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Cognitive flexibility reflects the ability to switch quickly between tasks or stimulus
sets, which is an important feature of human intelligence. Researchers have confirmed
that this ability is related to the learners’ academic achievement, cognitive ability,
and creativity development. The number-letter switching task is an effective tool for
measuring cognitive flexibility. Previous studies have found that high flexibility individuals
perform better in rule-based tasks such as the Iowa Gambling Task. It is not clear
whether highly flexible learners have learning advantages when the rule tasks involve
probabilistic cues. Using an inter-individual differences approach, we examined whether
cognitive flexibility, as assessed by the number-letter task, is associated with the learning
process of a probabilistic rule task. The results showed that the high flexibility group
reached a higher level of rule acquisition, and the accuracy during the post-learning
stage was significantly higher than the low flexibility group. These findings demonstrate
that cognitive flexibility is associated with the performance after the rule acquisition
during the probabilistic rule task. Future research should explore the internal process of
learning differences between high and low flexibility learners by using other technologies
across multiple modes.

Keywords: cognitive flexibility, rule learning, probability, switch cost, reward

INTRODUCTION

As a core component of executive functioning (EF), cognitive flexibility has attracted much
attention in psychological research. Research from various fields has investigated the internal
mechanism underlying cognitive flexibility. Animal-based research has explored the underlying
mechanisms of this function from an anatomical neurology perspective (Darby et al., 2018).
Developmental psychologists focus on the training and growth of cognitive flexibility in children
and adolescents (Dajani and Uddin, 2015). Studies of patients with neurological impairment
also provide a window for exploring internal mechanisms (Lange et al., 2017). Despite extensive
attention and research, there is still no clear common definition of cognitive flexibility, which
can influence how this construct is operationalized in research (Müller et al., 2014). Based on the
understanding that cognitive flexibility refers to “the ability of switching between tasks and stimulus
sets in a quick and flexible manner” (Diamond, 2013; Müller et al., 2014), previous studies measured
cognitive flexibility using scales or cognitive tasks (e.g., Wisconsin Card Sorting Test, WCST;
task- switching paradigms) and researches have proved subjects with different levels of cognitive
flexibility have different behavioral and neural characteristics (Müller et al., 2014). Although there
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is yet no clear conclusion about the mechanisms underlying
cognitive flexibility, many researchers hold that cognitive
flexibility is a prerequisite for many psychological functions, and
it is one of the most important factors affecting intelligence and
creativity (Diamond, 2013). For children, cognitive flexibility
is a significant predictor of academic performance (Stad et al.,
2018). High cognitive flexibility learners, including children
(Lehto and Elorinne, 2003) and adults (Dong et al., 2016),
usually show better performance on learning task, such as the
Iowa Gambling task, which involves decision-making under
uncertainly and has partly common neural mechanisms with rule
learning (Hartstra et al., 2010).

Rule learning is based on stimulus patterns and feedback
of behavioral outcomes to discover the relationship between
operations and outcomes. Upon mastering the relationship,
learners develop guidelines for subsequent behavioral choices,
allowing them to further predict the corresponding results. This
process enables an individual to recognize new information
that expands upon existing knowledge. From the perspective
of cognitive psychology, this process can be summarized as
follows: the brain encodes stimuli, stimuli and feedback is used
to construct rules, these rules are used to predict subsequent
stimuli, and these rules are also applied to other similar stimuli
(Dehaene et al., 2015). Hypothesis testing is at the core of
rule learning (Klayman and Ha, 1989; Liu et al., 2015). During
rule learning tasks, rule learning can enter the application
stage smoothly if the hypothesis is successfully tested. If the
hypothesis cannot explain the stimulus sequence, it must undergo
further revision by the participant. This process will be repeated
until the correct hypothesis is found or the experiment has
ended. Successful hypothesis testing requires flexible switching
among multiple possible hypotheses. High cognitive flexibility
learners show better abstract induction, working memory, and
feedback learning abilities during the Iowa Gambling task (Dong
et al., 2016), which has some common neural basis of rule
learning (Hartstra et al., 2010). We speculate that high-flexibility
individuals may display more accurate and faster rule acquisition
during rule learning as a result of their cognitive advantages.

