. EB-PRS achieved 107%, 32%, 107%, 21%, 61%, and 383% relative

improvements over the other six methods using the r2 metric. The AUC in the table also

shows the predictive superiority of EB-PRS.

Fig 3. Predictive r2 of EB-PRS and six other methods on simulations based on observed genotypes using five-fold cross validation. The error bar indicates the

standard deviation of predictive r2.

https://doi.org/10.1371/journal.pcbi.1007565.g003
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To help the user budget computation, we provide a summary table of computational time

for our methods, LDpred and So et al.’s method for this simulation based on five-fold and ten-

fold cross validation in Supplementary S6 Table. The simulations were based on an Intel Xeon

processor with 2.50GHz.

Applications to six real datasets

We applied EB-PRS and other PRS methods to six complex disease data sets including asthma

(AS) [13], breast cancer (BC) [15, 16], celiac disease (CEL) [17], Crohn’s disease (CD) [18, 19],

Parkinson’s disease (PD) [20] and type 2 diabetes (T2D) [21, 22] to illustrate the improved risk

prediction performance in real data. We summarize the information of the training and testing

sets in Table 2 and list details as below.

For AS, we trained the model using summary statistics from the GABRIEL Consortium,

which was a meta-analysis of 23 studies, including 10,365 persons with physician-diagnosed

asthma and 16,110 unaffected persons. There were 535,060 SNPs in the released summary sta-

tistics. We tested the performance utilizing samples from the study phs000490 in the dbGaP,

with 515 cases and 875 controls [13]. For BC, we used summary statistics from the Genetic

Associations and Mechanisms in Oncology (GAME-ON) study (n0 = 41, 335 and n1 = 16, 003)

[15] covering 2,435,470 SNPs as the training data, and samples from the Cancer Genetic Mark-

ers of Susceptibility (CGEMS) study (n0 = 70, n1 = 966) [16] as the testing data. Shared individ-

uals between two studies were removed in the testing data. For CEL, we trained the model

with 4,533 individuals with celiac disease and 10,750 control from Dubois’ study [17], in

which 508,742 SNPs were genotyped. The testing data is from samples in the National Institute

of Diabetes and Digestive and Kidney Diseases (NIDDK) celiac disease study (1,716 cases and

530 controls) [23]. For CD, we trained the model using summary statistics from the Interna-

tional Inflammatory Bowel Disease Genetics Consortium (IIBDGC; n0 = 15, 056, n1 = 6, 333

and m = 871, 743) [18]. Individuals from the WTCCC were removed from the meta-analysis

Table 1. Predictive r2 and AUC of EB-PRS, unadjusted PRS, P+T, LDpred-inf, LDpred So et al.’s method and Mak et al.’s method on simulations based on observed

genotypes using five-fold cross validation. The simulations were based on individual-level genotype data accessed from the schizophrenia study (study accession number

phs000021) in dbGaP. The dataset included 2,729 samples, and consisted of 729,454 SNPs. The highest mean r2 and AUCs are highlighted in boldface.

EB-PRS Uadj PRS P+T LDpred-inf LDpred So’s Mak’s

Predictive r2 0.029 0.014 0.022 0.014 0.024 0.018 0.006

AUC 0.633 0.582 0.608 0.582 0.612 0.600 0.545

https://doi.org/10.1371/journal.pcbi.1007565.t001

Table 2. Summary of the training summary statistics and the testing genotype data in real data applications.

