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Abstract: The use of molecular sequence data has increased interest in trying to date evolutionary events, with researchers 
wanting both an estimate of the divergence time and a confi dence interval for that estimate. However, two methodological 
issues have recently been raised with respect to precision of the estimates: (i) the time of the ancestral event is over-estimated; 
and (ii) the confi dence interval is asymmetrical. I argue that if the estimates of divergence time are considered to be samples 
from a lognormal probability distribution, then this would explain both of these problems. This implies that divergence 
times should be presented using geometric means rather than arithmetic means, both for estimates and for their confi dence 
intervals. I present analyses based on both computer simulations and empirical data to show that this approach is effective 
for both single-gene and multiple-gene data sets. Treating divergence time as a lognormal variable thus provides a simple 
unifying framework for dealing with many of the problems associated with the estimation of divergence (and possibly 
coalescence) times. Use of this approach (based on geometric means) can, unfortunately, lead to very different biological 
conclusions compared to the currently used calculation methods (based on arithmetic means).
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Introduction
The use of molecular sequence data has lead to a renewed interest in trying to date evolutionary events, 
in addition to simply reconstructing the temporal sequence of those events. Unfortunately, the use of 
amino acid and DNA data to date evolutionary events is still an uncertain procedure, with several com-
peting strategies of largely unknown reliability. Traditionally, these methods assumed a molecular clock 
(e.g. distance-based methods) while more recent methods employ various relaxed-clock models (see 
Magallón, 2004; Renner, 2005; Welch and Bromham, 2005; Rutschmann, 2006). Either way, research-
ers have been interested in an estimate of the divergence time, often along with a confi dence interval 
for that estimate.

In this regard, two methodological issues have been raised recently with respect to the mathematical 
calculations, both of which are important but which seem so far to have had little impact on practice: 
(i) the time of the ancestral event is over-estimated (Nei et al. 2001; Rodríguez-Trelles et al. 2002); and 
(ii) the confi dence interval is asymmetrical (Steel et al. 1996; Haubold and Wiehe, 2001). These have 
traditionally been treated as separate issues. Here, I point out a possible simple connection between 
them, and demonstrate that in practice this connection leads to a straightforward and effective procedure 
for accommodating both of these issues when describing ancestral times.

It is important to note that my concern here is solely with the precision of the time estimates (i.e. 
their repeatability in response to stochastic variation) rather than with their accuracy (i.e. bias due to 
non-stochastic variation). A number of issues have been identifi ed that affect the accuracy of the esti-
mates (Magallón and Sanderson, 2005), such as insuffi cient taxon sampling (Linder et al. 2005), 
quality and use of fossil calibrations (Rutschmann et al. 2007), small number of loci (Rannala and 
Yang, 2007), and among-lineage rate variation (Pulquério and Nichols, 2007). Indeed, there are indi-
cations that these issues might lead to under-estimation of the divergence times. However, these latter 
issues of accuracy cannot be addressed effectively until after the issue of precision has been dealt with. 
Once we know how to present the precision of our estimates we can then proceed to determine their 
accuracy.

The connection between estimated times and their confi dence intervals is not necessarily obvious 
for methods that produce a single point estimate of an ancestral time (although see the divergence-time 
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histograms of Baldwin and Sanderson, 1998; 
Kumar and Hedges, 1998; Sanderson and Doyle, 
2001; Hedges and Kumar, 2003), but it is imme-
diately obvious for methods (such as those involv-
ing markov chain monte carlo, MCMC) that 
produce estimates based on probability distribu-
tions (see, for example, the distributions illustrated 
by Ballard and Whitlock, 2004; Lemey et al. 2004; 
Britton, 2005; Huelsenbeck and Ronquist, 2005; 
Mu et al. 2005). Such distributions are almost 
always right-skewed (i.e. there is a longer upper 
tail), as a result of the fact that there is a lower 
bound to the estimates (i.e. zero time) but no upper 
bound (at least, not within the time-frame being 
studied). Here, I argue that if these estimates of 
divergence time are considered to be samples from 
a lognormal probability distribution, then this 
would explain both the over-estimates of times as 
well as the asymmetry of the confi dence intervals. 
That is, these phenomena are simply two manifes-
tations of the same underlying cause.

The practical upshot of a lognormal distribu-
tion is that divergence times should be presented 
using geometric means rather than arithmetic 
means, for both estimates and their confi dence 
intervals. This issue seems to be quite general, in 
the sense that it can affect all of the different 
methodologies that have been proposed for dating 
divergence (and perhaps coalescence) events 
(reviewed by Arbogast et al. 2002; Magallón, 
2004; Rutschmann, 2006). Moreover, it is impor-
tant to note that a lognormal distribution might 
not be the only possible cause of a right-skewed 
distribution for divergence times. For example, 
the curvature of the likelihood function for branch 
lengths is reduced as the branch lengths get lon-
ger, leading to a right skew of the distribution. 
My contention here, however, is that the lognor-
mal distribution seems to account for a suffi cient 
amount of the skew that it has important practical 
consequences.

The paper is arranged as follows. I start with a 
consideration of possible probability distributions 
for time estimates. I then follow this with fi rst a 
theoretical and then an empirical assessment of 
error distributions for single genes, and fi nally a 
theoretical and then empirical assessment of error 
distributions for multiple genes (or loci). I conclude 
with a consideration of the practical effect of these 
frequency distributions on biological studies, and 
some alternative methods for addressing the issues 
that I have raised.

Probability Distributions
Rodríguez-Trelles et al. (2002) performed a 
number of simple computer simulations to show 
that the frequency histogram of replicate 
estimates of divergence times is notably right-
skewed. Consequently, arithmetic averages of 
replicate estimates of times will be biased 
upwards (by up to 35% in their simulations). 
However, they offered no mathematical insight 
into this problem, nor did they suggest any pos-
sible remedies. In a similar vein, Haubold and 
Wiehe (2001) noted that confi dence intervals on 
estimated divergence times are usually under-
estimated, as a result of the fact that the mutation 
rate for the calibration time is treated as fi xed 
(i.e. known precisely). They provided a mathe-
matical analysis by modelling the variables 
involved in terms of gamma probability distribu-
tions, and produced asymmetrical confi dence 
intervals that reduced the under-estimation in 
their examples from 45% to 5%.

Mathematically, both of these issues are 
ultimately related to the probability distribution 
from which we might expect time estimates to 
be sampled (i.e. the error distribution). Most of 
the commonly used divergence methods tacitly 
assume that the sampling frequency distribution 
will be a normal (i.e. gaussian) distribution, as 
this is the conventional assumption in paramet-
ric statistical analysis. However, the common 
point made by Rodríguez-Trelles et al. (2002) 
and Haubold and Wiehe (2001) is that this 
assumption is demonstrably incorrect, and that 
this can lead to substantial over-estimation of 
the times and under-estimation of the confi-
dence intervals. Unfortunately, there seems to 
be no analytical proof as to what sampling 
distribution the relevant time estimates will 
follow. Indeed, any one of several simplistic 
models might be equally good as a fit to empir-
ical data.

