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Peptide hormones and growth factors bind to membrane receptors and regulate a myr-
iad of processes in insects and other metazoans. The evolutionary relationships among
characterized and uncharacterized (“orphan”) receptors can provide insights into receptor-
ligand biology and narrow target choices in deorphanization studies. However, the large
number and low sequence conservation of these receptors make evolutionary analysis
difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guany-
lyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other
flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quin-
quefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by
receptor type, clustered using the program CLANS, aligned using HMMR, and phyloge-
netic trees built using PhyML. Our results indicated that PKRs had relatively few orphan
clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B
secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that
Class B GPCRs exhibited more gain and loss events than other receptor types. Finally,
using the neuropeptide F family of insect receptors and the neuropeptide Y family of ver-
tebrate receptors, we also show that functional sites considered critical for ligand binding
are conserved among distinct family members and between distantly related taxa. Overall,
our results provide the first comprehensive analysis of peptide hormone and growth factor
receptors for a major insect group.

Keywords: GPCR, receptor tyrosine kinase, guanylyl cyclase, serine/threonine kinase, neuropeptide, protein
hormone

INTRODUCTION
Neuropeptides, protein hormones, and growth factors regulate
many processes by binding to three types of membrane receptors:
G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases
(RGCs), and protein kinase receptors (PKRs). We use the term
peptide hormones to encompass both larger protein hormones
released into the hemolymph by glands, neuroendocrine cells, and
midgut endocrine cells, and neuropeptides that function as neu-
rotransmitters and modulators within the nervous system. The
greatest number and diversity of peptide hormones are bound by
GPCRs, whereas known growth factors interact almost exclusively
with PKRs. All of these receptor proteins are post-translationally
modified and transported to the cell membrane. They encode an
extracellular amino (N)-terminal region, one or more transmem-
brane spans, and an intracellular carboxyl (C)-terminal region
that transduces ligand binding through specific signaling and
amplification pathways. However, most GPCRs that bind peptide
hormones reside as monomers in the cell membrane,whereas most
RGCs and PKRs form dimers prior to or during ligand binding
(1–3).

The genomes of several insects and related arthropods
(Aedes aegypti, Anopheles gambiae, Apis mellifera, Bombyx mori,
Drosophila melanogaster, Nasonia vitripennis, Tribolium casta-
neum, Tetranychus urticae, and Daphnia pulex) have been
sequenced and their peptide hormone genes analyzed (4–15).

GPCRs known or predicted to bind specific peptide hormones
have also been annotated for D. melanogaster (7, 16), Ap. mellif-
era (17), T. castaneum (18), B. mori (19, 20), and T. urticae (13).
These studies provide important insights about peptide hormone
and GPCR diversity among arthropods while also shedding light
on the evolutionary history and function of certain genes. These
analyses also indicate that several peptide hormones and GPCRs
remain “orphans” (6, 9, 16, 18, 21, 22). In some cases, one-to-one
orthologs of known ligand-receptor pairs in the genomes of related
species have led to predicted pairing to an uncharacterized recep-
tor (23). For others though, ligand-receptor relationships remain
unclear because gene duplication or loss events either create uncer-
tainties about the functional homology of in- and out-paralogs,
or have resulted in clades that contain no characterized orthologs
(7, 21, 24, 25). We also note that no lists have been published for
RGCs or PKRs and their associated ligands in any insect.

Our interests primarily focus on mosquitoes (Diptera: Culici-
dae), which are critically important insects because of their ability
to vector several disease-causing pathogens to humans and other
mammals. Peptide hormones and growth factors are key regu-
lators of many physiological processes in mosquitoes that affect
disease transmission. Three vector species of mosquitoes have been
sequenced: An. gambiae (26), Ae. aegypti (27), and Culex quin-
quefasciatus (28). Annotation of the An. gambiae and Ae. aegypti
genomes identify 35 and 43 peptide hormone genes respectively
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that are expressed in the nervous system, isolated glands, or midgut
endocrine cells (9, 10). The function of several of these hormones
is known (Table S1 in Supplementary Material). Homology-based
searches were previously used to characterize the GPCR super-
family in An. gambiae (24) and analysis of the Ae. aegypti genome
also identified some predicted peptide hormone GPCRs (27). No
recent collation of GPCRs or other receptor types, however, is
available.

Here, we analyzed the GPCRs, PKRs, and RGCs that bind pep-
tide hormones and growth factors in mosquitoes and select other
Diptera to discern phylogenetic patterns of receptor evolution.
Our results provide a number of new insights including the identi-
fication of several orphan receptors. Ligand binding studies are the
only means to deorphanize a given receptor definitively. However,
our results could greatly assist deorphanization studies because
they identify evolutionary relationships between receptors and
thus narrow the spectrum of candidate ligands that a given orphan
most likely binds (29, 30).

MATERIALS AND METHODS
IDENTIFICATION OF PEPTIDE HORMONE RECEPTORS
Peptide hormone receptors were identified from previously pub-
lished surveys of D. melanogaster (7), An. gambiae (24), and
Ae. aegypti (27). These sequences were downloaded from NCBI
and used to plumb the genomes of D. mojavensis and C. quinque-
fasciatus using BLASTp. Each set of peptide hormone receptors
from an organism was searched against the other genomes. The
program HMMscan (31) was used to independently verify the
completeness of our gene sets. Each genome was scanned using
the Pfam models for rhodopsin-like GPCRs (“7tm_1,” PF00001),
secretin-like GPCRs (“7tm_2,” PF00002), and protein kinases
(“Pkinase,”PF00069) for RGCs and PKRs. These protein sequences
were also used to search OrthoDB (32) for orthologs that may
have been missed by our homology-based searches. The lists of
receptors identified by Pfam searches were compared to the lists
generated by BLAST searches. Genes were retained for further
analysis if they were identified in Pfam searches or had a BLAST
hit that had >50% amino acid identity with a known GPCR,
RGC, or PKR in one of the examined genomes. In some instances,
multiple annotated genes were found to encode parts of a single
receptor. We used publicly available RNAseq data where available
to join separate genes. In other cases, multiple predicted genes
aligned to successive regions of orthologs in genomes with supe-
rior annotations (D. melanogaster, An. gambiae), and this was
taken as evidence that the genes had been split improperly during
gene prediction. The split genes were concatenated and used for
downstream analysis. The complete list of receptors and acces-
sions for each species used in our study is presented in Table S1 in
Supplementary Material.

CLUSTERING OF GPCR SEQUENCES
Attwood and Findlay (33) previously categorized GPCRs into six
Classes (A–F) on the basis of shared sequence motifs and ligand
binding affinities. Arthropod GPCRs reside in four of these classes:
rhodopsin-like (Class A), secretin-like (Class B),metabotropic glu-
tamate receptors (Class C), and frizzled/smoothened (Class F) (7,
13, 21, 34). Only Classes A and B contain receptors whose known

or predicted ligands are peptide hormones. Our analysis likewise
divided peptide hormone binding GPCRs into Class A rhodopsin-
like GPCRs and Class B secretin-like GPCRs. We further analyzed
the rhodopsin-like group using the CLANs program (35), which
uses BLAST-search based similarity to create self-organizing maps
(SOM). CLANs was run for 2000 rounds with an e-value cutoff
of 10−5. Clusters were determined by bootstrap-based clustering
with a minimum of 4 sequences per cluster and 500 rounds.