Disease Training Sample Size Number of SNPs Testing Sample Size

AS GABRIEL Consortium n0 = 16, 110

n1 = 10, 365

535, 060 dbGaP (phs000490) n0 = 875

n1 = 515

BC GAME-ON study n0 = 41, 355

n1 = 16, 003

2, 435, 470 CGEMS n0 = 70

n1 = 966

CEL Dubois’ study n0 = 10, 750

n1 = 4, 533

508, 742 NIDDK celiac disease study n0 = 530

n1 = 1, 716

CD IIBDGC (WTCCC removed) n0 = 15, 056

n1 = 6, 333

871, 743 WTCCC n0 = 2, 891

n1 = 1, 689

PD Simon-Sanchez J et al.’s study n0 = 3, 978

n1 = 1, 713

450, 439 WTCCC2 n0 = 2, 574

n1 = 1, 843

T2D DIAGRAM n0 = 56, 862

n1 = 12, 171

2, 400, 624 Northwestern NUgene Project n0 = 517

n1 = 662

https://doi.org/10.1371/journal.pcbi.1007565.t002
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and used as the testing dataset (n0 = 2, 891, n1 = 1, 689) [19]. For PD, we used the summary sta-

tistics released from the Simon-Sanchez J et al.’s study as the training data, which summarized

the association information of 450,439 SNPs genotyped among 1,713 individuals of European

ancestry with PD and 3,978 controls with the same ancestry [20]. We used the Wellcome Trust

Case Control Consortium 2 (WTCCC2) data (n0 = 2, 574 and n1 = 1, 843) as the testing data.

For T2D, we trained the model on summary statistics from the Diabetes Genetics Replication

and Meta-analysis consortium (DIAGRAM, n0 = 56, 862, n1 = 12, 171) [21] and tested the

model on samples from the Northwestern NUgene Project (n0 = 517, n1 = 662) [22]. There

were 2,400,624 SNPs in the training data.

For these six diseases, EB-PRS outperformed all other methods, including the unadjusted

PRS, P+T, LDpred-inf, LDpred, So et al.’s and Mak et al.’s methods. Even without external

information or datasets, the performance of our method was better than best performing

LDpred for all diseases. Here, we build two logistic models, one fits PRSs derived from one

method only, while the other one fits PRSs derived from two methods. Then we use the likeli-

hood ratio test to compare the difference of the prediction accuracy and report the corre-

sponding p-value. EB-PRS attained significant improvement in prediction accuracy over P+T

for AS (p-value = 4.5e − 03), BC (p-value = 1.1e − 02), CEL (p-value < 2.0e − 16), CD (p-

value = 1.5e − 07), PD (p-value = 1.8e − 02), and T2D (p-value = 4.4e − 06).

Fig 4 shows the predictive r2 of all seven methods to six diseases. Each plot corresponds to a

specific disease and the left column indicates the predictive accuracy of EB-PRS. We can see

that EB-PRS always outperformed the other six methods. Specifically, evaluated by predictive

r2, EB-PRS respectively achieved 307.1% (for AS), 42.8% (for BC), 25.5% (for CEL), 3.1% (for

CD), 74.3% (for PD), and 49.6% (for T2D) relative improvements over P+T. Meanwhile,

Fig 4. Comparisons of predictve r2 between EB-PRS and six other methods PRS on real data from six diseases.

https://doi.org/10.1371/journal.pcbi.1007565.g004
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EB-PRS had 37.9% (for AS), 33.6% (for BC), 8.6% (for CEL), 36.2% (for CD), 40.6% (for PD),

and 10.8% (for T2D) relatively improvement than LDpred. We also show the AUC values in

Table 3. From the table we can see the superiority of EB-PRS over the other six methods.

In general, unadjusted PRS and LDpred-inf (without parameter tuning) performed poorly

in all six datasets. Compared to methods which need to tune parameters (i.e., P+T and

LDpred), our method also achieved better performance in all six datasets. These indicate the

distinct advantage of our method: it can achieve noteworthy performance without tuning any

parameters or incorporating external information.