For example, if taxa are the product of a 
poisson-based genetic process, as is often assumed 
in both phylogenetic and genetic analyses, then 
any measure of divergence between the taxa (i.e. 
“genetic distance”) will be approximated by a 
gamma probability distribution. Haubold and 
Wiehe (2001) essentially used this idea as a basis 
for deriving a formula to calculate confi dence 
intervals on time estimates, which they showed are 
more realistic than those derived from assuming a 
normal distribution.
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Alternatively, all of the procedures that 
assume a molecular clock are based on the idea 
that the relationship between the “known” cali-
bration time and the unknown time to be evalu-
ated is:

Calibration time
Calibration divergence Evaluate

= Evaluated time
dd divergence

 
(1)

The various methods simply differ in how they 
measure divergence (e.g. genetic distance, patris-
tic distance, etc.) and how they deal with the 
associated assumptions/limitations. Three of these 
terms are to be estimated and are thus associated 
with more-or-less independent stochastic error; 
and when calculating the fourth term these sto-
chastic errors are multiplied. Thus, the contribu-
tions to the stochastic variation of the fi nal time 
estimate will be multiplicative, and the estimates 
will be approximated by a lognormal probability 
distribution (Galton, 1879). Although they never 
explicitly noted this fact, Rodríguez-Trelles et al. 
(2002: 8112) essentially used the idea when they 
observed that “equivalent random deviations 
around target times scale divisively forward (i.e. 
to the present), and multiplicatively backward 
(i.e. to the past) on their target times.” (Hedges 
and Kumar (2004) mention the lognormal distri-
bution as a possible error distribution for fossil 
calibration times, along with the triangular and 
negative exponential distributions, but they 
present no explicit rationale for any of these 
suggestions.)

As a third alternative, in population genetics 
it is common to invoke a diffusion approximation 
to the neutral Fisher-Wright model (e.g. Watterson, 
1982). Under these circumstances, a brownian-
motion model may be appropriate. The inverse-
normal (or inverse-gaussian) probability 
distribution is usually used to model the time that 
a brownian motion with positive drift takes to 
reach a fi xed positive level, and it has sometimes 
been used as a model in lifetime studies (e.g. time 
required to perform some task, length of hospital 
stays; Seshadri, 1999). This may thus also 
be a candidate for divergence (or coalescence) 
times.

So, there are a range of possible distributions 
that might fi t estimates of divergence times in 

phylogenetic studies, and no obvious theoretical 
basis on which to distinguish among them. The 
only available approaches, then, are (i) simulation 
studies and (ii) the fi t to empirical data, both of 
which I evaluate here.

Simulated Single-gene Time 
Estimates
In order to assess the fi t of the lognormal (or any 
other) probability distribution to single-gene time-
estimation data, I performed a set of simulations 
similar to those of Rodríguez-Trelles et al. (2002), 
which were based on the assumption of a molec-
ular clock. This is the simplest form of analysis 
for divergence times, so that it is a subset of all 
other analyses (e.g. those based on relaxed-clock 
models). This implies that the conclusions are 
likely to apply to the other analyses as well.

My simulations used a 3-taxon rooted tree, with 
the calibration time specifi ed for the ancestral node 
of the closest two taxa and the time to be estimated 
as the root node. The target time expected in the 
simulations was set to 2, 5 or 10 times the age of 
the calibration node. The branch lengths of the tree 
were then systematically varied (1, 2, 5, 10, 20, 
30, 40, 50, 60, 70, 80, 90, 100), thus emulating 
either varying evolutionary time (if the substitution 
rate is considered to be fi xed) or varying substitu-
tion rate (if the evolutionary time is considered to 
be fi xed), in combination with systematic variation 
of the amino-acid sequence lengths (100, 150, 300, 
600). Sequences were simulated along the tree 
using the Jones-Taylor-Thornton substitution 
model, with α = 1 for the among-site rate variation, 
using the PSeq-Gen ver. 1.1 program (Grassly et al. 
1997). There were 1000 replicate simulations for 
each of the 156 data sets (i.e. all combinations of 
3 calibration times, 13 branch lengths and 4 
sequence lengths). Simulations have indicated that 
sample sizes �500 typically give strong support 
to a single model when assessing the fi t of data to 
a probability distribution (Dick, 2004), and so 1000 
replicates should be ample to assess whether a 
candidate distribution is a better fi t than any of the 
alternatives.

The genetic distances among the sequences in 
each data set were then estimated using the 
ProtDist program of the Phylip ver. 3.6a3 package 
(Felsenstein, 2002), specifying the same substitu-
tion model parameters as for the simulations (i.e. 
a best-case scenario for evolutionary reconstruction 
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under a molecular clock). This procedure may, 
however, produce slight additional variation due 
to the differences in the way the Jones-Taylor-
Thornton model is implemented in PSeq-Gen 
compared to Protdist (Kosiol and Goldman, 2005). 
The time estimates were then calculated by divid-
ing the average genetic distance between the esti-
mation sequence and the calibration sequences by 
the genetic distance between the two calibration 
sequences.

The frequency distribution of the 1000 replicate 
times for each data set was then compared to a nor-
mal probability distribution and a lognormal distribu-
tion via maximum-likelihood fitting, using the 
Regress+ ver. 2.3.1 program (McLaughlin, 1999). 
This program was also used for all of the other 
maximum-likelihood fi tting of frequency distribu-
tions to data, as discussed below. Since the gamma 
probability distribution can also be used as a model 
for multiplicative errors (Firth, 1988), and Thorne 
and Kishino (2002) model the age of a cladogram 
root using a gamma prior, a 2-parameter gamma 
distribution was used as a comparison for the fi t of 
the lognormal to the data. I also tested the fi t of both 
the inverse-normal and the 2-parameter weibull 
distributions as potential approximations to the time-
estimate data. The latter has found empirical favour 
as a fi t to right-skewed frequency histograms in other 
areas of biology, most notably in studies of survival 
time (Collett, 2003; Lee and Wang, 2003). This is an 
extreme value distribution, used when dealing with 
the maximum values of a series of observations that 
have an upper limit, and is thus a generalization of 
the gamma distribution to situations where there is 
not a constant event-probability through time.

For almost all of the data sets examined, the rank 
order of the log-likelihood values was the same: 
lognormal � gamma � normal. The only excep-
tions to this were the fi ve data sets with the largest 
log-likelihood values for the normal distribution, 
in which case the gamma distribution was a slightly 
worse fi t to the data than was the normal. However, 
the lognormal probability distribution always pro-
vided a better fi t to the data than did either the 
gamma or the normal distributions, even when the 
likelihood values were very close. Unfortunately, 
the lognormal distribution was sometimes detect-
ably different from the data distribution, as deter-
mined by Kolmogorov-Smirnov goodness-of-fi t 
tests (using Regress+), especially for short sequence 
lengths and/or short branch lengths. Thus, the data 
do not flawlessly fit a lognormal distribution, 

although this is a better approximation than is either 
of the alternative error distributions tested.

The weibull probability distribution was never 
a good fi t to the data, and in fact was only a better 
fi t than the normal distribution for less than one-
third of the data sets. The inverse-normal probabil-
ity distribution, on the other hand, was usually just 
as good a fi t to the data sets as was the lognormal 
distribution, although the lognormal had the edge 
in two-thirds of the cases. This is not necessarily 
surprising, as the inverse-normal and lognormal 
probability distributions are very similar if the 
coeffi cient of variation (CV; see below) is �1 
(Takagi et al. 1997). Thus, there is no clear-cut 
evidence that the lognormal distribution is always 
the true generating distribution of divergence 
times, although it seems to be the most likely of 
the candidates tested.

So, while I can make no strong mathematical 
claim that evolutionary time estimates are sampled 
from a lognormal distribution, even for data that fi t 
the molecular clock, I suggest that it is the distribu-
tion for which the most effective case can be made. 
Next, I explore some of the practical consequences 
that follow if this suggestion is true, noting that 
there are several important advantages.

Presenting Divergence Estimates
If a frequency distribution is lognormal, then the 
geometric mean will be a more natural measure of 
the central location of that distribution than will 
the arithmetic mean. That is, if divergence time is 
a lognormal variable then it will show multiplica-
tive stochastic variation around the geometric mean 
(rather than additive variation around the arithme-
tic mean, as for a normal variable); and the geo-
metric mean will always be � the arithmetic mean 
(Muirhead, 1903). Furthermore, the confi dence 
intervals of a lognormal variable are asymmetrical, 
and are larger than are those of a normal distribu-
tion. These combined characteristics clearly have 
the potential to address both of the problems that 
I identifi ed above for the currently used diver-
gence-time procedures.

