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Calcium/calmodulin-dependent protein kinases (CaMKs) are key regulators of calcium
signaling in health and disease. CaMKII is the most abundant isoform in the heart;
although classically described as a regulator of excitation–contraction coupling, recent
studies show that it can also mediate inflammation in cardiovascular diseases (CVDs).
Among CVDs, cardiorenal syndrome (CRS) represents a pressing issue to be addressed,
considering the growing incidence of kidney diseases worldwide. In this review, we
aimed to discuss the role of CaMK as an inflammatory mediator in heart and kidney
interaction by conducting an extensive literature review using the database PubMed.
Here, we summarize the role and regulating mechanisms of CaMKII present in several
quality studies, providing a better understanding for future investigations of CamKII in
CVDs. Surprisingly, despite the obvious importance of CaMKII in the heart, very little
is known about CaMKII in CRS. In conclusion, more studies are necessary to further
understand the role of CaMKII in CRS.
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GENERAL CONSIDERATIONS

Calmodulin (CaM) is a low-molecular-weight protein highly conserved in the eukaryotes
(Clapham, 2007). CaM was discovered in 1970 as a calcium (Ca2+) regulator in the brain,
responsible for the nucleotide phosphodiesterase. It was first mentioned as a Ca2+-dependent
regulator (Kakiuchi and Yamazaki, 1970). Since the origin of eukaryotes, the amino acids that
compound CaM have not changed at all (Friedberg and Rhoads, 2001). It plays a fundamental role
in every cell by amplification of the Ca2+ signal (Clapham, 2007). Ca2+ is a versatile messenger
molecule implied in many basic processes, such as contraction, potentiation, cell proliferation
and apoptosis, and others (Carafoli and Krebs, 2016). To maintain a homeostasis of Ca2+ in the
intracellular environment, it has many mechanisms and signaling paths that help to establish a
gradient of this ion, holding at approximately 2 mM (Clapham, 2007). One of them is the CaM that
triggers conformational changes in response to Ca2+ oscillations (Carafoli and Krebs, 2016). In
other words, when Ca2+ binds to CaM, it induces a structural modification, forming a Ca2+/CaM
complex (Clapham, 2007).
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There is a vast quantity of proteins that can bind to Ca2+/CaM
via an α-helical region. This region is composed of approximately
20 amino acids, positively charged and containing hydrophobic
residues (Islam, 2020). To amplify the signal generated by Ca2+,
this complex activates or deactivates phosphorylation pathways,
targeting a protein kinase dependent on Ca2+/CaM (CaMK)
(Clapham, 2007). In other words, the binding of Ca2+/CaM and
phosphorylate serine/threonine residues of target proteins are the
main trigger of CaMKs activation, initiating signaling activation
of the substrates (Takemoto-Kimura et al., 2017).

The Ca2+/CaM-stimulated protein kinases are divided based
their substrate specificity. They can be restricted to a small
number of substrates (Islam, 2020) while the multifunctional
kinases have wide specificity and regulate multiple functions
in the same and different cell types (Skelding et al., 2011).
Restricted CaMK have three main families: phosphorylase kinase
(PhK), elongation factor 2 kinase (eEF2K), and myosin light
chain kinase (MLCK) (Skelding and Rostas, 2012). These families
do not share common domains or structures, making them
more specific to certain stimuli and pathways. On the other
hand, the multifunctional kinases control many cell functions in
different cell types, which makes them a powerful controller of
other kinases. Regulation of Ca2+ dynamics is the most basal
method to control the function of a kinase, mainly intracellular
concentration of Ca2+ (Skelding and Rostas, 2012). The main
multifunctional families of kinases proteins are CaMKI, CaMKIV,
CaMKK, and CaMKII (Hudmon and Schulman, 2002).

The CaMKI family constitutes four elements, each of
them encoding a different gene: CAMK1 (CaMKIα), PNCK
(CaMKIβ/Pnck), CAMK1G (CaMKIγ/CLICK3), and CAMK1D
(CaMKIδ/CKLiK), which are found in higher quantity in mice
brains (Picciotto et al., 1995). CaMKI function is observed
in many cellular activities, including synapsis in terminal
nerves, motility, axon growth, synthesis of aldosterone, and
the cell cycle (Condon et al., 2002; Skelding et al., 2011). It
is known that CaMKI translocates to the nucleus mediated by
CRM1 complex after an influx of intracellular Ca2+ induced
by potassium depolarization or glutamate (Sakagami et al.,
2005). CaMKIV only encodes one gene, CAMK4, coding the
monomerics isofroms: α and β (Skelding and Rostas, 2020).
CaMKIV is observed in the regulation of cyclic AMP, plasticity,
fear memory, inflammatory sensibility, and control of the cell
cycle (Skelding and Rostas, 2020). The CaMKIV can translocate
between the cytoplasm and nucleus. For that action, it involves
some catalytic activity as catalytically inactive CaMKIV remains
in the cytoplasm (Lemrow et al., 2004).