Discussion

In this article, we have considered predicting an individual’s genetic risk for complex diseases

using summary statistics, which may prove helpful for both disease prevention and clinical

decision. The PRS approach is widely used in genetic risk prediction because of its simplicity

and efficiency, and a number of PRS methods have been proposed to improve prediction accu-

racy. Almost all these improved methods are based on borrowing information from external

panels or datasets, such as the LD information, annotations or other GWAS datasets studying

genetically correlated traits. In this paper we have proposed an improved PRS method by uti-

lizing effect size distributions based on Empirical Bayes theory. No parameter tuning is

needed, and no external panels or datasets are needed to be input. We have shown that our

method outperformed the standard P+T method, as well as recently proposed methods in So

et al. (2016) and Mak et al. (2017) in both simulations and real data analysis. Furthermore,

compared to methods utilizing LD information from a reference panel, our method also

achieved superior performance on all diseases including AS, BC, CEL, CD, PD, and T2D. One

reason for the good performance is that we leverage the global information of effect sizes and

the other reason is that we theoretically construct the optimal PRS in terms of minimizing the

prediction error.

Note that both So et al.’s and Mak et al.’s methods also use effect size distribution to

improve PRS. We show the theoretical superiority of our method over these two methods. So

et al. used the square root of the explained liability as the effect size, which is not the optimal

one in terms of minimizing prediction error. Besides, the effect size estimated from Tweedie’s

formula has already been weighted by local true discovery rates, a further multiplication can

make the effect sized over-shrinked. Meanwhile, their method needs to specify the prevalence

for each trait, which may be difficult sometimes.

Some may argue that why we use parametric mixture model instead of non-parametric

Tweedie’s formula in effect size estimation. First, in our model, we use symmetrical prior for

the effect size, which makes the estimated magnitude invariant with the sign of z, i.e., the selec-

tion of reference alleles. Second, the K-component mixture assumption for effect size of associ-

ated SNPs is consistent with the empirical observations from GWAS of many common

Table 3. AUCs of different methods on real datasets of six diseases. The highest AUCs are highlighted in boldface.

Disease EB-PRS Uadj PRS P+T LDpred-inf LDpred So’s Mak’s

AS 0.550 0.532 0.526 0.539 0.541 0.546 0.543

BC 0.650 0.551 0.629 0.551 0.628 0.640 0.640

CD 0.687 0.632 0.684 0.623 0.661 0.685 0.676

CEL 0.621 0.593 0.607 0.585 0.611 0.615 0.618

PD 0.527 0.520 0.525 0.518 0.519 0.521 0.522

T2D 0.621 0.586 0.595 0.581 0.614 0.594 0.604

https://doi.org/10.1371/journal.pcbi.1007565.t003
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diseases [24–26]. Third, although the Gaussian mixture model is parametric, it provides great

flexibility and precision in modelling the underlying data. We can use this distribution to

approximate arbitrary distribution to any fidelity with an appropriate number of mixtures

[27].

Although our method can achieve better performance without tuning any parameters

and utilizing external information, its performance may be improved with external informa-

tion, for example, the LD information. Also, in order to increase the prediction accuracy to a

larger extent, we may improve our method by combining other available datasets in the

future, such as annotations or other GWAS summary statistics studying genetically corre-

lated traits.

A basic assumption underlying all PRS methods is that the training and testing datasets are

homogeneous and sampled from the same population. If they come from different popula-

tions, the allele frequencies of SNPs will be different, together with the causal variants and

their effect sizes. In the case, we expect a worse prediction performance [28, 29]. In this article,

we use simulation experiments to mimic the divergent situation between training and testing

datasets. Different distributions of allele frequencies, as well as a divergency in effect sizes are

simulated. Results summarized in S3 and S4 Tables showed that, although the prediction

performance will be influenced due to the divergence of two sets, our EB-PRS method still

outperforms the others. However, our current analysis still lacks the testing across diverse

populations.

Materials and methods

EB-PRS

Generally speaking, EB-PRS aims at minimizing the prediction error by leveraging estimated

distribution of effect sizes. Assuming that the SNPs are independent, we can show that the

optimal PRS (in terms of achieving the best classification accuracy) is

S ¼ βTx ¼
Xm

i¼1

bixi; ð3Þ

where m is the total number of genotyped SNPs, xi is the genotypic value, and βi is the log-

odds ratio (OR) of the i-th SNP. The log-OR is a measure of the effect size defined in the fol-

lowing formula:

bi ¼ log
fi1ð1 � fi0Þ
fi0ð1 � fi1Þ

� �

; ð4Þ

where fi0 and fi1 are the reference allele frequencies among controls and cases, respectively. If

the SNP is not associated with disease, then βi = 0.