ALIGNMENT AND PHYLOGENETIC TREE CONSTRUCTION
For GPCRs, protein sequence alignments were initially attempted
using MAFFT (36) and MUSCLE (37). Multiple parameters were
tested but failed to produce acceptable alignments. Due to an
improved ability to align divergent sequences with conserved
domains, the program HMMalign (31) was used to align sequences
using the Pfams mentioned previously. The highly variable N- and
C-terminal regions of the proteins were removed by implement-
ing the – “trim” option and poorly aligned regions were manually
removed using Jalview (38). Alignments are included in the Files
S1–S5 in Supplementary Material.

Phylogenetic trees were constructed from alignments using
PhyML (39) on the LIRMM server. Parameters were as follows:
substitution model was LG, proportion of invariable sites was
0.0, four substitution categories were used, initial trees were con-
structed using BIONJ, tree improvement was done through NNI,
and trees were optimized for topology and branch length. Likeli-
hood scores were computed using aBayes. Trees were visualized in
FigTree v1.3.1. For the GPCR orphans, we arbitrarily numbered
each clade of orphans and included the letter, A or B, to indicate
which GPCR class they belonged to. RGC and PKR orphan clades
are indicated as OR# and OGC#, respectively.

CONSERVATION OF LIGAND BINDING DOMAINS
Deduction of receptor function from phylogenetic analysis is
contingent upon conservation of the ligand binding region of
the receptor and essential residues of the hormone. To exam-
ine whether functionally important regions of related receptors
and ligands were conserved in divergent organisms, we examined
neuropeptide F (NPF) in insects and its homologs in vertebrates,
neuropeptide Y (NPY), pancreatic polypeptide (PP), and peptide
YY (PYY). We aligned the NPF GPCRs from the five dipteran
genomes with the NPY, PP, and PYY GPCRs from Homo sapiens,
Mus musculus, and Danio rerio as described for the other GPCRs
and visualized in Jalview (38). Previous targeted mutagenesis stud-
ies distinguished residues important for ligand binding (40–43)
that were then identified and highlighted in the GPCR sequences.

RESULTS
DATABASE MINING AND PHYLOGENETIC ANALYSIS OF DIPTERAN
RECEPTORS
Prior studies provide strong support for the monophyly of the
Diptera while also showing that mosquitoes (Culicomorpha:
Culicidae) are an early lineage that evolved ca. 225 Mya and
drosophilids like D. melanogaster are a derived lineage (Ephy-
droidea: Drosophilidae) that emerged concurrently with other
cyclorrhaphan flies 40–65 Mya (44). Prior studies also support the
monophyly of the Culicidae, which consists of two subfamilies, the
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Anophelinae (as represented by An. gambiae) and the Culicinae (as
represented by Ae. aegypti and C. quinquefasciatus) that diverged
ca. 145–200 Mya (45, 46). We thus organized our study of peptide
hormone and growth factor receptors to span both subfamilies
of the Culicidae plus the phylogenetic breadth of the Diptera by
including data from D. melanogaster and one other drosophilid
(D. mojavensis). For each receptor group, we first summarize key
features of our analysis.

We then address the receptors in specific clades and orphans
of interest and the gene identification for the receptors in the five
species. The known functions for peptide hormones in mosquitoes
are summarized in Table S1 in Supplementary Material, along with
the relevant references whereas the review by Nässel and Winther
(58) provides an in depth summary of the function and signal-
ing of peptide hormones in D. melanogaster. In addition, selected
information and references for growth factors and their receptors
and the RGCs characterized in D. melanogaster are provided in
Table S1 in Supplementary Material. VectorBase or FlyBase acces-
sions are also provided for all genes used in the study in Table S1
in Supplementary Material.

PEPTIDE HORMONE GPCRs
We focused on the GPCRs first because their interactions with pep-
tide hormones have been more extensively examined in insects
than those of RGCs and PKRs. GPCRs are 40–60 kDa proteins,
which contain an extracellular N-terminal region, seven trans-
membrane α-helices that form a ligand binding pocket, and an
intracellular C-terminal region that mediates signaling through
interactions with G-proteins. G-proteins consist of different sub-
units that interact with other proteins to produce a variety of intra-
cellular signaling molecules including cAMP, cGMP, and calcium.

Most phylogenies generated previously for insect GPCRs uti-
lized standard alignment algorithms (ClustalW or MegAlign) fol-
lowed by neighbor-joining methods. Only rarely though have
branch support values or other measures of robustness been
reported (16). We initially used the full-length predicted amino
acid sequence for each GPCR in our data set for tree building
using the advanced alignment algorithm MAFFT. However, as
found for vertebrates and other arthropods (17, 21, 30, 47), these
approaches failed to produce suitable alignments due to extensive
divergence in the N- and C-termini flanking the transmembrane
domains of the predicted proteins (data not shown). We therefore

used only the seven transmembrane α-helices for each GPCR fol-
lowed by alignment using the domain-based algorithm HMMalign
(31). This approach yielded suitable alignments for tree build-
ing. We sought to combine the previously divided GPCR sub-
groups as much as possible while retaining reasonable support
at deep nodes within the trees. To achieve this, we used CLANS
(35), which produced two distinct clusters (1 and 2) of Class
A rhodopsin-like GPCRs with 352 and 41 proteins respectively
(Table 1; Figures 1 and 2). Our analysis further indicated the Class
B secretin-like GPCRs contained 82 proteins (Table 1; Figure 3).

CLASS A RHODOPSIN-LIKE GPCRs
Cluster 1 for the Class A rhodopsin-like GPCRs contained pep-
tide hormone receptors, opsins, and biogenic amine GPCRs
that our analysis divided into two monophyletic clades we term
assemblages 1 and 2 (Figure 1). We further divided the GPCR
assemblages into sub-assemblages of nested, well-supported
monophyletic clades, denoted by a letter after the assemblage they
belong to. Assemblage 1 consisted of two deeply divergent sub-
assemblages, 1a and b (Figure 1). Sub-assemblage 1a contained the
bursicon, glycoprotein A2/B5, and dopamine/ecdysteroid recep-
tors, three interspersed orphan clades, OA13, as well as two
deeply diverging orphan clades named OA4–5 (Figure 1). Sub-
assemblage 1a also contained the opsins and biogenic amine
GPCRs. Sub-assemblage 1b contained the receptors for crustacean
cardioactive peptide (CCAP), corazonin, adipokinetic/corazonin-
like peptide (ACP), adipokinetic hormone (AKH), and alla-
totropin. Assemblage 2 consisted of 25 peptide hormone receptors
and 5 orphan clades, which formed the following monophyletic
sub-assemblages: (2a) sulfakinin; (2b) RYamide, tachykinin, natal-
isin, kinin, NPF, and short NPF (sNPF), and SIFamide; (2c)
orphan clades A10–11; (2d) CCHamide, allatostatin A and C;
(2e) trissin; (2f) periviscerokinin (PVK); pyrokinin (PK); and
ecdysis-triggering hormone (ETH) (Figure 1).

Cluster 2 contained seven monophyletic clades of GPCRs that
included receptors for proctolin, FMRFamide, myoinhibitory pep-
tide (MIP)/sex peptide, and myosuppressin plus three orphan
clades (Figure 2). Several of the Cluster 2 clades also contained
orphan receptors. Some but not all of the clades generated by our
analysis supported previously recognized lineages (16, 18). Key
details for the two clusters and sub-assemblages are summarized
below.

Table 1 | Distribution of peptide hormone and growth factor receptors by type, species and characterization.