Ca2+/CaM-stimulated protein kinase kinase (CaMKK),
CAMKK1 and CAMKK2, produce CaMKKα and CaMKKβ,
respectively. They are responsible for many functions (Skelding
and Rostas, 2020). Studies show this kinase’s function, suggesting
that CaMKK translocates to the nucleus under stimulation, and
the inhibition of translocation directly implies the deactivation
of monocytic cells (Guest et al., 2008). CaMKI, CaMKIV,
and CaMKK share the same signaling pathway. It is called
the Ca2+/CaM-dependent kinase cascade (Tokumitsu and
Soderling, 1996). This pathway is mainly related to several
cellular processes, including glucose homeostasis, hematopoietic

stem cell maintenance, cell proliferation, apoptosis, and normal
immune cell function (Skelding and Rostas, 2012). Last but not
least, among the CaMKs, we have the CaMKII. Its function is
further explained in the next section. Together with this, the
present study aims to focus on CaMKII relevance and how it is
implied specifically during cardiorenal syndrome (CRS).

THE CALCIUM-CALMODULIN-CAMKII
SIGNALING AXIS HAS A CRUCIAL ROLE
IN CARDIAC FUNCTION

Among the CaMKs, the most abundant in the heart is CaMKII
(Luczak and Anderson, 2014). CaMKII is a serine-threonine
kinase, and it was first identified in the central nervous system,
where it represents only 2% of the total protein. It was later
discovered that this enzyme is present in many tissues, including
the pancreas, where it has an important role in the secretion
of insulin, and in heart tissue, where it is responsible for Ca2+

homeostasis (Yamauchi, 2005).
The functional CaMKII enzyme structure is formed by 12

subunits (dodecameric); each monomer has an N-terminal
catalytic domain and a C-terminal domain with a regulatory
domain in the middle as shown in Figure 1. The catalytic
domain is blocked by the regulatory domain in an autoinhibitory
way, keeping the enzyme inactive (Figure 1). CaMKII becomes
active when the Ca2+/CaM complex binds to the binding
site of the regulatory domain of CaM. This provokes a
successive autophosphorylation of Thr287 monomers, causing
conformational changes that expose the catalytic domain
and enable the kinase activity at all (Beckendorf et al.,
2018). As proposed by Beckendorf et al. (2018), the Thr287
autophosphorylation causes what they denominate “CaM
trapping,” increasing the CaM binding affinity to 1000-
fold, maintaining the CaMKII activity even under low Ca2+

conditions (Beckendorf et al., 2018). Besides the activation via
Ca2+/CaM that is dependent on several Ca2+ factors, such as the
total Ca2+ available in a dose-dependent manner and its spark
frequency, amplitude, and duration, the CaMKII can be activated
via post-translational modifications as, for example, by reactive
oxygen species (ROS) (Beckendorf et al., 2018).

CaMKII is observed in eukaryotes in four distinct isoforms
(α, β, γ, δ). They encode four distinct genes (Luczak and
Anderson, 2014). CaMKIIα and β are expressed mainly in
the neural system while the CaMKIIδ and γ isoforms are
predominantly expressed in cardiac tissue (Backs et al., 2009).
This kinase modulates numerous biological processes, such as
the Ca2+ homoeostasis, excitement of membrane, cell cycle,
cytoskeletal organization, and gene expression (Yamauchi, 2005;
Backs et al., 2009).

As the contraction is a Ca2+-dependent process, it is
indisputable that CaMKII performs an important role in the
heart. It regulates Ca2+-handling proteins by facilitating the
L-type Ca2+ channel (LTCC) phosphorylation (Bers and Morotti,
2014); promotes phosphorylation of phospholamban (PLN) at
site T17, promoting its dissociation from SERCA2a and, thus
increasing SERCA2a activity; and phosphorylates ryanodine
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FIGURE 1 | Schematic illustration of CaMKII with permission and adapted from Bussey and Erickson (2018). (A) Autoinhibition of each 12 CaMKII monomers;
(B) Activation of CaMK monomers by Ca2+/CaM complex (direct activation) or by post-translational modifications as by ROS (autonomous activation).