The geometric mean is preferred to the arith-
metic mean (in this context, but not necessarily in 
other contexts; e.g. Parkhurst, 1998) for a number 
of inter-related reasons (Limpert et al. 2001), and 
this is what makes the lognormal distribution (and 
the associated logarithm transformation) unique 
among non-normal probability distributions 
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(Keene, 1995). The geometric mean is the back-
transformed value of the arithmetic mean of the 
log-transformed data. For a lognormal distribution, 
this version of the mean will thus possess many of 
the desirable properties associated with the arith-
metic mean of a normal distribution, which are not 
possessed by the arithmetic mean of the lognormal 
distribution itself (Schmoyer et al. 1996). This 
follows from the fact that a lognormal distribution 
is normally distributed on the logarithmic scale. 
These properties include the fact that the sample 
mean is not an effi cient estimator of the population 
arithmetic mean (Mehran, 1973) and that the geo-
metric mean will equal the median (or be an effi -
cient estimator of the median for small samples 
sizes). Furthermore, the geometric mean is zero if 
any of the component observations is zero.

A practical demonstration of these theoretical 
properties is illustrated in Figure 1, which shows 
the results of one of the computer simulations of 
Rodríguez-Trelles et al. (2002). The target time to 
be estimated in the simulations was 3,000 million 
years, and 1,000 replicate simulations were per-
formed. As can be seen, the data are a reasonable 
fi t to the lognormal distribution (as estimated by 
maximum likelihood), and therefore the geometric 
mean is a good estimator of the target time, while 
the arithmetic mean provides a large over-estimate. 
This will always be true for data that fi t a lognormal 
probability distribution, and will be approximately 
true for data that approximate a lognormal.

Confi dence intervals for a lognormal variable 
are easily calculated by estimating the confi dence 
limits on the logarithmic scale and then back-
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Figure 1. Frequency histogram of 1000 simulations of a single estimated divergence time. The simulations were based on a 3-taxon rooted 
tree, with the calibration time specifi ed for the ancestral node of the closest two taxa and the time to be estimated as the root node. The 
target time expected in the simulations is shown as the vertical long-dashed line, along with the best-fi t normal (dashed line) and lognormal 
(dotted line) probability distributions. The fi t of the data to the lognormal probability distribution is good over most of the range, but the second 
and fourth histogram bins are signifi cantly different from their expectations, as determined by a goodness-of-fi t test (G = 40.20, p = 0.020). 
The original data are from Rodríguez-Trelles et al. (2002).
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transforming them to the original scale. This will 
produce asymmetrical confi dence intervals, which 
will extend further towards larger values than will 
the equivalent confi dence intervals based on the 
normal distribution.

A practical demonstration of this point is 
illustrated in Table 1, which shows the results of 
the empirical data analysed by Haubold and 
Wiehe (2001). The empirical confi dence intervals 
were estimated using bootstrapping, and then 
these were approximated by the gamma-based 
method devised by Haubold and Wiehe (2001). The 
confi dence intervals for the same data derived by 
assuming that the data fi t a lognormal distribution 
are also shown. As can be seen, in all cases the 
lognormal-based confi dence intervals are a reason-
ably good fi t to the “true” values, and are as good 
an approximation to these values as are the gamma-
based confi dence intervals. This is to be expected 
if the data are a good fi t to a lognormal frequency 
distribution. Moreover, the lognormal-based con-
fi dence intervals are simpler to calculate than are 
the gamma-based confi dence intervals.

It is important to note that many researchers pre-
fer to quote the mean (x) and standard deviation/error 
(s) rather than confi dence intervals (Hedges and 
Kumar, 2004), a practice that Graur and Martin 
(2004) rightly criticize in the context of estimating 
evolutionary times, since it can give a false impres-
sion of precision to those readers who do not men-
tally turn the values into confidence intervals. 

Moreover, this practice is clearly problematic if the 
data are non-normal, because the usual convention 
of reporting x ± s will not work, since the confi dence 
intervals are not symmetrical about the mean. 
(Hedges and Kumar (2004: 245) note that time esti-
mates have a skewed distribution but still claim that 
use of standard errors “is a matter of choice”, appar-
ently not noticing the logical contradiction.) Limpert 
et al. (2001) remark that an alternative convention 
for lognormally distributed data is to report x' x/s', 
where x' = exp(x), s' = exp(s) and x and s are calcu-
lated on the log-transformed scale (i.e. x' is the 
geometric mean). Here, x/ stands for “times divide” 
(by analogy with “plus minus” for ±), so that multi-
plying x' by s' has the same interpretation as adding 
s to x, and dividing x' by s' has the same interpretation 
as subtracting s from x. However, quoting the con-
fi dence intervals directly is clearly a much simpler 
convention for all concerned.

The geometric mean can be calculated straight-
forwardly from the arithmetic mean (Mean) and 
standard deviation (StDev):

Geometric Mean
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2
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Table 1. Comparison of methods for estimating confi dence intervals on divergence times. Data are shown for 
six divergence times (millions of years ago, MYA) for pairs of species of the Arabidopsis species group 
(Brassicaceae) based on chalcone synthase sequences, with 95% confi dence intervals estimated via bootstrap-
ping. These are compared to confi dence intervals estimated using the gamma-based method of Haubold and 
Wiehe (2001) and the lognormal approximation. Also shown is the geometric mean as calculated from the 
original estimate and its standard deviation.

Divergence Estimate Confi dence Gamma Lognormal Geometric Difference
time (MYA)a interval confi dence confi dence mean (%)b

(95%)a intervala interval (MYA)
A.t/A.h 5.2 3.2–8.0 3.3–8.0 3.1–7.8 5.0 −4.5
A.t./C.r. 11.3 7.6–16.4 7.5–16.4 7.2–16.2 10.8 −4.7
A.t./A.b. 22.4 15.4–32.2 15.2–31.9 14.6–31.4 21.4 −4.5
C.a./B.v. 6.2 4.2–8.7 4.2–8.8 4.2–8.9 6.1 −1.8
A.t./B.v. 15.0 10.4–21.3 10.1–21.6 9.9–20.8 14.3 −4.4
A.b./B.v. 22.8 15.9–32.5 15.6–32.6 15.1–31.8 21.9 −4.0

aOriginal data from Haubold and Wiehe (2001).
bDifference between the geometric mean and arithmetic mean, as a percentage of the arithmetic mean.
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So, any time-estimate method that produces an 
arithmetic mean and standard deviation (or a 
single estimate and its standard error) can be used 
to calculate the geometric mean and its associated 
confi dence interval—and all estimates involve a 
standard error, even if the latter is neither calcu-
lated (by the program) nor reported (by the 
researcher). However, this formula is not particu-
larly efficient for large standard deviations 
(Gaddum, 1945), and so it is always better to use 
the raw data for calculations. Note, incidentally, 
that the r8s computer program (Sanderson, 2006) 
produces a point estimate of the divergence time 
but the current version does not provide any 
information that could be used to calculate a 
confidence interval (or the geometric mean); 
instead, a complicated bootstrapping procedure is 
recommended.

The geometric mean can also be used for 
methods that produce an empirical probability 
distribution rather than a point estimate of the 
divergence time (e.g. many of the relaxed-clock 
methods, as listed by Rutschmann, 2006). That is, 
when confronted with the output from a computer 
program that uses, for example, MCMC methods 
to produce a frequency distribution of estimated 
divergence times, it is not necessarily obvious 
whether to use the mean, median or mode as the 
preferred point estimate. I am suggesting using the 
geometric mean, which unfortunately is not a 
number calculated by any of the currently available 
programs, all of which seem to use either the arith-
metic mean or the mode (e.g. Beast: Drummond 
and Rambaut, 2007; IM: Hey and Nielsen, 2004; 
Multidivtime: Thorne and Kishino, 2002; PAML: 
Yang, 2007; Path: Britton, 2005; PhyBayes: 
Aris-Brosou and Yang, 2002; Qdate: Rambaut and 
Bromham, 1998; r8s: Sanderson, 2006; Timer: 
Glazko and Nei, 2003). For example, Figure 2 
shows the output from analysis of a single gene by 
the Multidivtime ver. 09.25.03 program (Thorne 
and Kishino, 2002), illustrating the good fi t of the 
bayesian posterior frequency distribution to a log-
normal probability distribution (lognormal log-
likelihood = 1017.02; normal log-likelihood = 
871.63), for which the geometric mean would then 
be appropriate.