In contrast to deterministic rule learning, there is no one-
to-one matching relationship between cues and results in
probabilistic rule learning. To use weather forecasting as an
example, a “dark cloud” cue may result in “rain” in 70% of
cases. Yet, in 30% of cases, the result is “cloudy.” Therefore,
the cue “dark cloud” cannot be fixed to a certain attribute (i.e.,
“rain”), and the same reaction to “dark cloud” may be reinforced
as “rain” or “cloudy.” It is impossible for learners to achieve
complete error-free performance, and they eventually accept
certain inevitable mistakes (Craig et al., 2011). This study aims
to explore, for the first time, whether healthy adults with high
cognitive flexibility show an advantage during a probabilistic
rule learning task, just as in other rule-based learning tasks
(i.e., Iowa Gambling Tasks; Dong et al., 2016). The WCST
is perhaps the most widely used tool to measure cognitive
flexibility in neuropsychology at present. However, compared
to WCST, task-switching paradigms can provide a more pure
measurement of cognitive flexibility by reducing the demand
for working memory, classified learning and rule reasoning

(Buchsbaum et al., 2005; Lange et al., 2018). This study uses
the classical “number-letter task” to measure learners’ cognitive
flexibility. Performance on the “number-letter task” (switch cost)
will be used to divide participants into high and low cognitive
flexibility groups, and their dynamic learning characteristics in
different stage of probabilistic rule learning will be explored.

MATERIALS AND METHODS

Participants
Three hundred and ten undergraduates from Soochow University
completed the number-letter task. Data from 13 subjects was
excluded for responding too quickly (RT below 100 ms), giving
repeated responses, or misunderstanding the instructions. Data
from 297 subjects (60 males) aged from 17 to 26 (M = 18.7,
SD = 1.5) were used for further grouping. All subjects were right-
handed, had normal or correct-to-normal vision, and no reported
cognitive impairment. None of the subjects had participated
in similar experiments. Participants were reimbursed according
to their performance in the coin-searching task. All subjects
had given written informed consent. The study protocol was
approved by “the Ethical Committee of Soochow University.”

Materials and Procedure
Number-Letter Task
In the classic number-letter task (Rogers and Monsell, 1995), a
letter plus a number (e.g., 2U or M5) appears in a quadrant at
the center of the screen. Letters are either vowels (A/E/I/U) or
consonants (G/K/M/R) and numbers are either odd (3/5/7/9) or
even (2/4/6/8). A letter and a number are randomly combined to
form number-letter stimulus pairs. In the current study, the task
consisted of practice and formal trials.

Practice trials
Letter, number and number-letter joint judgments were included
in the practice trials. The sequence of letter and number
judgments was balanced among subjects. For letter judgments,
32 trials (16 trials of consonants, half of them paired with an
odd number) were included. Subjects were instructed to press
‘E’ or ‘I’ as quickly and accurately as possible to determine
whether the letters were consonants or vowels. During the letter
judgment trials, the stimulus pairs always appeared in the upper
two quadrants. After an incorrect response, “ × ” would appear
and the participants were instructed to re-press the correct key.
The number judgment trials differed from the letter judgment
trials in that the stimulus pairs always appeared in the two bottom
quadrants and the subjects were required to determine whether
the number was even or odd. In the combined number-letter
trials, the stimulus pairs were presented clockwise one by one
in each quadrant, and the number or letter was not the same
as the previous one. For the stimulus pairs appearing in the
upper two quadrants, letter judgments were needed, otherwise
number judgments were required. Only when the accuracy rate
was higher than 80% could participants enter the formal trials.
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Formal experiment
The formal experiment consisted of 128 trials of combined
number-letter judgments. " × " without chance of correction
would appear after incorrect responses. When the stimulus
pair jumped from the first quadrant to the fourth quadrant,
the subjects needed to switch from letter judgment to number
judgment accordingly. Similarly, when the stimulus pair jumped
from the third to the second quadrant, the judgment should
change from number to letter. We classified these as switching
trials. When the stimulus pairs jumped from the fourth to the
third quadrant or the second to the first quadrant, there was
no need for task type switching. We classified these as non-
switching trials.