Class A GPCR Cluster 1 Class A GPCR Cluster 2 All Class A GPCR Class B GPCR PKR RGC

Total genes 204 41 245 82 93 31

Clades 34 7 41 11 17 6

Characterized clades 23 (68%) 4 (57%) 27 (66%) 3 (27%) 15 (88%) 3 (50%)

Orphan clades 11 (32%) 3 (43%) 14 (34%) 8 (72%) 2 (12%) 3 (50%)

“In group” orphans 33 (13%) 1 (2.4%) 27 (11%) 0 (0%) 9 (10%) 0 (0%)

Ae. aegypti genes 39 9 48 13 22 7

An. gambiae genes 41 6 47 12 16 6

C. quinquefasciatus genes 40 9 49 16 18 6

D. melanogaster genes 37 8 45 24 16 7

D. mojavensis genes 38 8 46 17 17 5
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FIGURE 1 | Maximum-likelihood phylogeny of peptide hormone, Class
A rhodopsin-like GPCRs in Cluster 1. The phylogeny presented is based
on the seven transmembrane repeat region of proteins from Ae. aegypti,
An. gambiae, C. quinquefasciatus, D. melanogaster, and D. mojavensis.
Entries are identified by their VectorBase or FlyBase ID and accession
number prefixes that indicate species: CG#, D. melanogaster ; GI#,
D. mojavensis; AAEL#, Ae. aegypti ; AGAP#, An. gambiae; CPIJ#,
C. quinquefasciatus. Assemblages and sub-assemblages are indicated to
the right of the phylogeny. Each monophyletic clade of characterized or

orphan GPCRs is highlighted with a different color and named after
characterized ligands, where known. Clades containing the opsin and
biogenic amine GPCRs have been collapsed. Nodes with likelihood scores
>0.8 are denoted by thickened lines. Dots at nodes indicate level of
support: 0.8–0.9 (yellow), 0.9–0.99 (blue), 1 (red); instances of split gene
annotations are denoted by the inclusive range of accession numbers and
marked with an asterisk. Isoforms of proteins were initially included in the
tree but were removed if the two forms had a branch length of 0, and the
tree was midpoint rooted.
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FIGURE 2 | Maximum-likelihood phylogeny of peptide hormone, Class A
rhodopsin-like GPCRs in Cluster 2. Phylogenies were generated and named
as described in Figure 1, except that nodes with likelihood scores <0.8 have

been collapsed to polytomies. Isoforms of proteins were initially included in
the tree but were removed if the two forms had a branch length of 0 and the
tree was midpoint rooted.

Cluster 1, assemblage 1
Sub-assemblage 1a: bursicon, GPA2/GPB5, and ecdysteroid
receptors. Our analysis suggests the peptide hormone receptors
of sub-assemblage 1b arose from a more recent ancestor of the bio-
genic amine/steroid hormone GPCRs than other peptide binding
GPCRs. We thus refer to these as derived peptide GPCRs. Although
we used only the transmembrane region in generating our GPCR

phylogenies, all of the derived peptide GPCRs have an extended
extracellular N-terminus in common with the leucine-rich repeat-
containing G-protein-coupled receptors (LGRs) of which three
types are conserved across vertebrates and invertebrates (48). With
small exception, the vertebrate LGRs bind the cysteine-rich het-
erodimer glycoprotein hormones (i.e., GPA/GPB), which regulate
gonadal and thyroid activity. This binding affinity is conserved in

www.frontiersin.org December 2013 | Volume 4 | Article 193 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


Vogel et al. Receptor phylogenetics in Diptera

FIGURE 3 | Maximum-likelihood phylogeny of the Class B secretin
GPCRs. Phylogenies were generated and named as described in Figure 2.
The latrophilin receptors (gray shading) contain only a single transmembrane
repeat, resulting in a poor alignment and phylogenetic placement (see text).

Using full-length latrophilin sequences resurrects the monophyly of this group
of unusual GPCRs (data not shown). Methuselah clades were named
according to Li et al. (126). The D. melanogaster Methuselah receptor that
binds Stunted is highlighted in bold. The tree was rooted at the midpoint.

the dipteran receptors for GPA2/GPB5 (49). Another distinguish-
ing feature of the derived peptide GPCRs is that their ligands are
much larger than those of other GPCRs: the largest known ligand

for other Class A GPCRs is only 36 amino acids (NPF), whereas
the bursicon and GPA/GPB receptors bind ligands that exceed 100
amino acids and form 30 kDa dimers.
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Bursicon activates cuticle tanning and hardening shortly after
molting by insects (50, 51). Single orthologs of the bursi-
con receptor (LGR type B) are present in each mosquito and
Drosophila species (Figure 1). Identification of a GPB ortholog in
D. melanogaster led to its partner, GPA, and the deorphanization of
the GPA2/GPB5 receptor [LGR type A, (49)]. Single orthologs of
this receptor are also present in D. mojavensis and each mosquito
species (Figure 1).

Sub-assemblage 1b also contains a GPCR that binds ecdys-
teroid hormones, which are major regulators of molting, egg
development, and other processes. Most steroid hormones bind a
nuclear receptor and potentiate changes in transcription, but some
also bind to extracellular receptors including GPCRs (52). Srivas-
tava and colleagues showed that CG18314 from D. melanogaster
binds dopamine and ecdysteroids, including ecdysone and 20-
hydroxyecdysone (53). Binding of dopamine, but not ecdysone, to
the receptor leads to the phosphorylation of Akt, a kinase asso-
ciated with insulin signaling. Ecdysteroid binding activates an
extracellular signal-related kinase but no physiological function
is currently known for this activity.

We identified five orphan clades (OA1–5) in sub-assemblage 1a
(Figure 1). The OA1 and 2 receptors are sister to the bursicon and
GPA2/GPB5 receptors and are possible orthologs of the vertebrate
relaxin/insulin-like peptide LGRs (OA2). The OA2 orthologs are
present in both Drosophila species, Ae. aegypti and An. gambiae,
but the OA1 clade appears to have been lost in the Culicidae based
on its presence in other insects (data not shown). OA3 is present
in all five dipterans, as is OA4. OA5 encodes the D. melanogaster
gene moody, which is implicated in the integrity of the blood-
brain barrier (54), although its native ligand is unknown. Our
results provide no insights regarding what kind of ligand(s) the
OA4–5 orphans bind. However, a previous study that examined
small clusters of GPCRs between humans and D. melanogaster
suggested these orphan clades grouped most closely with peptide
receptors (25).

Sub-assemblage 1b: CCAP, AKH, corazonin, ACP, and alla-
totropin receptors. Adipokinetic hormones, corazonin, and
CCAP are structurally related but functionally distinct peptides
(18). Corazonin and CCAP are cardioactive in An. gambiae (55,
56). In D. melanogaster, corazonin affects stress resistance and
metabolism (57) and is involved in ecdysis, as is CCAP, which
is also cardioactive (58). ACP and its receptor were recently iden-
tified in insects, including mosquitoes but not in D. melanogaster,
and its function is unknown (59). Prior studies have also recog-
nized a common evolutionary origin for this receptor group and
coevolution of their associated ligands in mosquitoes (18, 59, 60).

Mosquitoes encode two different AKH genes (61) with AKH
1 mobilizing stored carbohydrate but not lipids, and AKH 2 hav-
ing no effect on these processes or an identified receptor (62).
Drosophila spp. in contrast encode only AKH 1, which plays a role
in starvation-mediated behaviors and mobilization of lipid and
carbohydrate stores (58). Recent studies confirm binding of AKH
1 to its predicted receptor in D. melanogaster and An. gambiae,
while also identifying a splice variant receptor in Ae. aegypti (61,
63, 64). No AKH receptor was found in C. quinquefasciatus.