In practice, the true values of effect sizes are usually unknown, and need to be estimated

from the data. In our method, we use the Empirical Bayes approach to estimate β, which is the

minimizer of the Bayes risk under the distribution estimated from the data. The estimators can

be directly derived from GWAS summary statistics.

Notations and assumptions. Suppose that there are m SNPs genotyped in a GWAS. For

each SNP, there are usually two different alleles. We denote one of them as the reference allele,

and use the number of reference alleles to code the genotype of the SNP for each individual.

For SNP i (i = 1, . . ., m), the genotypic value is denoted by xi (xi 2 {0, 1, 2}). We use x to repre-

sent the vector of genotypic values across m SNPs of an individual and y the disease status of

the individual, where y = 1 if the individual has the disease and y = 0 otherwise.
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With a multiplicative model and low prevalence, the genotypic value of each SNP follows

binomial distribution as:

Xijðy ¼ 0Þ � Binð2; fi0Þ; Xijðy ¼ 1Þ � Binð2; fi1Þ: ð5Þ

Optimal polygenic risk score. If all SNPs are assumed to be independent, based on Eq

(5), we have:

log
Pðy ¼ 1jxÞ
Pðy ¼ 0jxÞ

� �

¼ log
k

1 � k

� �
þ
Xm

i¼1

log
f xii1 ð1 � fi1Þ

2� xi

f xii0 ð1 � fi0Þ
2� xi

 !

¼ log
k

1 � k

� �
þ 2
Xm

i¼1

log
1 � fi1
1 � fi0

� �

þ
Xm

i¼1

xibi;

ð6Þ

where κ is the disease prevalence, and βi is the true value of the log-OR for the i-th SNP.

Our objective is to find the decision rule minimizing the overall Bayes risk:

R ¼
Z

RðaðxÞjxÞpðxÞdx: ð7Þ

By Bayes decision rule, we minimize the overall risk by select the action that minimizes the

conditional risk R(α(x)|x) for all x:

a� ¼ arg min
al

RðaljxÞ ¼ arg min
al

½lðaljy ¼ 0ÞPðy ¼ 0jxÞ þ lðaljy ¼ 1ÞPðy ¼ 1jxÞ�; ð8Þ

where l 2 {0, 1} and α0 when ŷ ¼ 0 and α1 when ŷ ¼ 1. λ(�) is the Zero-One Loss Function:

lðaljy ¼ wÞ ¼

(
0 l ¼ w

1 l 6¼ w
: ð9Þ

Thus, Eq (7) can be minimized by setting ŷ ¼ 1 if P(y = 1|x)> P(y = 0|x), i.e.,

log
Pðy ¼ 1jxÞ
Pðy ¼ 0jxÞ

� �

¼ logð
k

1 � k
Þ þ 2

Xm

i¼1

log ð
1 � fi1
1 � fi0

Þ þ βTx > 0; ð10Þ

where β is exactly the log-OR. That is, if we define a polygenic risk score S ¼ βTx ¼
Pm

i¼1
bixi,

the optimal decision rule minimizing the prediction error is

ŷ ¼
1 if S > � log

k

1 � k

� �
� 2
Xm

i¼1

log
1 � fi1
1 � fi0

� �

0 otherwise

:

8
>><

>>:

ð11Þ

Inference. The constructed optimal polygenic risk score S is a function of the parameters

βi (i = 1, . . ., m). To derive the PRS in practice, we can use GWAS summary statistics to esti-

mate these parameters.