The latency difference between switching and non-switching
trials was regarded as the switch cost (the switch cost of
latency = the average latency of the correct response in the
switching trials – the average latency of the correct response in
the non-switching trials). Switch cost was used to distinguish
learners with high and low cognitive flexibility. High flexibility
participants had a smaller switch cost, and the switch cost of low
flexibility participants was greater. Participants that with switch
cost scores in the upper 27th percentile were included in the low
flexibility group, subjects with scores in the lower 27th percentile
were included in the high flexibility group. Only these high and
low flexibility groups completed the coin searching task.

Coin-Searching Task
The coin-searching task is similar to that of Bellebaum and
Daum (2008). E-prime 2.0 was used to program and run the
task. The stimuli were presented on a 17′ computer monitor
with a resolution of 1024 × 768 pixels. Each participant sat
approximately 57 cm from the screen. Responses were recorded
via ‘F’ and ‘J’ keys on a computer keyboard. There were 12 regular
color blocks [RGBred (255, 0, 0), RGBwhite (255, 255, 255)] on the
left and right sides of a black [RGB (0, 0, 0)] background. The
visual angles of stimulation were shown in Figure 1.

The total number of red blocks was equal on both sides, with
either 4 or 8 cases. The number of red blocks in the right column
on both sides was either 0 or 2 or 4 or 6. If there was no red block
in the right column of the selected side, the reward probability
is 0. Similarly, the reward probability was 2/6 (1/3) for two red
blocks, 4/6 (2/3) for four red blocks and 6/6 (1) for six red blocks
of the selected side. The combinations of reward probabilities in
single trial and the number of trials are shown in Table 1.

Prior to beginning the task, the participants were told that:
(1) Red and white blocks would appear on both sides of the
fixation cross [The subjects were not informed that the total
number of red blocks (4 or 8) was equal on both sides]; (2)
A coin was hidden in one of the 12 colored blocks; (3) The
task was to guess whether a coin was more likely to be hidden
under a red block on the left (“F” key) or right (“J” key) side,
and there was no need to judge a specific location for the coin;
(4) There was a “rule” determining the reward and that correct
identification and application of this rule would result in a
greater reimbursement at study completion. Participants were
not told beforehand the exact reimbursement amounts (correctly
identifying rule: 50RMB, failure to identify rule: 40RMB).

FIGURE 1 | The visual angles of stimulation.

TABLE 1 | The combinations of reward probabilities in a single trial and number
of trials.

Type of stimulus Number of trials
(Including left-right

balance)Reward probability of
the right column for
one side

Reward probability of
the right column for

the other side

0 1/3 120/540

0 2/3 90/540

1/3 2/3 240/540

1/3 1 90/540

The fixation point was presented with a random duration
between 900 and 1100 ms. Then the color blocks were presented
on two sides of the fixation cross. After the fixation point
flashes, participants made a choice by pressing the “F” or “J” key
with the left or right index finger respectively. The minimum
reaction time was 1000 ms and the maximum was 2700 ms.
The selected side would present for another 500 ms. After a
400—600 ms interval (black screen), feedback was presented for
500 ms. A triangle or a hexagon was represented to indicate
reward or no reward respectively, which was balanced between
subjects. There were three blocks, with 540 trials in total.
Block 1 and Block 3 were identical. In Block 2 (trial 181–
360), the participants were given additional feedback indicating
the exact location of the coin: in the reward trials, the coin
would appear under one of the red blocks in the right column
of the selected side; and in the non-reward trials, the coin
would appear under a white block in the right column of the
selected side. The exact location of coins was determined at
random. The procedure is shown in Figure 2. After finishing
the experiment, subjects completed a questionnaire assessing
rule identification success. In the questionnaire, subjects firstly
described the rule he/she had found in as much detail as