Allatotropin is not found in Drosophila, but in Ae. aegypti
and other insects it stimulates juvenile hormone (JH) biosynthe-
sis (65). Binding studies identify a single allatotropin receptor in
Ae. aegypti (AAEL011680) for which a closely related paralog exists
(AAEL005310) (65). We also identified one predicted allatotropin
receptor in C. quinquefasciatus and An. gambiae.

Cluster 1, assemblage 2
Sub-assemblage 2a: sulfakinin related receptors. This sub-
assemblage represents the earliest diverging GPCRs in assemblage
2. Sulfakinin regulates feeding behavior in D. melanogaster (66)
and binds to two GPCR paralogs, CG32540 and CG42301 (67).
Both Ae. aegypti and An. gambiae encode a single sulfakinin
ortholog, while C. quinquefasciatus encodes two predicted sul-
fakinin receptor homologs: one that groups with the Drosophila
sulfakinin receptors and a second that is more closely related to
the mosquito sulfakinin orthologs.

Sub-assemblage 2b: RYamide, tachykinin, natalisin, NPF, short
NPF, SIFamide, and related receptors. The RYamide gene was
recently recognized in Diptera and other insects. It encodes two
paracopies with no known function that were used to deorphanize
a GPCR related to the tachykinin receptor (68, 69). Two copies of
this gene are present in mosquitoes. A single gene encodes up to
six tachykinin paracopies across the Diptera (13, 18, 70), which
are multifunctional (71). D. melanogaster was initially thought to
encode two tachykinin receptors (CG7887, CG6515) which exhib-
ited preferential binding to different ligand paracopies (72–76).
More recent studies show that CG6515 from D. melanogaster is
not a tachykinin receptor but rather binds natalisin, a newly iden-
tified peptide hormone involved in mating (77). D. mojavensis,
An. gambiae, and Ae. aegypti encode a single closely related gene
to CG7887, whereas no ortholog is found in C. quinquefascia-
tus. We also detect orthologs of CG6515 in the genome of each
mosquito, but the two partial sequences encoded by Ae. aegypti
(AAEL017414 and AAEL017341) and one paralog in C. quinque-
fasciatus (CPIJ014103) were not long enough to be included in
our phylogeny.

Kinins, which were originally identified as myotropic neu-
ropeptides, are now considered key regulators of diuresis in mos-
quitoes and Drosophila (78–81). D. melanogaster encodes a sin-
gle kinin receptor that has been functionally characterized (82).
D. mojavensis, An. gambiae, and C. quinquefasciatus also encode a
single predicted kinin receptor, whereas two copies are detected in
Ae. aegypti. Notably, another type of diuretic peptide, inotocin, the
homolog of vertebrate oxytocin/vasopressin, and its receptor are
present in locusts and red flour beetles (T. castaneum), but both
are absent from Drosophila spp. and mosquitoes (83).

Our phylogeny indicates the RYamide and tachykinin receptors
are related to GPCRs that bind NPF, sNPF, and kinins. The related-
ness of the NPF and sNPF receptors is surprising, given differences
in ligand structure (36 vs. <11 AA respectively). A prior study
also noted the shared homology between insect kinin and verte-
brate tachykinin receptors (82). Taken together, we conclude this
GPCR receptor cluster is an example of peptide ligand/receptor
coevolution in insects.
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Neuropeptide F is a member of the NPY/PP/PYY family con-
served across vertebrates and higher invertebrates. It was first
identified along with its receptor in D. melanogaster, where it
affects behaviors related to feeding, learning, stress, and alcohol
sensitivity (84). The unrelated sNPFs found only in arthropods
are encoded by a different gene and processed into four peptides,
which affect feeding, metabolism, and growth in D. melanogaster
(57). The expression of NPF and sNPF is characterized for
Ae. aegypti and An. gambiae, but little is known about their
function (85–87). In Ae. aegypti but not in other mosqui-
toes or Drosophila spp. there is an apparent duplication of the
sNPF gene, which encodes three identical “Aedes head peptides”
(AHPs) isolated as non- and hydroxylated-proline forms (88,
89). Only the latter inhibits host seeking by females (90) and
is also found in the accessory gland of males and transferred to
females (91).

The single copy NPF receptor from D. melanogaster and one
of two NPF copies in An. gambiae (AGAP004123) were iden-
tified and expressed to demonstrate NPF binding (85, 92). As
in D. melanogaster, D. mojavensis and Ae. aegypti encode a sin-
gle NPF receptor, whereas An. gambiae and C. quinquefasciatus
encode two. The duplication of the NPF receptors in An. gam-
biae and C. quinquefasciatus appears to have occurred inde-
pendently in each lineage. The two An. gambiae NPF recep-
tors, AGAP004123 and AGAP004122, are highly similar at the
nucleotide level (99% identical), yet AGAP004122 is truncated
relative to AGAP004123 at its 3′ end. The two C. quinquefascia-
tus NPF receptors also exhibit a pattern of high similarity (99%)
but truncation of one copy (CPIJ018265) is at the 5′ end. Further
study will be needed to determine if these truncated genes are
shorter forms of the NPF receptor are incompletely annotated or
are pseudogenes.

The first sNPF receptor was identified as a single copy gene in
D. melanogaster and expressed to confirm binding (93). An. gam-
biae also encodes a single sNPF receptor for which binding was
confirmed (85). The structural relatedness of the sNPF and NPF
receptors is born out by their shared inhibition of intracellular
cAMP signaling (85, 92). Recently, the Ae. aegypti sNPF recep-
tor was also demonstrated to bind AHPs, though silencing of the
receptor did not impact host-seeking behavior (94).

SIFamide regulates adult courtship behavior in D. melanogaster
(58), and a SIFamide homolog was previously identified in
Ae. aegypti (9). A single SIFamide receptor (CG10823) was iden-
tified in D. melanogaster (95). An. gambiae and D. mojavensis
encode one predicted SIFamide receptor, whereas Ae. aegypti and
C. quinquefasciatus encode two. The SIFamide receptors are most
closely related to the four receptors of clade OA8, present only
in mosquitoes. Two mosquito receptors from An. gambiae and
C. quinquefasciatus form the orphan clade OA7, which is an
exceptionally long branch. Annotation suggests that these may
be odorant-binding receptors, although no experimental evidence
supports this. OA9 is the outgroup to this large clade of recep-
tors, and is found in all five genomes including duplicate copies in
the culicine mosquitoes. Two orphan receptors are found in clade
OA6, which forms an outgroup to sub-assemblages 2b–f. These
genes reside on a long branch with nothing known about their
function.

Sub-assemblage 2c: orphan receptors A10 and 11. Two orphan
clades, A10 and 11, comprise sub-assemblage 2c. While mono-
phyletic in our analysis, support values for this sub-assemblage are
weak. Homologs of A11 are found in all five dipterans, but there
is no ortholog of A10 in C. quinquefasciatus.

Sub-assemblage 2d: CCHamide, allatostatin C and A receptors.
All insects appear to encode two CCHamide genes (1 and 2)
that arose by duplication after divergence of the hexapods from
other arthropods (11, 96). The function of CCHamide 1 and
2 is unknown but binding studies identify two GPCRs from
D. melanogaster (CG14593 and CG30106) as CCHamide recep-
tors (96). Single copy orthologs of both D. melanogaster receptors
are found in all species except C. quinquefasciatus, which lacks an
ortholog of CG14593.