(RYR) at site S2814, consequently improving its opening
probability (Mattiazzi and Kranias, 2014). Hyperphosphorylation
caused by CaMKII of this site leads to an increase of spontaneous
elementary Ca2+-release events from the sarcoplasmic reticulum
especially during diastole (Mustroph et al., 2017). In pathological
situations, increased diastolic Ca2+ in cytosol can activate the
electrogenic NCX, which can cause delayed afterdepolarizations.
The last ones can trigger atrial and ventricular arrhythmias
(Mustroph et al., 2017). In other words, CaMKII is a pro-
arrhythmogenic protein in the heart. Besides arrhythmias,
CaMKII is strongly increased during myocardial injury (Ren
et al., 2003), atrial fibrillation (Liu et al., 2019), cardiac
hypertrophy (Kamada et al., 2019), ischemia/reperfusion injury
(Rajtik et al., 2016), and heart failure (HF) (Beckendorf
et al., 2018). Its inhibition has been constantly suggested as
treatment for these pathologies (Rokita and Anderson, 2012;
Cipolletta et al., 2015).

There are studies using transgenic (TG) overexpression
of CaMKIIδ, to evaluate its effect during pathogenesis. TG
mice developed severe HF and susceptibility to induced
ventricular arrhythmias via programmed electrical stimulation
(Maier and Bers, 2007). The cardiomyocytes isolated from TG
mice presented increased diastolic Ca2+ leak together with

prolonged action potential and increased incidence of early
afterdepolarization (a peculiarity of CaMK-induced increased
late INa) (Wagner et al., 2006).

In summary, TG mice led to a worsening of the
arrhythmogenic profile of the mice in addition to increasing
their risk of life. On the other hand, the silencing of CaMKII
brings hope for the treatment of chronic or acute heart
diseases, presenting itself as a potential clinical therapist against
these pathologies.

THE ROLE OF CAMKII IN CARDIORENAL
SYNDROME

The kidneys and the heart share an important role in
the biochemical maintenance of homeostatic function of
extracellular fluid. In general, while the heart is responsible for
providing nutrients and oxygen-rich fluids to the body through
blood flow, the kidney is responsible for providing electrolytes,
acid-base homeostasis, vitamin D activation, and erythropoietin
synthesis (Ronco and Di Lullo, 2014). Understanding how
the kidney and heart relate has been a challenge since the
Middle Ages, when Aetius of Amida initially attempted to
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explain fluid overlay by attributing it to kidney hardening
(Diamandopoulos, 1999).

Fast-forwarding to contemporary times, several studies
approach this topic with more precision. Nowadays, it is well
established that an adverse imbalance in hemodynamics caused
by impaired kidney function can directly impact the heart
(Anavekar et al., 2004). The pathological crosstalk between both
organs is called cardiorenal syndrome (CRS), in which cardiac
and renal dysfunction overlap; a disorder in one organ leads to
acute or chronic dysfunction of the other organ (Ronco, 2011;
Ronco and Di Lullo, 2014).

CRS is divided into two major groups, the cardiorenal
and nephron-cardiac, dependent on the origin of the primary
pathology, both of which can be acute or chronic (Ronco and Di
Lullo, 2014). Type 1 and 2 CRS are considered cardiorenal and
are characterized by a loss of cardiac function leading to renal
injury (Damman et al., 2007). CRS type 1, known as acute, is
described by acute cardiac injury leading a renal one through
hemodynamic mechanisms (Di Lullo et al., 2017). The presence
of acute decompensated HF leads to decreased renal function
due to low renal arterial flow and decrease of the glomerular
filtration rate. Once hemodynamic parameters are restored, renal
and cardiac homeostasis is also restored (Hanada et al., 2012).
Type 2 CRS rises as a consequence of chronic abnormalities
in cardiac function that cause renal injury or dysfunction.
Examples of such abnormalities are conditions including atrial
fibrillation, congenital heart disease, pericarditis constrictions,
and chronic cardiac ischemia. Determining whether the CRS
is a type 1 or 2 represents a challenge for clinicians since
the majority of diagnostics are made when both organs are
already injured.