Frontiers in Psychology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 415

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00415 March 13, 2020 Time: 14:6 # 4

Feng et al. High Cognitive Flexibility Perform Better

FIGURE 2 | Schematic illustration of an exemplar trial in the coin-searching task.

possible, and then evaluated his/her own confidence in the rules
described before with one of six points (6-quite sure, 5-pretty
sure, 4-a little sure, 3-a little not sure, 2-pretty not sure, 1-
quite not sure).

The rule of the task is that the reward probability is
determined by the ratio of red blocks in the right column
of the chosen side. Choosing the side with a higher ratio of
red blocks in the right column (i.e., a larger number of red
blocks) will result in a higher likelihood of receiving a reward.
In Figure 2, the reward probability is 1/3 for the left side
and 2/3 for the right. Although there is a 1/3 probability of
receiving no-reward upon choosing the right side, the right side
is the correct choice since it has a higher chance of reward
than the left side.

To control for potential left/right dominance effects, half of
the participants were instructed to make their correct choice
according to the comparison of reward probability in the two left
columns of each side.

Data Analysis
For the number-letter task, participants were ranked according
to their switch cost. The first 27% (smaller switch cost) of the

participants were assigned to the high flexibility group, and the
last 27% were assigned to the low group.

In order to analyze the dynamic learning characteristics of
probabilistic rule tasks, a window analysis with 20 window
lengths and 1 step length was used. A stable performance
criterion of ≥ 80% correct choices (≥ 16 correct responses
within 20 successive trials) was considered successful task rule
learning (learning baseline) (Bellebaum and Daum, 2008). For
the subjects who learned the rule, the crossover point of the
dynamic learning curve and the learning baseline (as shown
in Figure 3B) was used as the key point to distinguish pre-
and post-learning stages. If the subjects did not find any rule
during the experiment, all responses were regarded as pre-
learning in the subsequent analysis; similarly, if a participant
learned the rule at the beginning of the experiment participant
responses were regarded as post-learning only. A mixed analysis
of variance (ANOVA) [2(high/low flexibility) × 4(probability
pair) × 2(learning stage)] was adopted for the accuracy and
latency scores of the coin-searching task. High/low cognitive
flexibility was a between-subjects factor, probability pair (0-
1/3, 0-2/3, 1/3-2/3, 1-1/3) and learning stage (pre-and post-
learning stage) were within-subjects factors. Statistical analysis
was performed using SPSS22.0.
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TABLE 2 | Switching cost (ms) for high and low cognitive flexibility groups.

Minimum Maximum M ± SD Lower27th percentile Upper 27th percentile

All participants (297) 137.5 2085.3 813.4 ± 389.2 525.3 1041.1

High cognitive flexibility group (39) 137.5 517.1 357.3 ± 109.9

Low cognitive flexibility group (37) 855.9 2069.6 1161.1 ± 285.5

RESULTS

Overview of the Data
High and low cognitive flexibility groups were created according
to switch cost scores on the number-letter task. Participants with
a score less than 525.3 ms were assigned to the high flexibility
group, and participants with a score greater than 1041.1 ms
were assigned to the low flexibility group (Table 2). 39 (15
males, age39 = 20.2 ± 2.0) high flexibility and 37 (5 males,
age37 = 19.3 ± 1.6) low flexibility participants were willing to
participate further. Given that this study comprises part of the
first author’s doctoral thesis, there is a difference between the total
number of participants and participants assigned to the high and
low cognitive flexibility groups.

27 out of 39 (69.2%) participants in the high flexibility group
and 12 out of 37 (44.4%) participants in the low flexibility group
identified the correct rule (Figure 4). Pearson Chi-square test
showed that the number of rule discoverers in the high group was
significantly higher than that in low flexibility group [χ2 = 10.3,
df = 1, p = 0.001].