Three structurally distinct types of neuropeptides are called
allatostatins in the literature because they inhibit JH synthesis
by the corpora allata (CA) in different insects (58, 97). Mos-
quitoes and Drosophila spp. encode: (1) allatostatin A paracopies
(FGLamides), (2) allatostatin B paracopies [9–13 AA; herein clas-
sified as MIP or Wx(6)Wamides], and (3) a single allatostatin C,
also known as PISCF (98–101).

Two allatostatin C receptor paralogs were identified in mos-
quitoes and Drosophila spp. (102, 103) with some studies also
suggesting these receptors are related to tachykinin receptors (16,
18) (see below). Our analysis, however, identifies the allatostatin C
receptors as a separate clade from the tachykinin receptors, which
is consistent with differences in ligand motifs.

Although allatostatin A paracopies inhibit JH biosynthesis in
some insects, they have no effect on CA from D. melanogaster or
female Ae. aegypti (104). Recent work suggests a role in foraging
behavior of D. melanogaster larvae (105). Ast A paracopies bind to
two receptor paralogs, CG2872 and CG10001, in D. melanogaster
(16). We note that D. mojavensis and Ae. aegypti each encode two
receptors for allatostatin A, whereas An. gambiae and C. quinque-
fasciatus encode three. The putative allatostatin A receptors from
mosquitoes have not been functionally characterized, but their
number suggests either all bind one or more allatostatin As or
some are orphans.

Sub-assemblage 2e: trissin receptor. Trissin is another pep-
tide hormone with no known function that binds a GPCR
in D. melanogaster (69). We detected single orthologs of the
D. melanogaster trissin receptor in the other genomes.

Sub-assemblage 2f: periviscerokinin, pyrokinin, and ecdysis trig-
gering hormone receptors. Peptide ligands for the receptors in
this clade share a similar C-terminal motif (PRL/Vamide) and are
processed from precursors encoded by three genes in all dipteran
species examined to date. The capability gene yields two PVKs end-
ing with PRVamide and one PK ending with WFGPRLamide. The
hugin gene produces two to four PK paracopies (7, 106) whereas
the ETH gene produces two paracopies (9, 18, 58, 60, 107, 108).
The receptor for ecdysis-triggering hormone (ETHR) has dupli-
cated in D. mojavensis, but exists as a single copy gene in the other
genomes.

Drosophila melanogaster has three PK GPCRs – CG9918 as
the PK1 receptor, and CG8784 and CG8795 as PK2 receptors
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(109, 110) – and a single PVK receptor (CG14575). Single copy
orthologs of the PVK receptor are present in all the species, while
variable numbers of PK receptors were found among species.
Initially, two were identified in An. gambiae, and the expressed
CG9918-like receptor (AGAP000658) preferentially binds the PK1
peptides and the other receptor (AGAP003076), the PK2 peptides
(108). The same study identified the related receptor in An. gam-
biae as a homolog of the PVK receptor in D. melanogaster. Four
PK receptors are found in C. quinquefasciatus, though only a single
PK receptor is found in Ae. aegypti.

Both splice variants of ETHR in D. melanogaster bind both
forms of ETH (18, 60, 100, 107, 108). Both ETH paracopies also
regulate ecdysis in D. melanogaster and Ae. aegypti (60, 107).
Two ETHR splice variants were identified in D. melanogaster and
Ae. aegypti that are more selective for ETHs than other related
peptides (107, 111–113).

Cluster 2
Proctolin receptor. Proctolin was the first myostimulatory pep-
tide isolated from an insect, and its receptor was first identified in
D. melanogaster (58) and an ortholog was identified in D. mojaven-
sis (Figure 2). In contrast no gene encoding this peptide or a
receptor ortholog is known in mosquitoes, which is consistent
with proctolin having no effect on mosquito tissues (114).

FMRFamide receptors. The single FMRFamide gene in dipter-
ans encodes multiple paracopies that bind to the expressed
D. melanogaster GPCR (115, 116) and are myostimulatory in
D. melanogaster and An. gambiae (117, 118). The FMRFamide
receptor is represented by a single ortholog in each of the
Drosophila and mosquito genomes examined (Figure 2).

Myoinhibitory/sex peptide receptor. Myoinhibitory peptides
were isolated based on their myoinhibitory activity. They were
later shown to inhibit JH biosynthesis (so named, allatostatin B)
in different insects and to be structurally related to the sex peptides
in Drosophila (119). Binding studies established that MIPs and sex
peptides both bind the D. melanogaster MIP receptor (119, 120).
A single ortholog of this receptor is also present in D. mojavensis
and each of the mosquito species (Figure 2). No sex peptide gene
is known for mosquitoes, but one study showed that sex peptide
from D. melanogaster bound to the Ae. aegypti MIP receptor (91).

Myosuppressin receptors. Myosuppressin inhibits gut and heart
contraction in D. melanogaster and binds to duplicate GPCRs
deorphanized for this species (15, 121). This duplication appears
to have occurred prior to the divergence of D. mojavensis and
D. melanogaster. We identified a single ortholog in each mosquito
species (Figure 2). Specific binding of myosuppressin was also
previously shown for the expressed An. gambiae ortholog (23). A
related orphan receptor, OA14, is represented as a single ortholog
in the Drosophila, Anopheles, and Culex spp. while two orthologs
were identified in Ae. aegypti (Figure 2).

Other orphan clades. In addition to OA14, Cluster 2 contains
two other orphan clades designated as OA12 and 13. OA12 is most
closely related to the proctolin receptor but has expanded in the

culicine mosquitoes, with Ae. aegypti encoding three copies and
C. quinquefasciatus encoding four. OA13 has an uncertain posi-
tion in Cluster 2 but at least one copy of this gene is found in each
of the genomes with the exception of An. gambiae.

CLASS B SECRETIN GPCRs
The balance of dipteran GPCRs that bind peptide hormones
belong to the Class B secretin family (7). Our analysis distinguished
nine clades within this class (Table 1; Figure 3), of which three have
identified ligands: (1) calcitonin-like diuretic hormone (CT-DH),
(2) corticotropin-releasing factor-like diuretic hormone (CRF-
DH), and (3) pigment dispersing factor (PDF) (Figure 3). We
included the latrophilin GPCRs that are conserved across inverte-
brates and vertebrates (122, 123) and bind latrotoxins from spiders
in the genus Latrodectus (124). The endogenous ligand for the
vertebrate receptors is teneurin-2, a glycoprotein displayed on the
surface of cells (125), however the endogenous ligand in insects
in unknown. Class B secretin GPCRs also include the Methuselah
and Methuselah-like genes, which are grouped into four classes,
A–D, based on the disulfide bridges present in their extracellular
domain (126). Other phylogenetic data for Class B GPCRs have
been produced for vertebrates and invertebrates (127) and insects
alone (126).

Pigment dispersing factor receptor
This peptide was first identified by its stimulation of pigment
dispersal in some arthropods, but in insects PDF was the first neu-
ropeptide shown to regulate circadian activity in D. melanogaster
(58). Its receptor was subsequently identified, and we found sin-
gle orthologs of this receptor in D. mojavensis and each of the
mosquito species. It is not known whether PDF has a role in
circadian activity in insects generally, but host-seeking behav-
ior is one circadian behavior that may be regulated by PDF in
mosquitoes (128).

Corticotropin-releasing factor-like diuretic hormone receptor
Our phylogeny suggests the ancestor of this receptor underwent
a duplication event prior to the divergence of the Culicidae
and Drosophilidae. Both orthologs from D. melanogaster bind
CRF-DH (129). The diuretic activity of CRF-DH is also well
characterized in mosquitoes and D. melanogaster (130, 131).