Note, incidentally, that a bayesian credible 
interval is not the same thing as a confi dence inter-
val on a point estimate. A bayesian analysis does 
not produce point estimates of a parameter (such 
as a mean), but instead considers the whole sample 

as being the appropriate solution to the analysis 
(since it deals with random variables rather than 
statistical estimates of parameters). Thus, a credible 
interval refers to the whole sample, rather than to 
any point estimate derived from that sample (such 
as a mode, median or mean). A credible interval is 
thus likely to be a poor estimate of the confi dence 
interval of the geometric mean. (This fact does not 
deny the potential usefulness of a credible interval 
in its own right.)

It is also important to note that it is possible to 
fi nd analyses of data sets that fi t a gamma prob-
ability distribution better than they do a lognormal 
distribution. For example, the IM program of Hey 
and Nielsen (2004) uses a MCMC procedure to 
estimate demographic parameters under a speci-
fi ed model of divergence for a pair of populations 
from their common ancestral population. When 
estimating coalescence (rather than divergence) 
time based on a single locus, this program often 
produces bayesian posterior frequency histograms, 
as shown by the example in Figure 3, where the 
gamma distribution is a much better fi t to the data 
(log-likelihood = −856.67) than is either the log-
normal (log-likelihood = −933.80) or the normal 
(log-likelihood = −954.05) probability distribu-
tions. This program incorporates the coalescent 
into the ancestral population, which involves a 
convolution of exponential distributions—a 
gamma distribution is thus not an unexpected 
result for the posterior probability distribution. 
Similarly, the simulated coalescence distribution 
shown by Ballard and Whitlock (2004) (their 
Fig. 2) fi ts a gamma distribution better than a 
lognormal distribution. This does not preclude use 
of the geometric mean and its confi dence interval 
for such analyses, but it does emphasize that the 
rationale for doing so is only a convenient approx-
imation in these cases.

Finally, it is perhaps worthwhile to point out 
that the sum (or difference) of two lognormal vari-
ables is not lognormally distributed (Blackwood, 
1992). Indeed, the resulting probability distribution 
has a distinctly awkward mathematical form (Naus, 
1969). This will presumably make it diffi cult to 
calculate confi dence intervals for estimates of dif-
ferences between divergence times. Furthermore, 
statistical tests of geometric means involve their 
ratios rather than their differences (as is the case 
for arithmetic means), because the tests are per-
formed on the logarithm-transformed data 
(Blackwood, 1992). Rejecting a null hypothesis 
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for equality of geometric means thus implies more 
than just a shift in the central tendency of the 
untransformed data, as the mean and standard 
deviation are confounded on the original scale (see 
equation 2).

Incidentally, the confounding of the mean and 
standard deviation leads to the result that for a 
lognormal variable the width of the confi dence 
interval will be directly related to the size of the 
mean, since the confi dence interval is calculated 
from the standard deviation. Thus, the fact that 
Yang and Rannala (2006) and Rannala and Yang 
(2007) both observed a linear relationship between 
these variables in their bayesian analyses implies 
that their simulated data also follow lognormal 
distributions. The latter conclude that “the slope 
of the regression line [between the size of an 
arithmetic mean and its confi dence interval] indi-
cates the amount of uncertainty in posterior time 

estimates that cannot be removed by increasing 
sequence data” (Rannala and Yang, 2007: 
462)—this characteristic is another inevitable 
consequence of divergence time being a lognormal 
variable.

Empirical Single-gene Time 
Estimates
This brings us to the practical issue of how much 
effect using the geometric mean rather than the 
arithmetic mean is likely to have in practice. I will 
consider time estimates based on single genes 
fi rst.

As shown by equation (2), for a lognormal vari-
able the standard deviation is not independent of 
the arithmetic mean. One consequence of this is 
that the lognormal frequency distribution 
approaches the normal frequency distribution as 
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Figure 2. Frequency histogram of 100,000 bayesian samples of the estimated divergence time of four taxa, based on a single locus, as 
analysed by the Multidivtime computer program. The time scale is relative (i.e. unitless until a substitution rate is specifi ed for each locus). 
Also shown is the best-fi t lognormal probability distribution (dotted line). The original data are from Gene 3 of the example data set distributed 
with the Multidivtime computer program.
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the standard deviation decreases (Evans et al. 
1993). This implies that the value of the geometric 
mean approaches that of the arithmetic mean as 
the standard deviation decreases. Consequently, 
the two problems being discussed here are reduced 
for any time-estimation method or data set that has 
a smaller standard deviation—the smaller the 
standard deviation then the smaller will be the dif-
ference between the arithmetic and geometric 
means and the smaller and more symmetrical will 
be the confi dence interval.

This is illustrated for a specific empirical 
example in Figure 4, which shows a range of esti-
mates for the same divergence time based on the 
same calibration time, but using different estima-
tion methods. For the method with the smallest 
coeffi cient of variation (the standard deviation as 
a percentage of the mean) the arithmetic and 
geometric estimates are almost identical, whereas 

the method with the largest coeffi cient of variation 
(CV) has distinctly different arithmetic and geo-
metric means and confi dence intervals. In this case, 
the difference is not trivial because the 95% 
confi dence intervals for the geometric means indi-
cate that the estimates based on methods 6 and 7 
are not the same as the estimate from method 5 
(the latter assumes a molecular clock while the 
former do not) while in contrast the confi dence 
intervals for the arithmetic means do overlap.

It is also worth pointing out that if the standard 
deviation is larger than 50% of the arithmetic mean 
then the data cannot be normally distributed, as 
the 95% confi dence interval would then include 
negative numbers (i.e. for a normal probability 
distribution, 95% CI ≈ estimate ± 2 × standard 
deviation of estimate), which is illogical for 
divergence times. This is a simple heuristic test of 
whether or not the assumption of a normal 
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as analysed by the IM computer program. The time scale is relative (i.e. unitless until a substitution rate is specifi ed for the locus). Also 
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sequences of lineages I and II of Toxoplasma gondii (Apicomplexa).
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distribution is valid. This point is illustrated for 
method 8 in Figure 4, where the confi dence inter-
val of the arithmetic mean suggests that we can 
have no confi dence at all in the divergence time 
(i.e. it could almost include zero) while the lower 
bound for the confi dence interval of the geometric 
mean is quite in accord with the (non-zero) lower 
bound for the other estimation methods. The geo-
metric mean and its confidence interval will 
always be non-negative.

Since the degree of non-normality is related to 
the magnitude of the standard deviation, all circum-
stances that reduce the standard deviation of a 
single-gene estimate will reduce the effect. These 
can include: (1) increasing the sequence length; (2) 

increasing the evolutionary branch lengths relating 
the taxa, either by increasing the substitution rate or 
by increasing the evolutionary time, so that the 
number of inferred substitutions is increased 
(although saturation will then eventually become a 
problem); (3) decreasing the time difference between 
the estimation point and the calibration point; and 
(4) use of an adequate evolutionary model for esti-
mating sequence divergence. Rodríguez-Trelles 
et al. (2002) provide the results of computer simula-
tions to demonstrate some of these points, and Nei 
et al. (2001) provide a mathematical analysis to 
demonstrate some of the others.