The other two types of CRS (3 and 4) are described as
nephron-cardiac syndromes, where the renal injury leads to
cardiac dysfunction (Damman et al., 2007). Type 3 CRS is
defined as acute nephron-cardiac syndrome, occurring when
acute renal failure leads to the development of acute cardiac
injury. It is intimately related to events triggering increased
inflammatory processes, such as oxidative stress and secretion of
neurohormones (Di Lullo et al., 2017). Type 4 CRS is studied
as chronic nephron-cardiac disease, initiated by chronic kidney
disease (CKD), leading to cardiovascular disease. Approximately
70–80% of patients with end-stage renal disease present type
4 CRS, presenting cardiac complications, such as infarct and
long-term arrhythmias (Di Lullo et al., 2017).

Finally, CRS type 5 is a systemic disorder that reaches both
organs simultaneously. Many factors have been suggested to
contribute to these conditions, for instance, sepsis, infections,
drugs, toxins, and diabetes. It is important to note that acute type
5 CRS can overlap a chronic injury (Ronco and Di Lullo, 2014).
CRS type 5 results in cardiac and renal dysfunction coming from
a larger and systematic situation. Hence, differently from other
types of CRS, type 5 is relatively easier to identify the starting
point of the CRS.

The study of CRS is of great relevance for clinical treatment,
considering that cardiovascular diseases represent the main cause
of death in the United States for at least the last 15 years,
according to the Centers for Disease Control and Prevention

(CDC)1. In addition, incidence of CVDs have been increasing
alongside incidence of CKDs worldwide (Thomas et al., 2017),
showing the importance of studies regarding CRS type 4, for
example. Besides, CKDs significantly affects the regulation of
cardiac Ca2+ by mechanisms not yet clarified (Ke et al., 2020).

CaMKII has already been described as a cause of many
heart dysfunctions, such as arrhythmia, hypertrophy, and
infarction (Yoo et al., 2018; Rusciano et al., 2019), and has
been demonstrated to play a critical role in CRS types 1
and 2. The CaMKII inhibitor (CaMK2n) has been shown to
protect cardiac dysfunction and ameliorate injuries observed in
metabolic syndrome (Prasad et al., 2015). However, Alfazema
and collaborators showed, recently, in a translational study,
that deletion of CaMK2n1, diminishes CaMKII activity in the
kidney and heart without affecting adipose tissue (Alfazema et al.,
2019). Yet there are few studies involving both organs in a
systemic profile.

It is known that elements, such as the immune system, can
mediate the communication between them. In an inflammatory
process as observed during CKD and chronic heart failure
(CHF), cytokines are released by circulating and tissue-resident
inflammatory cells (monocytes mainly) and play an important
role in the progression of these diseases (Yogasundaram et al.,
2019). Since Ca2+ has been associated with several events of the
inflammatory response, including the activation of T cells and
awakening memory (Boubali et al., 2012). The CaMKII ability to
act as an intracellular sensor of Ca2+ makes it a crucial regulator
in the inflammatory process (Rusciano et al., 2019). On the other
hand, the Ca2+-independent form of CaMKIIγ also modulates
cell death and T cell memory formation (Bui et al., 2000). Studies
have already shown that CaMKII is capable of modulating NF-κB,
IL-10, IL-2, and IL-4 production (Rusciano et al., 2019).

In CRS, the tissue injury is strongly followed by inflammation.
Many inflammatory cytokines are enhanced in experimental
models of renal ischemia (TNF-a, IL-1, and IL-6) and also
markers, including the factor nuclear kappa B (NF-kB), which
is very important for cell signaling during inflammatory
processes (Trentin-Sonoda et al., 2015). Given that, some studies
present the participation of inflammation as a cause of CKD
progression in CHF patients (House et al., 2019; Marsico et al.,
2019). During cardiac ischemia, myocytes release inflammatory
cytokines (Colombo et al., 2012), and they can reach renal
tissue, inducing local inflammation, apoptosis, or oxidative stress
(Ronco and Di Lullo, 2014).

Colombo et al. (2012) suggest that inflammation during CRS
is controlled by positive feedback mechanisms. Inflammation
initiates vascular dysfunction, reducing the myocardial
contractility and increasing myocardial cell death, linking
CRS to apoptosis (Virzì et al., 2015b). Inflammation also causes
progressive renal dysfunction and fibrosis, which continues
to injure the organ, maintaining the cycle. Additionally,
inflammation leads to the release of renin, activating the
renin-angiotensin-aldosterone system (RAAS), which activates

1Centers for Disease Control and Prevention. National Center for Health Statistics.
“Leading Causes of Death: Deaths: Leading Causes for 2017, table 1. Available at:
http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm [Accessed March
14, 2020].
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the sympathetic nervous system (SNS) by increasing serum
norepinephrine concentrations and is the cause of ROS release
from the inflammatory cells (Bongartz et al., 2005).