In order to describe the dynamic learning process more
closely, we plotted the learning curves of each participant.
A typical rule learner and a non-learner are shown in Figure 3,
and the average learning curves of the four groups (High CF –
learner group: 27, and 3 out of 27 participants only had the post-
learning stage since they had found the right rule with a few trials;
high CF – non-learner group: 12; low CF – learner group: 12;
low CF – non-learner: 25) are shown in Figure 5. The average

learning point of all rule learners was 251 trials, which is the 71st

trial in block 2 (this block contains the specific feedback about
coin position). Both the high and low flexibility groups reached
their learning point in the second block (high CF group – 244,
low CF group – 257).

Further, the confidence scores for the described rules of
four groups (high CF – learner, high CF – non-learner, low
CF – learner, low CF – non-leaner) and two groups (learner,
non-learn)were compared. One-way analysis of variance for
four groups showed that there was significant difference among
four groups [F(3,72) = 3.108, p < 0.05], A Least-Squares
Difference (LSD) test revealed high CF – learners’ confidence
score [M ± SD = 4.6 ± 1.2] was significantly higher than that
of low CF – non-learners [M ± SD = 3.6 ± 1.4]. Independent
sample t-test showed the confidence score of learner group
(M = 4.4, SD = 1.1) was significantly higher than non-learner
group (M = 3.7, SD = 1.3) [t(76) = −2.761, p < 0.05, Cohen’s
d =−0.626].

Accuracy Analysis
As mentioned above, the participants received feedback
indicating reward or non-reward during the experiment.
A correct response was recorded when participants chose the
side with the greater number of red blocks in the right column (or
left column, n = 38). Timed-out and unresponsive trials (1.16%
of trials) were not included in the analysis. Accuracy scores
were analyzed (accuracy = number of correct responses/total
number of responses). A mixed measures ANOVA [2(high/low

FIGURE 3 | The learning curve of a typical rule non-learner (A) and a learner (B).
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FIGURE 4 | The number of rule discovers for high and low cognitive flexibility
groups.

flexibility) × 4(probability pair) × 2(learning stage)] for
participant accuracy scores showed a significant main effect of
learning stage [F(1,34) = 709.728, p < 0.001, η2

p = 0.954] and
probability pair [F(3,102) = 10.942, p < 0.001, η2

p = 0.243]. The
interaction between learning stage and group was marginally
significant [F(1,34) = 3.051, p = 0.090, η2

p = 0.082]. All other
effects were not significant. An analysis of simple effects of
high/low flexibility group and learning stage on accuracy
showed a significant difference between the two groups after
rule acquisition only [F(1,34) = 12.651, p < 0.05, η2

p = 0.271]
(Figure 6). In order to further investigate the differences
between groups after rule acquisition, a mixed measures
ANOVA [4(probability pair) × 2(high/low flexibility)] was
performed on the post-learning data. We observed a significant
main effect of probability pair [F(3,111) = 19.889, p < 0.001,
η2

p = 0.350] and group [F(1,37) = 11.662, p < 0.05, η2
p = 0.240].

However, the probability pair × high/low flexibility interaction
was not significant (Figure 7A). Next we merged trials from
the four probability pair conditions (0, 1/3; 0, 2/3; 1/3, 2/3;
1/3, 1) by averaging the accuracy of conditions with equal
probability difference values. Two probability difference
conditions were created: 1/3 probability difference (0, 1/3; 1/3,
2/3) and 2/3 probability difference (0, 2/3; 1/3, 1). A mixed
measures ANOVA [2(probability difference) × 2(high/low
flexibility)] showed a significant main effect of probability
difference [F(1,37) = 48.914, p < 0.001, η2

p = 0.569] and
high/low flexibility [F(1,37) = 11.662, p < 0.05, η2

p = 0.240].
A significant probability difference × high/low flexibility
interaction was also observed [F(1,37) = 4.875, p < 0.05,
η2

p = 0.116] (Figure 7B). Simple effects analysis showed
there was a significant difference between high/low flexibility
groups for the 1/3 probability difference [F(1,37) = 11.314,

FIGURE 5 | The average learning curves of the four groups.