As far as empirical data are concerned, most 
of the suitable data sets that I have investigated 
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Figure 4. Divergence time estimates (million years ago) for the gorilla—human split (using the human—orangutan split as the calibration 
time) based on eight different estimation methods, which produce different coeffi cients of variation (CV), and using the arithmetic (open 
symbols) and geometric (fi lled symbols) means and 95% confi dence intervals. The methods are 1–2: protein gamma distance (Glazko and 
Nei, 2003), with 1 = concatenated sequences, 2 = individual sequences; 3–4: bayesian (Aris-Brosou and Yang, 2002), 3 = molecular clock, 
4 = non-clock; and 5–8: maximum likelihood (Aris-Brosou and Yang, 2002), 5 = molecular clock, 6 = two rates, 7 = three rates, 8 = four rates. 
For method 1 CV ≈ 10%, for methods 2, 5 CV ≈ 15%, for methods 3, 4, 6, 7 CV ≈ 20%, and for method 8 CV ≈ 50%.
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(i.e. those few that provide suffi cient information 
to examine the shape of the sampling distribu-
tion) show a better fi t to a lognormal than to a 
normal distribution, thus confi rming the simula-
tion study. However, approximately normal 
distributions can certainly be found, as shown 
for example by the data of Baldwin and Sanderson 
(1998). These are based on ITS sequences of the 
Hawaiian silversword alliance (Asteraceae), 
using 100 bootstrap replicates of an estimated 
time to the most recent common ancestor 
(TMRCA), illustrating stochastic variation due 
to character sampling of a single gene sequence. 
Here, the normal distribution is almost as good 
a fi t to the data (log-likelihood = –120.43) as is 
the lognormal (log-likelihood = –118.87). In such 
cases, use of either the geometric or arithmetic 
mean will have little effect on the time estimates 
and their confi dence intervals.

Also, different sources of stochastic variation 
may have different effects on the frequency 
distribution. Table 2 shows one example of this 
phenomenon. Three different sources of stochas-
tic variation were examined for this data set, 
only one of which (Topological uncertainty) 
shows a better fi t to a lognormal probability 
distribution than to a normal distribution. This 
source of variation produces distinctly skewed 
sampling distributions, while the other two 
sources produce more symmetrical distributions. 
Indeed, for the other two sources of variation, 
situations were encountered where the distribu-
tion was slightly negatively skewed, rather than 
positively skewed, under which circumstances 

the lognormal cannot be a better fi t to the data 
than is the normal.

The possible magnitude of the effect of using the 
geometric rather than the arithmetic mean can be 
illustrated by a comparison of two empirical data 
sets based on the same gene sequence (plant rbcL) 
but estimating events at different times and using 
estimation methods with different standard devia-
tions. The fi rst data set is from Xiang et al. (2000), 
on the timing of the Asian—American disjunction 
for selected pairs of related species, with time esti-
mation via the number of synonymous substitutions. 
These data have relatively large standard deviations 
for each of the 10 estimates (34%–71% of the mean), 
and so the inferred lognormal distribution would be 
distinctly non-normal. Thus, the geometric mean is 
very different from the arithmetic mean for these 
data (5%–19% smaller). The second data set is from 
Britton et al. (2002), on the timing of all of the nodes 
on a single phylogenetic tree for selected members 
of the Liliales, with time estimation via the mean 
pathlengths on the tree. These data generally have 
much smaller standard deviations for each of the 39 
estimates (6%–41% of the mean) and thus there is 
much less difference between the inferred lognormal 
distribution and the normal one, so that the geomet-
ric mean is not much different from the arithmetic 
mean (1%–7% smaller).

These two data sets are typical of those that I 
have encountered. From this, I infer that the effect 
of using the arithmetic mean instead of the geo-
metric mean is not likely to lead to major over-
estimation of divergence times under realistic 
circumstances, as most studies use sufficient 

Table 2. Results of best-fi t normal and lognormal probability distributions to the frequency histograms obtained 
by bootstrapping of the angiosperm rbcL sequence data reported by Sanderson and Doyle (2001). Three boot-
strap analyses were performed, and each was performed separately for the 1st + 2nd and 3rd codon positions, 
yielding six frequency histograms, to which both normal and lognormal probability histograms were fi tted using 
maximum likelihood.

Data set Skewness Log-likelihood
  Normal Lognormal
Topological uncertainty
Positions 1 + 2 1.053 −474.822 −469.264
Positions 3 1.017 −522.394 −509.138
Character sampling
Positions 1 + 2 0.663 −451.489 −448.952
Positions 3 −0.328 −371.652 −374.822
Taxon sampling and lineage variation
Positions 1 + 2 −0.207 −423.770 −425.003
Positions 3 0.404 −418.676 −416.882
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sequence data to keep the standard deviation to a 
relatively small percentage of the mean. Neverthe-
less, unnecessary (avoidable) over-estimations of 
up to 20% are possible when using the arithmetic 
mean compared to use of the geometric mean.

Time Estimates Based on Multiple 
Genes
The most common method for estimating nodal 
times based on multiple gene (or locus) sequences 
has been to average the estimates obtained for each 
gene individually. It is, however, possible to con-
catenate the gene sequences and to obtain a single 
estimate, which would in principle be the same as 
using the single-gene methods discussed above. 
Alternatively, there are recently developed meth-
ods that explicitly provide both individual and 
combined estimates for multiple genes, including 
the bayesian methods of Hey and Nielsen (2004) 
for population genetics, and those of Thorne and 
Kishino (2002), Drummond et al. (2006) and 
Rannala and Yang (2007) for phylogenetics, as well 
as the multiprotein gamma distance method of Nei 
et al. (2001).

If the stochastic variation between genes pro-
duces multiplicative errors, then it can be expected 
that estimates of a single time averaged across 
multiple genes will also approximately follow a 
lognormal probability distribution, using the same 
argument presented above, irrespective of whether 
they are arithmetic or geometric estimates (Evans 
et al. 1993). However, the Central Limit theorem 
indicates that the distribution of the arithmetic 
means will approach a normal distribution as the 
sample size increases (i.e. the number of genes), 
since arithmetic means are normally distributed in 
the limit, while the distribution of the geometric 
means will remain lognormal (Blackwood, 1992). 
What is unknown (and probably unknowable) is 
how fast these limits will be approached with 
increasing amounts of data. (Note that Rodríguez-
Trelles et al. (2002: 8114) incorrectly suggest that 
“averages across multiple measures of the same 
divergence time are expected to converge to more 
consistent over-estimates as molecular data sets 
become vastly larger in the future.”)

If the geometric mean estimates for individual 
genes are closer to the true value than are the arith-
metic estimates, then the standard deviation of the 
overall average will be smaller, and it is thus rea-
sonable to expect that geometric means will be 

approximately normally distributed. Consequently, 
it may not matter much in practice whether one 
uses arithmetic or geometric averages across genes 
provided that geometric means have been used for 
each gene. However, even if arithmetic means are 
used for each gene, a geometric average of these 
means should still be closer to the true time value, 
if the overall distribution is approximately 
lognormal.

As a heuristic assessment of these two predic-
tions, I performed a simulation experiment for a 
single time estimation based on 20 replicate genes. 
Each gene was simulated on a 3-taxon tree, as 
described above (i.e. 1000 simulated data sets per 
gene, target time set to 10 times the calibration 
time, Jones-Taylor-Thornton substitution model), 
but the characteristics of each gene were sampled 
at random from the following: (a) the sequence 
length was chosen from a uniform distribution with 
range either 150–300 or 300–600 amino acids (with 
equal probability for the two ranges); (b) the 
gamma parameter for the among-site rate variation 
was chosen from a lognormal distribution with 
mean of 0.60 and standard deviation of 1.00 (on 
the log scale; mean = 1.8 on the normal scale); and 
(c) the branch length was chosen from a uniform 
distribution on a log10 scale with range 0–2 (i.e. 
1–100 on the normal scale). The latter character-
istic simulates among-gene variation in substitu-
tion rate in this case, since the calibration time is 
assumed to be the same for all of the genes. These 
appear to be realistic conditions for protein-coding 
sequences, based on the published literature, thus 
representing phoney real data (or perhaps genuine 
phoney data).