A previous study suggests that the toll-like receptor (TLR)
pathway is linked with the activation of CaMKII in a
model of myocardial infarction (Singh et al., 2012). Recently,
Wu and collaborators demonstrated that miR-148a attenuates
ischemia/reperfusion injury in liver, once CaMKIIα represses
the TLR4 signaling pathway in vivo and in vitro, decreasing
the production of pro-inflammatory factors (Zheng et al., 2018).
Moreover, activation of CaMKII in macrophages is initiated by a
significant trigger elevation of intracellular Ca2+. This progresses
to the activation of myeloid differentiation factor 88 (MyD88)-
dependent and Toll/interleukin-1 receptor domain, prompting
proinflammatory factors. Ca2+/CaMKII is fundamental for
macrophage response once it requires the complete activation of
the TLR pathway (Liu X. et al., 2008).

As mentioned above and summarized by Rusciano et al.
(2019) there is evidence that suggests the important role of
CaMKII in many cardiac pathologies involving inflammation
due its ability to enhance pro-inflammatory signaling and
its responsiveness to inflammation by dysregulating the Ca2+

balance. In the kidneys, CaMKIIβ expression is associated to
aldosterone-induced fibrosis (Park et al., 2018; Zhang et al., 2018)
and also shows that the increase in mitochondrial fragmentation
observed in hyperglycemia stress-mediated renal damage is due
to the JNK-CaMKII-Fis1 pathway (Zhang et al., 2018).

CamKII Inhibition Displays
Cardioprotection
As discussed above, silencing CaMKII has great therapeutic
value. There are many blockers and inhibitors used nowadays in
research. The most known are KN-93 and AC3-I.

The first inhibitor described was KN-62 in 1990 (Tokumitsu
et al., 1990). One year later, in 1991, Sumi M and collaborators
described a new and more selective inhibitor called KN-93 (Sumi
et al., 1991). They act by blocking the enveloping of Ca2+/CaM
around the CaM-binding segment and automatically freeing this
segment from the catalytic domain (Pellicena and Schulman,
2014). In other words, it is a CaM-competitive CaMKII
inhibitor. It was already discovered that KN-93 can directly
block the potassium current IKr and potassium voltaged channels,
preventing arrhythmic properties of CamKII (Mustroph et al.,
2017). An important item to bring up is that KN-62/93 binds
to the holoenzyme and directly steps in the interaction of
Ca2+/CaM but does not directly bind to CaM (Sumi et al.,
1991). Besides belonging to a family of CaM antagonists, KN-
93 cannot avoid the activity of autophosphorylation of CaMKII
(Wong et al., 2019).

Some studies have proven the efficiency of KN-93 in heart
pathologies in several animal models. Under in vitro and
in vivo stimulations with isoproterenol, arrhythmias have been
abolished after using NK-93 (Sag et al., 2011). It also prevents
arrhythmias after models of acidosis, DOX-induced, NO-donor
SNAP (Mustroph et al., 2017). On some models, the KN-
93 does not seem to prevent but to slow the arrhythmia (as

longer cycle length) without marked alterations in baseline ECG
characteristics (Hoeker et al., 2016). KN-93 also reduces diastolic
cytosolic [Ca2+] after induced HF (Sag et al., 2011). It is also
an attenuator of Ca2+-leak in a diabetes model of GlcNAcase
inhibition (Erickson et al., 2013) and myocardial hypertrophy.
Another study shows the high capacity to inhibit the binding of
CaM with NaV1.5, increasing the calcium release from RYR2 in
cardiomyocytes independent from CamKII (Johnson et al., 2019).
This suggests that KN-93 has interactions with the CaM-Ca2+

binding; however, to inhibit CaMKII specifically, more affinized
compound is necessary.

Experiments using TG RYR-mutant mice (S2814D mutant)
are naturally more susceptible to atrial fibrillation, and because
of this, it is used as a well-established model. Atrial fibrillation,
phospholamban phosphorylation, and diastolic Ca2+-leak are
reduced after prior injection of KN-93 in these TG mice
(Voigt et al., 2012). Cardiomyocytes isolated from TG CaMKIIδc
knockout mice completely recover the contraction ability after
acidosis injury (Mustroph et al., 2017).