FIGURE 6 | The accuracy of high and low CF groups during different learning
stages (∗p < 0.05).

p < 0.05, η2
p = 0.234], and a marginally significant

difference [F(1,37) = 3.482, p = 0.07, η2
p = 0.086] for the

2/3 probability difference.

Latency Analysis
After deleting timed-out and unresponsive trials (1.16% of trials),
a mixed measures ANOVA [2(learning stage) × 4(probability
pair) × 2(high/low flexibility)] showed a significant main
effect of learning stage [F(1,34) = 84.561, p < 0.001,
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FIGURE 7 | The accuracy of high and low CF groups during post-learning stage. (A) Accuracy in different probability pairs. (B) Accuracy in different probability
differences (∗p < 0.05).

FIGURE 8 | The latency of high and low cognitive flexibility groups for pre- and post-learning stages in different probability pairs (∗p < 0.05).

η2
p = 0.713] and probability pair [F(3,102) = 10.030, p < 0.001,

η2
p = 0.228]. A marginally significant main effect of group

was also observed [F(1,34) = 3.395, p = 0.074, η2
p = 0.091].

Significant interactions between learning stage and probability
pair [F(3,102) = 7.728, p < 0.001, η2

p = 0.185], and probability
pair and high/low flexibility were observed [F(3,102) = 3.203,
p < 0.05, η2

p = 0.086]. The three-way interaction was marginally
significant [F(3,102) = 2.181, p = 0.095, η2

p = 0.060] and the
interaction between learning stage and group was not significant
[F(1,34) = 0.001, p = 0.973, η2

p = 0.000]. Simple effects analysis of
the four probability pairs in the different learning stages showed

a significant difference among four probability pairs after rule
learning [F(3,32) = 6.752, p < 0.05, η2

p = 0.388]. A Least-Squares
Difference (LSD) test revealed significant differences between 0-
1/3 and 1/3-1 probability pairs (p < 0.05) during post-learning.
Simple effects analysis of the four probability pairs for the two
flexibility groups showed that only the low flexibility group had
significantly different latencies in the different probability pairs
[F(3,32) = 5.571, p < 0.05, η2

p = 0.343]. The latency of high
and low cognitive flexibility groups for pre- and post-learning
stages in different probability pairs was shown in Figure 8. In
order to further describe the reaction time differences within
the low-flexibility group, a 2 × 4 repeated measures ANOVA
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[2(learning stage) × 4(probability pair)] was conducted on the
data of the low group only. All main and interaction effects
were significant [learning stage: F(1,11) = 24.340, p < 0.001,
η2

p = 0.689; probability pair: F(3,33) = 6.244, p < 0.05,
η2

p = 0.362; learning stage × probability pair interaction:
F(3,33) = 3.623, p < 0.05, η2

p = 0.248]. Simple effects analysis
showed a marginally significant difference among probability
pairs after learning acquisition [F(3,9) = 3.250, p = 0.074,
η2

p = 0.520]. Specifically, there were (marginally) significant
differences between 0_1/3 and 0_2/3 (p = 0.089), 1/3_2/3 and
1/3_1 (p = 0.073), and 0_1/3 and 1/3_1 (p < 0.05). Additionally,
the data of the 1/3 and 2/3 probability differences after rule
acquisition were averaged respectively. A paired sample t-test
showed a significant difference between 1/3 (M = 498.20 ms,
SD = 176.54 ms) and 2/3 (M = 419.97 ms, SD = 135.34 ms)
probability differences [t(11) = 3.406, p < 0.05, Cohen’s
d = 0.24]. After successful rule learning, the low flexibility subjects
responded faster to stimuli with a higher probability difference.