The unknown divergence time was estimated 
in all of the four possible combinations: (i) the 
arithmetic average across genes of the arithmetic 
mean for each gene; (ii) the geometric average 
across genes of the arithmetic mean for each gene; 
(iii) the arithmetic average across genes of the 
geometric mean for each gene; and (iv) the geo-
metric average across genes of the geometric mean 
for each gene. The use of the geometric mean for 
each gene produced estimates that varied little 
across the genes (Table 3), so that the form of 
averaging procedure across the genes had little 
effect, with overall only a 3% over-estimate of the 
target time (i.e. 10 time units) using either method. 
However, use of the arithmetic mean followed by 
arithmetic averaging (the current standard proce-
dure) produced an over-estimate of 15%, which 
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was reduced to 12% by using the geometric average 
across genes (Table 3). This occurred because the 
arithmetic means were a better fi t to a lognormal 
distribution than to a normal distribution (as esti-
mated by likelihood fi tting, Table 3), producing a 
large spread of the estimates (as measured by 
the standard deviation, Table 3). Thus, both of the 
above predictions are confi rmed for this simple 
example.

However, Nei et al. (2001) provide an alterna-
tive mathematical analysis of the multi-gene 
estimation of divergence times. They point out 
that averaging across single-gene estimates is not 
an unbiased procedure, as the fi nal time estimate 
will have extra components related to the vari-
ances and covariances of the estimates within 
each gene (their Equation 3). It is these extra 
components that lead to the over-estimation, in a 
multiplicative fashion. They present an unbiased 
distance-based procedure for estimating the time 
for each gene, which is also shown in Table 3 for 
the simulated data. Clearly, this estimator leads 
to an almost perfect normal distribution across 
the genes, as expected from the Central Limit 
theorem, and a good estimation of the true diver-
gence time. However, the use of the geometric 
mean for each gene leads to a good approximation 
to this unbiased estimator, thus demonstrating that 
a single consistent viewpoint (i.e. that divergence 
time is a lognormal variable) does effectively 

unite many of the existing methods into a coher-
ent framework.

There are also methods for estimating coales-
cence times from multiple genes that simultane-
ously estimate the ancestral population size as well 
(see Arbogast et al. 2002; Wall, 2003). I have not 
directly addressed these methods here.

Empirical Multi-gene Time 
Estimates
A survey of the small amount of available literature 
indicates that time estimates from multi-locus data 
sets may or may not show a better fi t to a lognormal 
probability distribution than to a normal distribu-
tion (see also Hedges and Kumar, 2003). This is 
illustrated by the example in Table 4, which shows 
six multi-gene time estimates based on arithmetic 
estimates for each gene. Three of the six time 
estimates have strongly skewed frequency distribu-
tions for these arithmetic estimates, and these thus 
fi t the lognormal distribution much better than they 
fi t the normal distribution. For all three of these 
cases, there is a notable difference between the 
geometric average of the single-gene estimates and 
the arithmetic average, comparable in magnitude 
to the effect shown above for the single-gene data 
sets (i.e. up to 15% difference).

It is probable that this effect size is general 
for multi-gene estimates, as illustrated by two 
further examples. The fi rst example is from 
Heckman et al. (2001), on the timing of diver-
gence for selected pairs of higher taxa of fungi 
and plants, based on averaging of single-gene 
arithmetic estimates. It shows that the geometric 
mean can be quite different from the arithmetic 
mean (1%–14% smaller for each of the 10 esti-
mates), as the inferred lognormal distribution 
would be distinctly non-normal in many of the 
cases. The second example is from Hedges et al. 
(2004), on the timing of all of the nodes on a 
single phylogenetic tree for selected higher taxa 
of eukaryotes, based on fi rst concatenating the 
genes and then calculating a single time estimate 
(and this study also used a larger data set). This 
example shows much less difference between 
the inferred lognormal distribution and the nor-
mal one, so that the geometric mean is not much 
different from the arithmetic mean (�2% smaller 
for each of the 17 estimates). This similarity may 
be a general property of concatenating the 
genes.

Table 3. Summary of the results of simulated data for 
20 genes, all estimating the same divergence time, 
based on either the arithmetic or geometric means for 
each gene. Results are shown for the maximum-
likelihood fi tting of the normal and lognormal probabil-
ity distributions to the frequency histogram of the 
20 time estimates. Also shown are the summary sta-
tistics of the 20 estimates; the time scale is relative (i.e. 
unitless until a substitution rate is specifi ed for each 
gene) with a target time in the simulations of 10 units. 
These are all compared to the distance-based estimator 
described by Nei et al. (2001:2498).

Summary Arithmetic Geometric Distance
 means means estimator
Log-likelihood
Normal −51.89 −19.97 −0.44
Lognormal −46.09 −18.99 −0.49
Mean divergence time
Arithmetic 11.5 10.3 10.1
Geometric 11.2 10.3 10.1
Standard deviation
Arithmetic 3.3 0.7 0.3
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Note, however, that only two of the three 
non-skewed frequency distributions shown in 
Table 4 have similar geometric and arithmetic means 
(e.g. �10% difference), while the Fungi—Plant 
divergence estimate still shows a disparity between 
the two. This occurs because there are two outlying 
small values in this part of the data set, and the 
calculation of the geometric mean is sensitive to 
these values (i.e. they considerably reduce the value 
of the geometric mean). If these two values are 
excluded, then the arithmetic mean = 1742 MYA, 
the geometric mean = 1607 MYA, and their differ-
ence = –7.7%; this pattern is now in accord with 
those of the other two divergence times. This 
example thus shows that using the geometric mean 
of multi-gene estimates cannot be done indiscrimi-
nately—this calculation has its own assumptions 
that must be met. It will always be better to calculate 
geometric estimates for each gene and then to aver-
age these, thus correcting for the over-estimation 
problem at the source, rather than to calculate arith-
metic estimates for each gene and then trying to 
average these in some less-appropriate way.

Those methods that produce an empirical probabil-
ity distribution rather than a point estimate of the 
divergence time may or may not produce something 
that is closer to a lognormal distribution than to a 
normal distribution. For example, analysis of the 
example 3-gene data set provided with the Multidivtime 

ver. 09.25.03 program (one gene of which is shown 
in Fig. 2) produces a posterior distribution that fi ts a 
lognormal only slightly better than a normal distribu-
tion. On the other hand, Figure 5 shows an example 
of the analysis of a concatenated 7-gene data set by 
the Beast ver. 1.2 program (Drummond and Rambaut, 
2007). The bayesian posterior frequency distribution 
fi ts a lognormal probability distribution very well 
(lognormal log-likelihood = −46349.3; normal log-
likelihood = −46585.5).

Finally, it is instructive to return to the IM pro-
gram of Hey and Nielsen (2004), which it was 
pointed out above can produce distinctly gamma-
like frequency histograms for single genes. For 
multi-locus data sets, I have observed that this 
program is more likely to produce lognormal fre-
quency distributions, as illustrated by the example 
in Figure 6. The program models variation in sub-
stitution rates across the loci in a multiplicative 
manner, and so this result is not surprising (i.e. the 
multiplicative effects outweigh the other stochas-
tic effects).

Does the Estimation Method Matter 
for Time Estimates?
This inevitably leads to the question of whether 
the difference between arithmetic and geometric 
means is large enough to produce contradictory 

Table 4. Results of analyses based on the multiple-gene data set for various higher taxa reported by Wang et al. 
(1999). For each of the six pairwise comparisons, the arithmetic and geometric averages are shown, based on 
arithmetic node-age estimates for each gene (millions of years ago, MYA), along with the results of the maximum-
likelihood fi tting of the normal and lognormal probability distributions to the frequency histogram of the time 
estimates.