There is also a highly specific inhibitor of CaMKII called
autocamtide-3-derived inhibitory peptide (AC3-I). It is the most
used one in studies that require the blocking of CaMKII, and it
is resistant even to proteolysis. As mentioned, AC3-I is derived
from autocamtide-3. The last one is a substrate for CaMKII and
acts mainly in the Thr-9 phosphorylation site substituted with
Ala (Maier and Bers, 2007). As the research regarding CaMKII
increases, its therapeutic use implicated in pharmaceuticals
has been studied more. Several studies, using these inhibitors
mentioned above, impart a cardio protection.

As mentioned, the AC3-I blocker, is a highly specific inhibitor
of CaMKII. This is the main reason it is used more in the
studies concerning the participation of CaMKII in many cell
functions. It can inhibit CAMKII more selectively than CaMKIV
(more and a hundredfold). Studies using this blocker also
imply cardio protection: preventing hypertrophy, reducing
ventricular arrhythmias, improving mechanical function,
reducing RyR2 lacking, and decreasing mortality of diabetic mice
(Sag et al., 2011).

Some studies have proven the efficiency of AC3-I in
pathologies in some animal models. As cited with KN-93, the
AC3-I also reduces atrial fibrillation in TG RYR knockout mice
(Chelu et al., 2009) and seems to protect the heart from the
same atrial fibrillation in Ang II models in vivo and in vitro
(Purohit et al., 2013). There is a study from our group using
interference RNA (RNAi) to block the expression of CaMKIIδ.
It demonstrates that CaMKIIδ is fundamental for cardiomyocyte
hypertrophy; once blocking the expression, the LPS-induced
hypertrophy is reverted (Cruz Junho et al., 2019).

There are several models of heart problems leading to
CaMKII. CRS, already cited, seems to be one of them. Both
kidneys and heart share many mechanisms of homeostasis, and
any injury to one can lead to one in the other. It is known that
CaMKII is increased in many models of heart injury, and some
models of CRS can cause arrhythmias and AP chances as well
as contraction irregularities (Navarro-García et al., 2018; Alarcon
et al., 2019). CaMKII could be crucial to the progression of CRS,
more specifically related to the progression from acute HF to
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FIGURE 2 | Schematic illustration of cellular Ca2+/calmodulin-dependent (CaMK) II involvement in cardiorenal syndrome (CRS).

chronic (types 1 and 2). In this scenario, the inhibition of CaMKII
would be cardioprotective.

OXIDATIVE STRESS AND EPIGENETICS
FACTORS AS CAMKII REGULATORS

The close relation between inflammation and oxidative stress
in pathophysiological processes also makes the balance between
oxidant and antioxidant forces and, therefore, oxidative stress,
one of the most important mechanisms as has been demonstrated
in heart and kidney injury studies (Li et al., 2017; Oliveira et al.,
2017; Liu and Liu, 2018; Songbo et al., 2019).

Even though physiological levels of oxidative species are
necessary for cellular function, the oxidative stress caused by
the overproduction of these molecules in both organs leads to a
series of structural abnormalities via immune system activation
and fibrotic promotion (Virzì et al., 2015a). Some of these
pathologies include left ventricle hypertrophy, atherosclerosis,
endothelial dysfunction, and fibrosis in the heart while in
the kidney ROS promotes interstitial fibrosis and increased
inflammation (Kumar et al., 2019). A study involving patients
with CRS type 3 shows that they have an increased level
of inflammatory and oxidative stress factors, including IL-6,
myeloperoxidase, nitric oxide (NO), copper/zinc superoxide
dismutase (SOD), and endogenous peroxidase (Virzì et al.,
2015a). Oxidative stress triggers an inflammatory response, and
this response induces more oxidative stress. This stress may be
maintaining the previously mentioned cycle of damage. While