Calcitonin-like diuretic hormone receptor
These ligands and their associated receptors mediate diuresis by
Malpighian tubules (132). The activity and expression of CT-
DH and its receptor are well characterized in mosquitoes and
D. melanogaster (132–134). The CT-DH receptors are single copy
in each genome and are sister to the orphan Hector-like GPCRs
(Figure 3).

Methuselah-like receptors
Studies in D. melanogaster described mutations in a GPCR named
Methuselah (mth), which conferred increased longevity and stress
resistance (135). Additional mth-like genes were thereafter identi-
fied (34), while genome studies indicate that mth genes are likely
present in all insects. Four major groups (A–D) of Mth receptors
have been proposed on the basis of the disulfide bridges present in
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their extracellular domains (126, 136). While present in all insects
examined in this study, D. melanogaster encodes many more mth-
like genes (16) than D. mojavensis (8), C. quinquefasciatus (8),
Ae. aegypti (6), or An. gambiae (4). We further note the Drosophila
Mth receptors are widely distributed across the tree and are not
monophyletic. Only three clades of Mth receptors include mem-
bers from the Culicidae: the C type Mth, Mth-like 14, and a clade
that is sister to the B and D type Mth receptors (Figure 3). Cve-
jic et al. (137) reported that the endogenous ligand for the Mth
receptor in D. melanogaster was a peptide encoded by the gene
stunted, and that disruption of its expression has a similar phe-
notypic effect as reduced mth expression. Others, however, report
that Mth binds Drosophila sex peptide and other synthetic pep-
tides and suggest this receptor may be a promiscuous GPCR with
diverse ligands (138).

Latrophilin receptor
Each genome contains a single copy of the latrophilin GPCR.
Our analysis suggests these receptors do not form a monophyletic
group in the Diptera, but this conclusion is based on poor align-
ment due to the loss of six of the seven transmembrane domains
in the Culicidae. The mosquito receptors, however, retain N-
terminal domains that are similar to those of Drosophila spp. (data
not shown). Truncation of the C-terminal region of latrotoxin-
binding GPCRs in mammals does not impede responses to latro-
toxin in cell culture (139), which suggests the culicid orthologs
may be functional.

Orphan Class B/secretin receptors
In addition to the Mth-like and latrophilin GPCRs, our results
identify two clades of orphan Class B secretin GPCRs. The Hec-
tor group (OB1) is sister to the CT-DH receptor and appears to
have arisen by a duplication event in Diptera that predates the
divergence of the Drosophilidae from the Culicidae. Although
orphans, mutations in the Hector GPCRs have been shown affect
mating behavior in D. melanogaster (140). OB2 was identified
as a distant ortholog of the human epididymis six GPCR, itself
an orphan, shortly after the publication of the D. melanogaster
genome (34).

RECEPTOR GUANYLYL CYCLASES
Receptor guanylyl cyclases are conserved homodimeric membrane
proteins (~200 kDa) with intracellular protein kinase and guanylyl
cyclase domains that catalyze cGMP formation (2). We identified
six RGC clades in Diptera (Figure 4), two of which have character-
ized ligands: eclosion hormone (EH) and neuropeptide-like pep-
tide 1-VQQ (NPLP1). Eleven forms of NPLP1 are encoded by the
genes identified for D. melanogaster and other insects (141). The
NPLP1 receptor was also shown to be an RGC in D. melanogaster,
while functional studies showed that NPLP1 stimulates fluid trans-
port in the midgut and Malpighian tubules, modulates stress, and
affects immune responses (142). EH is a co-activator with ETH of
ecdysis behavior in insects. Expression of the Drosophila EH recep-
tor in a mammalian cell line followed by incubation with EH from
D. melanogaster or another EH paracopy from the oriental fruit
fly (Bactrocera dorsalis) elicited a strong cGMP response, which
provided evidence this RGC functions as an EH receptor (143).

FIGURE 4 | Maximum-likelihood tree of membrane-bound RGCs using
the five dipteran species described in Figure 2 with alignments made
using the protein kinase domain of each receptor. Branches with
maximum-likelihood support values <0.8 have been collapsed to
polytomies. The tree was rooted at the midpoint.

The remaining dipteran RGCs resided in orphan clades, and
to further characterize their relationships to other RGCs, we con-
structed a phylogenetic tree that included these RGCs and the
five RGCs from H. sapiens, A–E (data not shown). This analysis
indicated that two of the dipteran orphan clades (OGC1 and 3)
have no vertebrate ortholog. In contrast, OGC2 appears ortholo-
gous to vertebrate RGC-A and -B that bind natriuretic peptides,
while OGC3 is homologous to the vertebrate retinal RGC. Over-
all, our analysis indicates that dipteran RGCs have undergone
few changes, with the possible exceptions of an apparent loss of
OGC1 from D. mojavensis, the duplication of the NPLP receptor
in D. melanogaster, and the duplication of the OGC4 homolog in
Ae. aegypti.

PROTEIN KINASE RECEPTORS
Protein kinase receptors form non-covalently bound dimers upon
reaching the cell surface or in response to ligand binding (2). The
insulin receptor is an exception in that its monomers undergo
proteolysis into α and β subunits that are linked by intra- and inter-
subunit disulfide bonds to form a covalent stabilized heterote-
tramer (144). Peptide hormones, growth factors, and membrane
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proteins are ligands for these receptors, and their interactions,
signaling, and function are well characterized for mammalian
systems, intermediately characterized for D. melanogaster, and
poorly characterized in other insects. Ligand binding to spe-
cific extracellular domains activates intracellular kinase domains
that autophosphorylate either tyrosine or serine and threonine
residues, presenting docking sites for cytoplasmic effectors, adap-
tors, and scaffold proteins that in turn activate one or more signal
pathways (3). Activated PKRs are also targets of protein phos-
phatases that modulate and even block signaling in mammals. Our
analysis of dipteran PKRs produced a phylogeny with two major
branches: (1) an assemblage of 12 clades consisting of primarily
characterized receptor tyrosine kinases (RTKs) and (2) five clades
related to mammalian transforming growth factor beta (TGF-
β) receptors, which contain a distinctive serine-threonine kinase
domain (Figure 5). Similar to the RGCs but unlike the GPCRs,
dipteran PKRs have undergone relatively few lineage-specific gains
or losses, suggesting that most members were likely present in the
most recent common ancestor of culicids and drosophilids.

Receptor tyrosine kinases
The RTK clades we identified were conserved across the five
dipteran species (Figure 5). Ten of these clades are also represented
among the 20 recognized subfamilies of human RTKs, which have
been classified on the basis of ligand interactions and other features
(3). The remaining two RTK clades are known only from insects
and other arthropods. One of these is an orphan receptor (OR1),
which contains a venus flytrap domain, while the other is the pro-
thoracicotropic hormone (PTTH) receptor. Most of the dipteran
RTK clades are encoded by a single ortholog in each species. For
the 10 clades with apparent human homologs, only OR2 (ROR) is
an orphan. Five others interact with secreted ligands [epidermal
growth factor (EGF), platelet-derived/vascular endothelial growth
factor, fibroblast growth factor (FGF), insulin-like peptides (ILPs),
and low-density lipoprotein repeat-containing factor], whereas
the remaining four form activating complexes with unrelated
membrane proteins (glial cell line-derived neurotrophic factors,
collagen, muscle specific kinase, and ephrin).