Divergence
time

No.
genes

Skewness Log-likelihood Mean (MYA) Difference (%)a

Normal Lognormal Arithmetic Geometric

Chordate—
Arthropod

50 3.687 −402.1 −382.8 1099 945 −14.1

Chordate—
Nematode

25 0.523 −188.9 −190.6 1154 1049 −9.1

Arthropod—
Nematode

18 0.833 −137.0 −136.4 1252 1157 −7.6

Metazoa—Fungi 55 3.349 −456.5 −444.2 1631 1419 −13.0

Metazoa—Plant 49 2.333 −410.9 −399.6 1680 1425 −15.2

Fungi—Plant 38 0.627 −306.8 −310.2 1663 1450 −12.8
aDifference between the geometric mean and arithmetic mean, as a percentage of the arithmetic mean.
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conclusions. Unfortunately, it is easy to find 
examples where this is so.

As a fi rst example, consider the empirical data 
set shown in Table 5. This involved analysis of 29 
amino acid sequences for the primate—rodent 
divergence time (expected to be 110 MYA), using 
the primate—artiodactyl divergence (90 MYA) as 
the calibration time. I measured divergence as the 
poisson-corrected gamma distance and its variance 
as described by Nei et al. (2001), using the Timer 
ver. 0.1 program of Glazko and Nei (2003). Thus, 
I obtained arithmetic divergence estimates and 
standard errors for each gene, and these were con-
verted to geometric estimates using equation (2); 
and subsequently I calculated both arithmetic and 
geometric averages across the genes. The diver-
gence time was thus estimated in the four different 
ways described for the multi-gene simulation 

above. Use of the geometric average of the 
geometric estimates produced a time estimate that 
is in close accord with the estimate produced by 
the multiprotein gamma-distance method of Nei 
et al. (2001), albeit with a larger confi dence inter-
val, and which is also closest to the expected value 
(although that value itself may not be correct, of 
course). Calculation of the arithmetic average of 
the arithmetic estimates (i.e. the current standard 
procedure) leads to a confi dence interval that does 
not include the expected value (Table 5), which 
means that this procedure would result in a differ-
ent conclusion about whether or not that value (110 
MYA) is supported by the data, since use of the 
geometric average in any way leads to a confi dence 
interval that includes the expected value. Thus, 
using the confi dence intervals as hypothesis tests 
leads to contradictory conclusions for the arithmetic 
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versus geometric means (irrespective of whether 
the 110 MYA is the true value or not).

As a second example, Shaul and Graur (2002) 
illustrate their (justifi ed) concerns about reciprocal 
consistency of calibration points by re-analysing 
the multi-gene data of Wang et al. (1999). These 
authors produced estimates for the primat—rodent 
divergence time based on the bird—mammal diver-
gence time as a calibration, and vice versa. I calcu-
lated the sequence divergence between the 29 pairs 
of taxa as the poisson-corrected distance and its 
variance as described by Nei et al. (2001), using 
the MEGA ver. 2.1 program of Kumar et al. (2001). 
The two divergence times based on the data for 
each gene were then calculated using the formulae 
presented by Shaul and Graur (2002). The standard 
error of each time estimate was calculated by com-
bining the errors for the component genetic dis-
tances, using standard methods based on quadrature 

(Taylor, 1997). These standard errors were then 
used to calculate the geometric mean and confi -
dence interval for each estimate. On this basis, the 
bird—mammal divergence (T2) is estimated to be 
statistically signifi cantly earlier than the primate—
rodent divergence (T1) for 14 of the 29 gene 
sequences (Table 6), based on non-overlapping 
confi dence intervals, and in no case is T1 � T2 (i.e. 
in all other cases the two confi dence intervals over-
lap). This conclusion contrasts with that of Shaul 
and Graur (2002) based on arithmetic point esti-
mates (i.e. arithmetic means without confi dence 
intervals), who decided that for 7 of the 29 genes 
T1 � T2, thus leading them to call into serious 
question the use of secondary calibration points. 
So, while Shaul and Graur’s concern about the 
weaknesses of secondary calibration points may 
be valid, the data of Wang et al. (1999) do not pro-
vide a suitable example of any such weakness.
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Figure 6. Frequency histogram of 300,000 bayesian samples of the estimated coalescence time of two populations, based on seven loci, 
as analysed by the IM computer program. The time scale is relative (i.e. unitless until a substitution rate is specifi ed for each locus). Also 
shown is the best-fi t lognormal probability distribution (dotted line). The original data are from Morrison (2005), based on seven antigen-
coding gene sequences of lineages I and II of Toxoplasma gondii (Apicomplexa).
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This example is an important one, because the 
conclusions of the paper by Shaul and Graur con-
tinue to be cited, even though there appears to be 
no empirical evidence for these conclusions.

Alternative Strategies for Multiple 
Genes
I have argued here that many of the estimation 
problems of divergence times are simply a product 
of the fact that the times are being sampled from 
a lognormal rather than a normal distribution (i.e. 
divergence time is a lognormal variable). I thus 
claim that this approach provides a unifying frame-
work for dealing with many of these problems. 
There are, however, possible alternative viewpoints 
of the situation.

One alternative view of the skewed frequency 
distribution of time estimates for multiple genes is 
that it represents a symmetrical distribution con-
taminated by outliers (Hedges and Kumar, 2003), 
possibly arising as the result of a small sample size 
(Hedges and Kumar, 2004). From this viewpoint, 
the correct procedure would be to deal with the 
bias caused by the outliers in some appropriate 
manner, by using what are known as robust statis-
tical procedures. Strategies that have been used for 
divergence-time estimation include: excluding 
those outliers explicitly detected by a statistical 
test (Shaul and Graur, 2002); using a 10% trimmed 
mean (Kumar and Hedges, 1998; Wang et al. 
1999); using the mode (Heckman et al. 2001; 
Hedges et al. 2004; Hedges and Kumar, 2004); and 
using the median (Feng et al. 1997; Aris-Brosou 
and Yang, 2002; Hedges and Kumar, 2004).

These alternative strategies all have problems 
(see below), relative to the more straightforward 
use of the geometric mean that I am advocating. 
They are procedures that are valuable when infer-
ences have to made in the face of uncertainty about 
the shape and bias of the probability distribution 
from which the samples have been taken. My argu-
ment in this paper is that there is not as much 
uncertainty about this as has been previously 
argued. Provided that the sampling distribution is 
identified approximately correctly, parametric 
procedures should be more powerful than most 
robust procedures.

Robust estimates of the central location and 
confi dence interval behave like the standard esti-
mates when the data actually are normally distrib-
uted but they are insensitive to the presence of 
aberrant observations, and they are thus now an 
accepted part of statistics (Wilcox, 2004). How-
ever, their use is not without potential pitfalls. For 
example, the trimmed mean is very robust to 
variation in the shape of the frequency distribution 
and is thus likely to produce a reasonable estimate 
of the true mean, but the standard deviation (and 
thus the confidence interval) will be under-
estimated, sometimes quite dramatically. If this 
approach is to be adopted, then it may actually be 
better to use the median-related bisquare biweight 
(or Tukey biweight) and its associated biweight 
midvariance (e.g. Hubbell et al. 2002).

A similar caveat applies to the mode, for which 
there is no analytical estimator of the standard 
deviation (it should not be combined with the usual 
estimate, as done by Heckman et al. 2001). Both 
the trimmed mean and mode are amenable to boot-
strapping, however, as used for the mode by 
Hedges et al. (2004), and this is likely to be the 
preferred method for calculating confi dence inter-
vals. Unfortunately, the mode may produce a seri-
ous under-estimate of the mean divergence time if 
the frequency distribution is consistently right-
skewed, as shown in Figures 1, 2, 3, 5 and 6. For 
a lognormal distribution, the mode is in fact further 
from the geometric mean than is the arithmetic 
mean. Alternatively, for a lognormal distribution 
the median should actually be a good estimate of 
the geometric mean (and vice versa), becoming 
more so with increasing sample size.