If we simply estimate βi by plugging the observed log-OR, the estimated effect sizes will

tend to be inflated for SNPs with large values of estimated results. This phenomenon is com-

monly known as the “winner’s curse”. Here, we adopt the Empirical Bayes approach to address

the issue of the selection bias as it is more robust to the winner’s curse [30, 31]. Also, it is the

minimizer of the Bayes risk under the effect size distribution estimated from the data.
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In GWAS, we usually use the following log-OR test to assess associations between SNPs

and disease:

zi ¼
b̂i

seðb̂iÞ
; ð12Þ

where seðb̂iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Nefið1� fiÞ

q
and Ne ¼

4n0n1

n is the effective sample size in the case-control study,

where n0 and n1 are the number of control and disease subjects, respectively, and n = n0 + n1.

Given the standardized effect size mi ¼
bi

seðb̂i Þ
, the distribution of z-scores is Zi|μi* N(μi, 1).

Recent GWAS results suggest that, among all disease-associated SNPs, there are many more

SNPs with small effect sizes than those with large effect sizes [32, 33]. Therefore, we use the fol-

lowing spike-and-slab prior to model the effect sizes of all SNPs:

mi � p0d0 þ
XK

j¼1

pjNð0;Nes
2

j Þ; ð13Þ

where π0 is the proportion of non-associated SNPs (0� π0� 1) and δ0 is the distribution with

point mass at zero. Here we use a K-component Gaussian mixture distribution as the slab, in

which the proportion of SNPs in the j-th associated component is πj (
PK

j¼0
pj ¼ 1) and the cor-

responding variance of the standardized effect sizes is Nes
2
j . We add Ne as a scaling coefficient

in the variance of each component in order to make s2
j invariant with changing sample size.

With this prior specification, the posterior expected effect size of an SNP under each alter-

native hypothesis is

Eðbijzi;H1jÞ ¼
Nes

2
j

1þ Nes
2
j

b̂i ; ð14Þ

where H1j : mi 6¼ 0 is the alternative hypothesis that the SNP is an associated one within the j-
th component (j = 1, . . ., K). The corresponding local true discovery rate is the probability that

the hypothesis H1j is true, given its z-value, and it can be calculated as follows:

ltdrij ¼ PðH1jjziÞ ¼
pjfjðziÞ

p0�ðziÞ þ
XK

j¼1

pjfjðziÞ
;

ð15Þ

where ϕ(�) and fj(�) are the probablity density functions of N(0, 1) and Nð0; 1þ Nes
2
j Þ,

respectively.

The posterior expectation of βi is the optimal estimator for minimizing the Bayes risk.

Therefore, we estimate βi as follows:

EðbijziÞ ¼
XK

j¼1

ltdrij � Eðbijzi;H1jÞ: ð16Þ

Here we adopt an EM-algorithm to estimate unknown parameters (π0, π1, � � �, πK) and

(σ1, � � �, σK) in the above mixture model. In practice, the null proportion π0 is always much

larger than the proportions in the alternative components. To take advantage of this prior

information, we first add a Dirichlet prior (α, 0, � � �, 0) to proportions (π0, π1, . . ., πK). We use

the following strategy to infer the value of α. First, we set α to a reasonable value (m
20

in our

default setting) to obtain a preliminary model. Then we generate parametric bootstrap samples
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based on the preliminary model and select α with the minimal relative errors in terms of

parameter estimation using the bootstrap samples [34].

Theoretically, a better fitting for the underlying distribution can be obtained by increasing

the component number K. That can further improve the prediction performance. However,

the model and computational complexity will also be increased accordingly. If we keep

increasing K to a certain level, an original component will be divided into multiple similar

components in the estimation, which does not add benefit to the prediction. In practice, we

found that we achieved both the discriminability for components and the prediction perfor-

mance when K = 3. Therefore, we set K to three as the default setting in our method.

Next, we compare our method named EB-PRS with six other methods: unadjusted PRS,

P+T, LDpred-inf, LDpred, and two methods proposed in So et al. (2017) [10] and Mak et al.

(2016) [11], respectively. In the following, we briefly describe these methods. We note that the

last two methods were also proposed to utilize effect size distributions for PRS calculations,

where no tuning parameters or external input is needed. We will discuss their differences with

our method later.