ILP and related receptors. The ILP receptor (IR) was the first RTK
identified in insects when cloned from D. melanogaster (145, 146).
These studies showed this RTK bound mammalian insulin, and
much later, the discovery of multiple ILP genes in D. melanogaster
was taken as evidence that the encoded peptides were the endoge-
nous ligands of the IR (147). Up to eight ILPs encoded by different
genes are known for the dipteran species in our study (148), and
all but the ILP6 subfamily are likely processed into disulfide-linked
dimers (6–8 kDa). Only one study from Ae. aegypti confirms the
high affinity binding of an endogenous insect ILP to its cog-
nate IR (149), while another shows ILP displacement of human
insulin bound to the D. melanogaster IR (150). Several studies also
show the IR activates the canonical insulin signaling pathway in
Ae. aegypti (151–153) and that ILPs have a diversity of functions
in mosquitoes (148, 154).

The two RTKs that group with the IR include a homolog of
human anaplastic lymphoma RTK (ALK) and leukocyte tyro-
sine kinase (LTK), and the orphan OR1. Both ALK and LTK

play key roles in human cancers, whereas the ALK homolog in
D. melanogaster directs gut and nervous system development and
is associated with ethanol sensitivity and learning (155–158). No
specific ligand has been identified for mammalian ALK or LTK,
although a 61 kDa secreted protein ligand named Jelly Belly has
been identified as an ALK ligand in D. melanogaster (159). How-
ever, Jelly Belly does not interact with mammalian ALK (159). Our
analysis supports the presence of OR1 in mosquitoes, other insects,
and other invertebrates as well as its loss from the D. melanogaster
subgroup as first reported by Ahier et al. (160). Curated, partial
mRNAs indicate this receptor is present in D. mojavensis, which
was included in the phylogenetic tree, but the genome lacks an
annotated receptor. The extracellular domain of OR1 contains a
venus flytrap domain, which is also found in some GPCRs and
RGCs, and has been implicated in binding amino acids and other
small molecules (160, 161).

PTTH receptor. Prothoracicotropic hormone regulates molting
and development in insects by stimulating the prothoracic glands
(PGs) to produce ecdysteroid hormones (162–164). Expression of
the RTK Torso is required for PTTH action in D. melanogaster.
Torso was also shown to interact with Trunk, which is a pro-
tein growth factor that regulates early embryonic development.
PTTH and Trunk are structurally related to other protein and
growth factors that contain a cysteine knot motif and bind RTKs
and TGF-β receptors. Although Trunk and PTTH differ in tissue
and temporal expression, their interaction with Torso activates the
Ras/mitogen-activated protein kinase pathway and calcium signal-
ing. These shared features and actions support the designation of
Torso as the PTTH receptor. However, direct binding of PTTH to
Torso has not been demonstrated.

We identified duplicate PTTH RTK genes in C. quinquefascia-
tus and Ae. aegypti, but not in An. gambiae or D. melanogaster.
The absence of a PTTH RTK ortholog in D. mojavensis is likely
due to our inability to identify it rather than its loss given that
orthologs of the trunk and PTTH genes are present (163). PTTH
expression has been profiled in mosquito larvae (165–167), but it
is not known to regulate ecdysteroid production, which occurs in
unidentified cells in the abdominal or thoracic wall, not the PGs
(168).

Other RTKs. The functional significance and signaling of the
other RTK clades has been examined in D. melanogaster. The
best characterized of them is the EGF receptor, which interacts
with one secreted ligand (Vein) plus three other ligands (Spitz,
Keren, and Gurken) derived from enzymatic cleavage of inactive
membrane-bound precursors. Typically, these ligands regulate the
trajectory of specific embryonic and tissue stem cell types (169,
170). An EGF receptor exists in each mosquito species, and its
expression has been characterized in An. gambiae (171). How-
ever, the putative ortholog in C. quinquefasciatus was a partial
annotation that lacked the protein kinase domain and was there-
fore not included in the phylogeny. The platelet-derived/vascular
endothelial growth factor receptor and its three secreted ligands are
involved in the regulation of hemocyte and midgut stem cell fate
in D. melanogaster (172, 173). The FGF receptor is duplicated in
each dipteran species. Functional studies in D. melanogaster show

www.frontiersin.org December 2013 | Volume 4 | Article 193 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


Vogel et al. Receptor phylogenetics in Diptera

FIGURE 5 | Maximum-likelihood tree of PKRs using the protein kinase
domains of PKRs from the five dipteran species described in Figure 2.
The tree was rooted using a guanylyl cyclase receptor GI22298 from
D. mojavensis. Branches with maximum-likelihood support values <0.8
have been collapsed to polytomies. The C. quinquefasciatus gene

CPIJ006878 has been placed within the clade it presumably belongs to,
though it lacks the protein kinase region used for alignment. The
D. mojavensis OR1 ortholog is not annotated in FlyBase, but EST evidence
supports its presence (160). Clades are named after their characterized
ligands, if known.
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the two receptors differ in their structure and ligand interactions
(174). Homolog 1 (Heartless, CG7223) interacts only with two of
the three related secreted FGFs (Pyramus and Thisbe) to direct
mesoderm migration and heart muscle differentiation of the dor-
sal vessel, whereas homolog 2 (Breathless, CG32134) is activated by
its ligand (Branchless) to define branching of the tracheal system.
Breathless appears to be incompletely annotated, and was removed
from our alignments. Less is known about the RET RTK (175,
176), ROR RTK (177), and ephrin RTK (178) in the development
of D. melanogaster, while the collagen and muscle specific kinase
RTKs remain unstudied. We note that D. mojavensis encodes
duplicate collagen receptors, while the D. melanogaster paralog
CG34380 lacks the protein kinase domain used for alignment.

TGF-β-like receptors
The different elements of the TGF-β signaling pathway are well
characterized in mammals and D. melanogaster, because they reg-
ulate many of the same developmental and cellular processes as
RTKs (179–181). In common with secreted RTK ligands, TGF-β
ligands are disulfide-linked homodimers (~30 kDa) of N-terminal
regions cleaved from precursors. They are subdivided into the
TGF-β/activin orthologs, Activin, Dawdle, Myoglianin, and Mav-
erick, and bone morphogenic protein (BMP) orthologs, Decapen-
taplegic, Glass Bottom Boat/60A, and Screw, in Drosophila (182)
and Anopheles spp. (183). In general, these ligands act as growth
factors and cytokines in both mammals and insects (182).

Types I and II TGF-β receptors are single pass-transmembrane
serine/threonine kinases, and ligand binding results in the forma-
tion of a heterotetramer of types I and II receptor dimers with
the type II dimer phosphorylating the type I dimer, which in turn
binds and phosphorylates SMAD or MAD proteins that activate
other elements in a signaling pathway. In agreement with these
studies, we identified three type I receptor clades (Baboon, Sax-
ophone, Thickveins) and two type II receptor clades (Punt and
Wishful Thinking). Each clade is represented as a single ortholog

in the two Drosophila spp. and C. quinquefasciatus. Duplications
have arisen in Ae. aegypti in the saxophone, thickveins, and punt
genes. In contrast, An. gambiae has paralog copies of the baboon
receptor.

The TGF-β ligands are not considered peptide hormones, per se,
but activin may be an exception in that it is widely expressed in
the nervous system and in neurosecretory cells associated with
endocrine glands in D. melanogaster (182, 184). Mammalian
activin homologs are also expressed in neuroendocrine cells in the
pituitary gland, where they regulate the expression and release of
gonadotropic hormones (185), and in endocrine cells in the pan-
creas islets, where they modulate insulin secretion (186). Other
studies show that TGF-β signaling plays an important role in mos-
quito immunity and is responsive to mammalian TGF-β proteins
ingested in blood meals (187, 188).