Ca2+ is associated with inflammation, studies have shown a
connection between oxidative stress and CaMKII activation
(Erickson et al., 2008). Erickson et al. (2008) also demonstrate
a dynamic mechanism for CaMKII activation, which occurs
via oxidation of the methionine residue site on the CaMKII
regulatory domain; this oxidation-dependent CaMKII activation
is important to Ang II and apoptosis since CaMKII remains
active after ROS oxidation even in the absence of the Ca2+/CaM
complex. Some proteins maintain a redox sensor that regulates
the cell response to oxidative stress (Kim et al., 2014). CaM is
one of these proteins, and this oxidation leads to a regulatory
cascade response with specific targets, including CaMKII (Snijder
et al., 2011), plasma membrane Ca2+ (Anbanandam et al., 2005),
and nitric oxide synthase (NOS) (Montgomery et al., 2003).
As mentioned above, one of the mechano-chemotransductions
that ROS induces Ca2+ release by CaMKII involves NOS (Jian
et al., 2014). The endothelial dysfunction caused by oxidative
stress leads to uncoupling of endothelial NOS (eNOS), leading
to the production of more ROS (Münzel et al., 2017). In
pathological conditions, such as inflammation, the vasculature
expresses the inducible form of NOS (iNOS) (Münzel et al.,
2017). This isoform of NOS produces an excessive amount
of NO that mediates impaired vasoconstriction, which may
be further worsened by the decreased of eNOS activity (Jian
et al., 2014). The continuous exposure of NO induced by
pro-inflammatory mediators inhibits endothelium-dependent
relaxation by impairing the via CaMKII-dependent activation
of eNOS (Kassler et al., 1997). In addition, studies have shown
the role of NOS in the kidney, demonstrating that, when NOS
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activity is compromised, there are a series of renal dysfunctions
that reduce glomerular perfusion and filtration, which may lead
to a progressive scenario of hypertension and kidney injuries
(Carlstrom and Montenegro, 2019).

Oxidative stress in CaMKII by methionine-oxidized CaMKII
was also observed in patients with atrial fibrillation (Purohit et al.,
2013; Yoo et al., 2018), which also demonstrates that oxidative
stress can act in part through increased constitutive activity of
CaMKII, creating a highly vulnerable substrate within the HF that
promotes atrial fibrillation beyond fibrosis. On the other hand,
Kong et al. (2018) shows that the oxidative stress in mitochondria
can be reduced after the inhibition of CaMKII, alleviating the
myocardial ischemia-reperfusion injury. In addition to the redox
balance, other factors indirectly contribute to cardiac and renal
alterations. Many approaches have been studied in order to set a
start point for the CRS. One of them is epigenetics factors.

Epigenetics is the area of biology that studies changes in the
functioning of a gene that is not caused by alterations in the
DNA sequence and that perpetuate in the meiotic or mitotic cell
divisions (Wu and Morris, 2001). Epigenetic modifications are
highly coordinated processes of change that are not restricted to
a specific phase of life. These characteristics are fundamental to
diseases acquired throughout life. Epigenetic changes are divided
into DNA methylation, histone modification, and noncoding
RNA expression (Liu L. et al., 2008).

Studies have been developed to innovate the way to prevent
CRS. Slowly, epigenetics is gaining space, and traditional
mechanisms (such as RAAS and inflammation) are being
replaced by other patterns of findings and prevention. Imaging
the scale of modifications and mutations in a syndrome such
as CRS, numerous cell lines may be altered and reprogrammed,
in both heart and kidney. Studies have pointed out the role
of epigenetics in the development of CRS (Gaikwad et al.,
2010). In types 3 and 4, for example, renal failure increases
cardiac histone H3 epigenetics, evidencing the crosstalk between
renal failure and the transcription of cardiomyopathy-related
genes (Gaikwad et al., 2010). It is important to mention that
epigenetics in CRS itself are little studied when compared to
the traditional mechanisms even though it is very promising.
The focus of studies is linked to inflammation and oxidative
stress, which we know to be the consequences of CRS.
Abnormal defects in DNA methylation, histone modifications,
and microRNA (miR) participate in renal injury (Beckerman
et al., 2014); however, none of them are related to post-
progression of HF. During HF independent of renal injury,
we can note the expression of transcription factors, angiogenic
factors, and natriuretic factors, often used as biomarkers of this
condition. Epigenetic modifications regulate them. Pathological
hypertrophy and compromised contractility are described to
increase DNA methylation levels. Inhibition of DNA methylation
has already been suggested as treatment for CHF (Yang et al.,
2015); however, it should be carefully studied once the DNA
methylation is comprehended.

Ca2+ signaling is involved in epigenetic regulation, and
the study of its signaling can contribute to the development
of new therapeutic strategies (Awad et al., 2015; Puri, 2020).
CaMKIIδ has been already described as fundamental for cardiac

hypertrophy development (Cruz Junho et al., 2019). This
mechanism occurs after CaMKIIδ selectively phosphorylates
HDAC4. During cardiac hypertrophy, there is an activation
of fetal cardiac genes, an important mechanism regulated by
CaMKIIδ-mediated H3 chromatin regulation. With the recent
development of epigenetic studies, the use of ChIP-seq to evaluate
H3 phosphorylation and binding of CaMKIIδ across the genome
enables a profound knowledge of the genome-wide functional
effect of H3 alteration by CaMKIIδ (Awad et al., 2015). This
connection can lead to CRS types 1 and 2 and can be strongly
linked to the diagnosis of heart dysfunction. In addition, it is
extremely important to highlight the role of micro RNA (miR).
miR is a short and noncoding RNA that interacts with the 3-
untranslated region (UTR) of mRNAs blocking gene expression,
degrading mRNAs and regulating protein expression (Winter
et al., 2009; Krol et al., 2010; Qi et al., 2019; Yang et al., 2019).