Unadjusted PRS

The unadjusted PRS is the summation of genotypic values weighted by the corresponding esti-

mated effect sizes from the marginal logistic regression, i.e.,

Sunadj ¼ β̂Tx ¼
Xm

i¼1

b̂ixi; ð17Þ

where b̂ i is the estimated coefficient from the marginal logistic regression for SNP i. If no con-

founders are considered in the regression, then b̂ i is equal to the log-OR.

P+T

The P+T method generates PRS based on a subset of independent SNPs obtained via informed

LD-clumping [35] and p-value thresholding. The method first prunes SNPs according to a

given threshold for squared correlation coefficients (r2) between different SNPs. Then it fur-

ther filters the SNPs with a p-value cutoff in marginal association tests. In this article, we set

LD clumping r2 to 0.1 and vary the p-value cutoff values from {1, 5e − 01, 5e − 02, 5e − 03,

5e − 04, 5e − 05, 5e − 06}. In the following comparison experiments, we will report the predic-

tion results of the P+T method with the optimally tuned parameters.

LDpred-inf

The LDpred-inf method estimates the causal effect sizes under an infinitesimal model, where

LD among SNPs is considered. The assumption for the causal effect size is bi � Nð0; h
2
g
mÞ,

where h2
g denotes the heritability explained by these SNPs. The posterior means of the causal

effect sizes are

Eðβjβ̂;DÞ ¼ ð
m
nh2

g

I þ DÞ� 1β̂: ð18Þ

Here D denotes the LD matrix, n is the sample size of the GWAS, I denotes the identity matrix,

Leveraging effect size distributions to improve PRS derived from GWAS summary statistics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007565 February 11, 2020 13 / 18

https://doi.org/10.1371/journal.pcbi.1007565


and β̂ is the vector of estimated effect sizes from marginal regression. The PRS is

SLDpred� inf ¼ Eðβjβ̂;DÞTw: ð19Þ

Here, w represents the corresponding standardized genotype.

LDpred

LDpred is an extension of LDpred-inf, which makes use of a point-normal prior instead of

normal prior to estimate causal effect sizes. To calculate the posterior expectation of causal

effects, Markov Chain Monte Carlo (MCMC) is used, and the proportion of causal effects π0 is

a parameter that needs to be specified by users. Here, we set π0 from {1, 3e − 01, 1e − 01,

3e − 02, 1e − 02, 3e − 03, 1e − 03, 3e − 04, 1e − 04, 3e − 05, 1e − 05}, which are the default values

recommended in LDpred. In the following comparison experiments, we will report the best

prediction results with the optimally tuned parameters.

So et al.’s method

So et al. proposed to construct PRS by using the following three steps to calculate the effect size

of each SNP. Firstly, the standardized effect size μ is non-parametrically estimated by using the

Tweedie’s formula:

EðmjzÞ ¼ z þ
f 0ðzÞ
f ðzÞ

; ð20Þ

where f(z) is the estimated probability density function of z-values. Then the explained liability

of each SNP is assessed based on estimated μ. The final effect size is estimated using the square

root of explained liability weighted by the corresponding local true discovery rate, i.e.,

~bSo ¼ ltdr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðEðmjzÞ

p
: ð21Þ

Since we have theoretically shown that the true log-OR is the optimal effect size for con-

structing PRS in terms of prediction accuracy, using the square root of explained liability will

decrease the performance. In addition, Tweedie’s formula evaluates the posterior expecation

of μ without conditioning alternative hypothesis H1, and we have

EðmjzÞ ¼ ltdr � Eðmjz;H1Þ: ð22Þ

The further weighting strategy based on ltdr will make the effect size estimate over-shrinked.

Mak et al.’s method

Mak et al. proposed to construct PRS by directly using the observed effect size weighted by

ltdr, i.e.,

~bMak ¼ ltdr � b̂: ð23Þ

As we pointed out before, the observed effect size suffers from the winner’ curse. The

shrinkage estimator derived from Empirical Bayes theory is a better choice in terms of over-

coming the winner’s curse and minimizing the Bayes risk.