CONSERVATION OF ACTIVE SITES IN RECEPTORS AND HORMONES
An underlying assumption in the study of peptide hormone recep-
tor evolution is that related receptors exhibit a degree of conser-
vation in their active site, as do their peptide ligands. To test this,
we compared the sequences of related NPFs and their GPCRs for
the five dipterans to the NPY/PP/PYYs and their receptors in three
vertebrates: zebrafish (D. rerio), mouse (M. musculus), and human
(H. sapiens) (Figure 6). Insect NPF is a member of the NPY fam-
ily, and evidence suggests that the neuropeptides regulate related
behaviors across these groups (58).

Mutagenesis studies have revealed a number of receptor
residues that are involved in NPY binding (189, 190). We exam-
ined the corresponding locations in the dipteran receptors and
found that many key binding residues are conserved, includ-
ing several that are perfectly conserved, since the divergence of
protostomes and deuterostomes 650 Mya. Loops 2–4 comprise
a hydrophobic ligand binding pocket in NPY receptors (191),
and within this pocket, multiple residues have been implicated
in ligand-receptor interactions (41–43, 192, 193) (Figure 6). Six

FIGURE 6 | Conservation of peptide active sites and receptor binding
regions across the Bilateria. (A) Alignment of neuropeptide Y GPCRs
subtypes (NPYr) that also bind pancreatic peptide (PP) and peptide YY (PYY)
from M. musculus, Da. rerio, and H. sapiens with neuropeptide F GPCRs
(NPFr) from the five dipteran genomes. Blue shading indicates amino acid
similarity between residues according to BLOSUM62 scores; darker shades
indicate increased similarity. Yellow bars below residues indicate conservation
across the alignment. Position relative to the cell membrane is indicated by

the colored line above the alignment: intracellular: green, extracellular: yellow,
transmembrane: gray. Zoomed regions show domains that have been
confirmed experimentally to be important for ligand binding by NPYrs.
Residues highlighted in red indicate those determined to be involved in ligand
binding in H. sapiens NPYr1 and 2. Binding residues that are highly conserved
are listed next to the alignment with their amino acid in human NPYr1 or 2.
(B) Alignment of vertebrate NPY, PP, and PYY with dipteran NPF sequences.
Only the mature peptide is shown. Coloring is the same as in (A).
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of the residues identified by mutagenesis of human NPY receptors
are perfectly conserved in the full-length dipteran NPF receptors:
W106, C113, Q120, V125, W163 and D287 (numbering refers to
human NPYr1/2 positions). The first four residues are absent in the
N-terminal truncated C. quinquefasciatus copy of the NPF recep-
tor, while D287 is absent in the C-terminal truncated An. gambiae
NPF receptor. Q219 is conserved in all receptors examined except
H. sapiens and M. musculus NPYr1. Similarly, N283 is invariant in
the dipteran NPF receptors, but differs between vertebrate forms
of the receptor. The hydroxyl group of Y100 is implicated in NPY
binding by the NPYr1 from H. sapiens (192). In the dipteran recep-
tors, the homologous position is invariantly a glutamic acid with
the exception of the truncated C. quinquefasciatus receptor, where
it is absent. Although the amino acid at this position is different
between the vertebrate and dipteran lineages, the glutamic acid
residue still contains a free hydroxyl group, suggesting that the
functionality of this position is conserved.

Among the NPF/NPY family, 3 of 36 residues in the mature pep-
tide are perfectly conserved in the species examined: L24, R33, and
R35 (Figure 6). The C-terminal A/TRXRY/Famide motif along
with a D/E at position 10, and a leucine residue at position 24 of the
mature peptide were also conserved. These data overall strongly
suggested functional sites are conserved between related but dis-
tinct peptides and their associated receptors across hundreds of
millions of years of evolution.

CONCLUSION
This study represents the first comprehensive analysis of the three
receptor types that bind peptide hormones and growth factors in
insects. Our primary motivation for undertaking this study was
to develop a robust phylogenetic framework to study the function
of particular orphan receptors in mosquitoes. However, by taking
advantage of the comparative genomic data available for the Culi-
cidae and Drosophilidae, our results also provide comprehensive
phylogenetic information for the GPCRs, RGCs, and PKRs across
the breadth of the Diptera (Nematocera and Brachycera).

The absence of any individual orphans within the clades of
RGCs with characterized ligands suggests these receptors are sta-
ble within the Diptera and that diversification of RGCs occurred
prior to the evolution of the order several hundred million years
ago (44). Dipteran Class A and B GPCRs are more evolutionar-
ily labile with each experiencing several instances of duplication
and loss. For Class A GPCRs, most of the orphans in character-
ized clades are single duplication events that have occurred in a
particular mosquito species. The functional significance of these
duplications is in most cases unclear. Since many peptide hor-
mones exist in multiple forms derived from a single propeptide, we
speculate that different forms of a given receptor may preferentially
interact with different forms of their cognate peptide hormone. In
some cases, paralog receptors both bind a single hormone but vary
in their binding affinity and phenotypic effect, as is seen in the two
PK2 GPCRs of D. melanogaster (194). On the other hand, most
of the GPCR orphan clades are Methuselah-like Class B secretin
GPCRs, which are overrepresented in drosophilids generally and
D. melanogaster in particular. Currently, the literature offers no
insights into why this bias exists or what the functional significance
of so many Methuselah-like GPCRs might be.

We tried to characterize the evolution of gains and losses of
peptide hormone receptors in the Diptera but in many cases it
was not possible to discern such events with certainty due to
issues with annotation. Often what initially appeared as a gene
duplication event was in fact two separate gene annotations for a
single gene. This was verified in some cases by available RNAseq
data covering the genes of interest, whereas in others, alignment
to a single ortholog demonstrated that the actual gene had been
divided during gene prediction. This was particularly true in the
Class A rhodopsin-like GPCRs of Cluster 1. We had to omit some
GPCRs from the analyses due to absence of the domain needed for
identification and alignment. Several potential PKRs also lacked
a complete kinase domain and were therefore removed from our
analysis. Though care was taken to correct these annotation errors
in our analysis, it is possible that some duplication events we report
are artifacts of gene prediction algorithms.

Studies across a range of organisms have shown the utility of
comparing orphan to characterized receptors. Hansen and col-
leagues (59) demonstrated that an orphan GPCR was sister to the
AKH receptor, and these two receptors were sister to the corazonin
receptor. Subsequent efforts to deorphanize the receptor identi-
fied a structurally intermediate peptide encoded in the genome of
insects. Our results illuminate several orphan clades and individ-
ual receptors that are sister to characterized receptors, suggesting
that these orphans may bind similar ligands. Additionally, the
species distribution of orphan receptors and patterns of tissue and
temporal expression may also reduce the target ligand pool, and
hopefully aid in deorphanization. While GPCRs evolve at a fast
rate (195), binding sites in both the receptor and peptide ligand
can be conserved across hundreds of millions of years as demon-
strated here for the vertebrate NPY/PP/PYY and dipteran NPFs
and their GPCRs. Conservation of functional residues between
receptors that bind related peptides suggest that phylogenetic
position of related orphan receptors can aid the identification
of ligands and provide insights into their function, because in
many instances it is also conserved to a high degree, as demon-
strated for the NPF/NPY superfamily (84). Thus, our results could
assist in deorphanizing receptors in newly sequenced mosquito
genomes by identifying their ligands. On the other hand, the liter-
ature is more equivocal in regard to sequence similarity between
species also resulting in functional similarity. Thus, in addition
to deorphanization, considerable work remains in understand-
ing the physiological function of many peptide hormones and
growth factors among different species of mosquitoes and other
insects.
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