Explicit deletion of outliers is also problematic, 
although Shaul and Graur (2002: 60) inappropriately 
present this as being “more rigorous” than the use of 
a trimmed mean. For example, outlier tests such as 

Table 5. Estimated divergence times (millions of years 
ago) and 95% confi dence intervals for the primate—
rodent divergence (expected to be 110 MYA), based 
on either the arithmetic or geometric means for each 
of the 29 genes and using either the arithmetic or geo-
metric average across the genes. Also shown is the 
concatenated multigene estimate. The original data are 
from Glazko and Nei (2003).

Method Arithmetic Geometric
 means means
Arithmetic average 128.4 125.2
 (113.7–143.1) (110.4–138.0)
Geometric average 122.7 119.9
 (108.8–138.3) (106.7–134.8)
Multigene estimate 117.7 117.6
 (109.6–125.8) (109.8–126.0)
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Grubb’s test are based on detecting deviations from 
a normal distribution (Barnett and Lewis, 1994), 
which is clearly inappropriate if the probability dis-
tribution is lognormal—what appears to be an 
extremely large value, for example, may not neces-

sarily refl ect an outlier (although an extremely small 
value will). Deletion of values can therefore lead to 
larger problems than the ones that the procedure is 
intended to solve. As a specifi c example, Shaul and 
Graur (2002) provide further re-analysis of the 

Table 6. Estimates and statistical signifi cance of two divergence times (millions of years ago) for 29 genes, based 
on the analyses of Shaul and Graur (2002) but with the addition of confi dence intervals. T1 is the primate—rodent 
divergence and T2 is the bird—mammal divergence. The original data are from Wang et al. (1999).

Locus name Geometric mean and Statistical
95% confi dence interval signifi cancea

T1 (MYA) T2 (MYA) T2 � T1 T1 � T2
Aldehyde dehydrogenase 143–215–325 100–151–229
Aldolase 28–62–138 209–467–1043 *
Alkaline phosphatase 71–103–150 219–318–462 *
Alpha actinin 138–261–495 62–117–222
Amidophosphoribosyl transferase 66–104–164 197–310–490 *
Aminolevulinate synthetase 146–204–286 116–162–227
Aspartate aminotransferase 85–133–209 155–243–381
Dihydrofolate reductase 62–112–202 154–279–505
Disulfi de isomerase 71–112–175 185–289–453 *
DNA polymerase gamma 92–131–185 183–263–378
Enolase 114–213–398 77–145–270
Ferritin heavy chain 65–162–405 68–169–423
Fructose-2,6-bisphosphatase 39–63–105 305–503–830 *
Furin 55–80–116 284–411–596 *
Glutamate dehydrogenase 16–38–92 319–739–1712 *
Glutamine synthetase 105–181–312 101–175–301
Glyceraldehyde-3-phosphate
dehydrogenase

107–214–430 70–140–282

Lactate dehydrogenase 63–114–206 151–273–494
Na-K ATPase alpha chain 60–118–235 129–255–505
Na-K ATPase beta chain 7–14–27 1106–2190–4337 *
P53 72–102–145 228–324–461 *
P65 39–52–72 463–639–881 *
Phosphoenolpyruvate carboxykinase 114–166–243 135–197–288
Phosphoglycerate kinase 26–53–109 283–567–1135 *
Pyruvate kinase 40–69–119 264–458–794 *
Transcription factor Eryf1 32–51–79 408–639–1001 *
Transglutaminase 89–113–144 234–297–378 *
Triosephosphate isomerase 59–124–258 117–247–524
Tryptophan hydroxylase 118–182–282 115–178–275
Geometric average and confi dence interval 82–104–133 238–302–384
 minus outlier (Na-K ATPase beta chain) 92–112–137 231–282–343
aStatistical signifi cance is based on whether the lognormal 95% confi dence intervals for the two times overlap ( = not signifi cant, left blank) 
or not ( = signifi cant, shown with an asterisk).
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multi-gene data of Wang et al. (1999). In order to 
assess whether the bird—mammal divergence time 
estimated from the 29 genes is consistent with the 
predicted value of 310 MYA, these authors deleted 
the smallest seven estimates as being inconsistent 
based on the primate—rodent divergence time and 
then deleted the largest value because it failed Grubb’s 
test. They thus produced (from the remaining 21 
genes) an estimate of 393 MYA with a 95% confi -
dence interval of 315–471 MYA, which excludes the 
predicted value. They thus called into serious question 
the use of secondary calibration points.

However, deleting the seven smallest values must 
produce an upward-biased estimate of the mean. An 
alternative approach, as I have advocated here, is to 
take the original multi-gene data at face value and 
thus to view them as showing stochastic (multiplica-
tive) variation around the geometric mean. A better 
approach would then be to use all of the data (i.e. 
29 genes) and to calculate the geometric mean and 
confi dence interval. This produces a confi dence 
interval of almost exactly the same size as that of 
Shaul and Graur (2002) but which clearly supports 
the predicted value (Table 6). Moreover, the recipro-
cal estimates for the primate—rodent divergence 
time (Table 6) also well support the predicted time 
of 110 MYA. Once again, appropriate methodology 
leads to the opposite conclusion to that from inap-
propriate methodology, thus emphasizing the prac-
tical importance of the issues discussed here.

Finally, it is worth noting that there are other 
methods for calculating confi dence intervals that 
are relatively independent of the shape of the prob-
ability distribution. For example, if the distribution 
is unimodal then quantifying the curvature of the 
likelihood surface is a well-known method for 
estimating confi dence intervals when using maxi-
mum-likelihood methods of analysis. This profi le-
likelihood approach is taken by Wall (2003), who 
emphasizes that it is only approximate.

Conclusions
Rodríguez-Trelles et al. (2002) have identifi ed an 
important point about the appropriate scale to be 
used when estimating divergence (or coalescence) 
times, but they seem to have over-stated the case 
when they described it as “a fundamental fl aw in 
the molecular approach to dating” (p. 8112). Here, 
I have tried to show that the issues addressed by 
Steel et al. (1996), Haubold and Wiehe (2001), Nei 
et al. (2001) and Rodríguez-Trelles et al. (2002) are 

all manifestations of the same underlying cause. 
That is, these authors offer different perspectives on 
the same issue, which is that divergence times in 
phylogenetic studies are lognormally distributed.

For estimates based on a single locus, use of an 
expected value (i.e. an arithmetic mean) will over-
estimate the true divergence time and will 
under-estimate the confi dence interval, and such val-
ues should always be converted to a lognormal scale 
(i.e. a geometric mean and its associated confi dence 
interval). This is particularly important if the standard 
deviation of the estimate is large relative to the mean. 
However, in practice, any over-estimation of the time 
is unlikely to be greater than 15% or so, and will usu-
ally be much less. Even this can, unfortunately, 
produce misleading biological conclusions.

For divergence estimates based on multiple loci, 
the situation is less clear, due to competing sources 
of variation, but it can be expected that all estimation 
procedures will converge to the correct solution as 
the number of loci increases (i.e. the arithmetic and 
geometric means will converge). Unfortunately, the 
rate of convergence cannot be predicted, and it seems 
best in the meantime to use methods that explicitly 
combine the multiple loci as part of a single estima-
tion procedure, and then to use the geometric mean 
of the result. The use of robust estimators of central 
location seems to be a weaker alternative strategy.

Having now identifi ed the most appropriate way 
to summarize estimates of ancestral divergence 
times, it becomes important to assess the infl uence 
of the other factors that are known to affect the 
estimation, such as taxon sampling, fossil calibra-
tion and among-lineage rate variation. These latter 
factors affect accuracy rather than precision, and 
as a result of the work presented here it is now 
feasible to study their effects in the absence of 
artefactual over-estimates of divergence time.
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