Supporting information

S1 Table. Predictive r2 and AUC of EB-PRS, P+T, So et al.’s method and Mak et al.’s

method under different training sample sizes and control-to-case ratios (CCRs) in
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simulation experiments with independent SNPs. The allele frequencies follow uniform dis-

tribution. The highest mean r2 and AUCs are highlighted in boldface.

(XLSX)

S2 Table. Predictive r2 and AUC of EB-PRS, P+T, So et al.’s method and Mak et al.’s

method under different training sample sizes and control-to-case ratios (CCRs) in simula-

tion experiments with independent SNPs. The allele frequencies follow Beta distribution.

The highest mean r2 and AUCs are highlighted in boldface.

(XLSX)

S3 Table. Predictive r2 and AUC of EB-PRS, P+T, So et al.’s method and Mak et al.’s

method under different training sample sizes and control-to-case ratios (CCRs) in simula-

tion experiments with independent SNPs. The allele frequencies of training data (uniform

distribution) and testing data (Beta distribution) are different. The highest mean r2 and

AUCs are highlighted in boldface.

(XLSX)

S4 Table. Predictive r2 and AUC of EB-PRS, P+T, So et al.’s method and Mak et al.’s method

under different training sample sizes and control-to-case ratios (CCRs) in simulation exper-

iments with independent SNPs. Effect size differences among the populations were added

among training and testing data. The allele frequencies follow uniform distribution in the

training and testing data. The highest mean r2 and AUCs are highlighted in boldface.

(XLSX)

S5 Table. Predictive r2 and AUC of EB-PRS, P+T, So et al.’s method and Mak et al.’s

method under different different causal SNP proportions when CCR = 1 in simulation

experiments with independent SNPs. The allele frequencies follow uniform distribution

and the sample size here is 5,000. The results are the average of 10 times simulations. The

highest mean r2 and AUCs are highlighted in boldface.

(XLSX)

S6 Table. Computational time for EB-PRS, LDpred and So et al.’s method for this simula-

tion based on five-fold and ten-fold cross validation in supplementary table. The simula-

tions were based on an Intel Xeon processor with 2.50GHz. The shortest time is highlighted in

boldface.

(XLSX)

S1 Fig. The average predictive r2 of the EB-PRS, P+T and So et al.’s method using biobank-

level sample sizes in simulation experiments with independent SNPs. Here the control-to-

case ratio is set to one. EB-PRS always outperformed the other methods. So et al.’s package will

produce errors when the sample size is above 3e + 05. The error bar indicates the standard

deviation of predictive r2 across 10 times simulations.

(TIF)

S2 Fig. The average predictive r2 of the EB-PRS, P+T and So et al.’s method under different

training sample sizes in simulation experiments with independent SNPs. The allele fre-

quencies in training and testing data follow Beta distribution. Here the control-to-case

ratio is set to one. EB-PRS always outperformed the other methods. The error bar indicates the

standard deviation of predictive r2 across 10 times simulations.

(TIF)

S3 Fig. The average predictive r2 of the EB-PRS, P+T and So et al.’s method under different

training sample sizes in simulation experiments with independent SNPs. The allele
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frequencies in training (uniform distribution) and testing (Beta distribution) data are dif-

ferent. Here the control-to-case ratio is set to one. EB-PRS always outperformed the other

methods. The error bar indicates the standard deviation of predictive r2 across 10 times simu-

lations.

(TIF)

S4 Fig. The average predictive r2 of the EB-PRS, P+T and So et al.’s method under different

training sample sizes in simulation experiments with independent SNPs. The effect size of

each causal SNP in the training and testing populations is different. Here the control-to-

case ratio is set to one. EB-PRS always outperformed the other methods. The error bar indi-

cates the standard deviation of predictive r2 across 10 times simulations.

(TIF)
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