To identify signaling pathways, there is a serviceable tool
called gene set analysis (GSA). It uses statistical analysis to
predefine gene sets involved in a specific cellular process. Thus,
GSA is especially useful to infer functions of different miRNAs.
For example, miR-185 has a key role during cardiac hypertrophy.
This miRNA targets pro-hypertrophic genes, such as RhoA,
Cdc42, and Stim1 in the heart. Given that, miR-185 is also
a potent therapeutic target for cardiac diseases (Brown et al.,
2006; Carè et al., 2007; Liu et al., 2011; Zhang et al., 2015). In
addition, Kim et al. (2015) show that miR-185 not only acts
as the genes mentioned, but also targeting genes involved in
Ca2+-associated pathological hypertrophy, including CamKII. It
is worth mentioning the role of miR-1, once alterations in its
expression or inhibition have been discovered in many cardiac
pathologies (Yang et al., 2007; Lu et al., 2009).

Recently, Zhang et al. proposed a possible mechanism by
which Lycium barbarum polysaccharides (LBP) restore cardiac
contractility induced by miR-1 overexpression. The authors show
that LBPs prevent the reduction of CaM and cardiac myosin
light chain kinase and their corresponding downstream proteins,
including CaMKII due to miR-1 overexpression (Zhang et al.,
2018).

Regarding inflammatory processes, miR-625-5p has been
illustrated to inhibit inflammatory response in human bronchial
epithelial cells and is downregulated in heart diseases once miR-
625-5p is able to inhibit STAT3 and reduce the expression
of CaMKII. Moreover, miR-625-5p attenuated Ang II-induced
cardiac hypertrophy through CaMKII/STAT3 (Qian et al., 2019).

In relation to kidney disease, Park et al. (2018) shows that miR-
34c-5p and CaMKII are involved in aldosterone-induced fibrosis
in the kidneys. In addition, recent studies have focused on MiR
regulation and exosomes, specialized nanosized membranous
vesicles, in different experimental models. These membrane-
bound vesicles (30–100 nm) are released from different cell types
and deliver bioactive molecules, including microRNAs (miRs).
Recently, literature demonstrated the regulation of oxidative
stress in cardiac stem cells through the miR-214/CaMKII
pathway after using exosomes derived from miR-214-enriched
bone marrow-derived mesenchymal cells (Wang et al., 2018).

In addition to miRs, the role of long noncoding RNAs
(lncRNAs) is well known. lncRNAs are transcribed RNA
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molecules >200 nucleotides in length without known protein-
coding function, regulating gene expression at epigenetic,
transcriptional, and post-transcriptional levels (Mercer et al.,
2009). Previous studies report that lncRNAs play critical roles
in the modulation of heart development and cardiovascular
diseases (Wang et al., 2014, 2015; Zhang et al., 2016, 2017). For
example, Shao et al. (2017) demonstrated that the expression of
long noncoding RNAs TINCR was downregulated in the heart
after a transverse aortic constriction (TAC) model (Shao et al.,
2017). More recently, the same group showed that TINCR could
epigenetically inhibit the transcription of CaMKII inhibiting
cardiac hypertrophy induced by angiotensin II (Shao et al., 2017).

The evidence in the literature suggests that CaMKII is a key
molecule for understanding the physiology and physiopathology
of cardiovascular diseases as well as a prominent target for new
strategies of treatment.

CONCLUSION

In this review, we aimed to stimulate a discussion on the
role of CaM as an inflammatory mediator in the systemic
profile of CRS via regulation of CaMKII. The literature

suggests that the Ca2+/CaM complex might be an important
modulator of inflammation and oxidative stress via CaMKII
in the kidney–heart interaction (summarized in Figure 2), and
CaMKII regulation by pre- or post-translational mechanisms
is essential for cardiac or renal homeostasis. Additionally, we
have observed that CaM/CaMKII has been extensively studied
in cardiovascular diseases; however, there is still the necessity
of exploring how CaM could integrate Ca2+ signal in different
scenarios, such as CRS.
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