DISCUSSION

In the present study, learners were grouped into high and
low cognitive flexibility groups based on their performance on
the number-letter switching task. The learning characteristics
of the two groups in a rule task with probabilistic cues were
preliminarily explored. Behavioral data analysis showed that
the differences between the two groups are mainly manifested
in the following three points: (1) The high CF group showed
a higher rate of rule acquisition, which partially verified our
hypothesis that high cognitive flexibility learners would show
more accurate rule acquisition during rule learning. However,
the two groups showed very similar average rule acquisition
points, the high flexibility group did not show faster rule
acquisition as predicted. (2) The high flexibility group showed
significantly higher accuracy than the low flexibility group after
rule acquisition. (3) After rule learning, the low-flexibility group
showed significantly different response latencies across the four
probabilistic pairing conditions, while the high-flexibility group
did not show such differences.

The rule acquisition speed of the high flexibility group was
not faster than that of the low flexibility group, which may be
related to the reward feedback provided in block 2. In order to
reduce task difficulty, the exact coin position was shown to the
learners during the second block (for reward feedback, the coin
was shown under the red block on the dominant side; for non-
reward feedback, the coin was shown under the white block).
This feedback aided the subjects in identifying the existence
of a “dominant side.” Combining this knowledge with the
relationship between reward and red blocks, the subjects could
identify the basis for response more easily. This design reduces
the difficulty of the task (Bellebaum and Daum, 2008) which has
been proved in previous study. However, we guess this design of
exact coin position in block 2 may have weakened the inter-group
differences of the high and low flexibility groups to some extent.
It is possible to find the correct basis of reaction from the specific
position of the coin for both high and low groups, and the average

learning curves in Figure 5 also supported this. The cue of exact
location of the coin provided participants with a shortcut to the
task, which was open to both groups.

Even if the involvement of block design made the task became
easier, the overall rule learning rate of the task in present study
was 51.3% [(21 + 12)/(39 + 37)]. That is, only half of the
participants identified the correct rule, which is lower compared
with previous studies using this paradigm [66.7% (18/27)]
(Bellebaum and Daum, 2008). This may be related to differences
in participant cognitive flexibility levels: in Bellebaum’s study the
level of flexibility was not a key factor of interest and so the overall
level of cognitive flexibility in their sample is unknown. In the
present study, 48.7% of subjects had low flexibility. This relatively
large proportion of low flexibility subjects may explain the overall
lower learning rate in our study.

After rule learning, the accuracy of the high flexibility group
was higher than that of the low flexibility group for the 1/3
and 2/3 probability differences. Especially for the 1/3 probability
difference, the advantage of the high flexibility group was
more pronounced. This finding may indicate that the high-
flexibility group used the response criterion correctly more
frequently and that this group may have a greater mastery
and confidence surrounding rule learning. Using the Iowa
Gambling task, Dong et al. (2016) showed that people with
high flexibility showed explicit knowledge of task rules whereas
the low group did not, which is consistent with the higher
response accuracy of the high flexibility group in this study.
Their research also showed that the lower P300 amplitude of the
low flexibility group in the stimulus selection evaluation stage
might be due to the lower cognitive and abstract generalization
abilities or working memory abilities of the low flexibility
group. The present findings extend the advantage of the high
cognitive flexibility group to probabilistic reward learning, that
is, the high flexibility group could distinguish stimuli with little
differences in probability more effectively at the later stage
of learning. However, what are the differences in the internal
learning processes that result in group differences? Müller et al.
(2014) suggests that differences in cognitive flexibility among
individuals is related to many factors, including gray matter
volume of the right anterior insula, the functional connection
between the bilateral anterior insula and the midcingulate
cortex/supplementary motor areas, and the degree of impulsivity
according to the Big Five personality traits. Different factors exert
unique effects on cognitive flexibility. Research across multiple
paradigms and using various methodologies (i.e., fMRI, EEG)
is needed to further understand the mechanisms underlying
cognitive flexibility.

There were significant differences among the probabilistic
pairs for the low flexibility group. The differences were mainly
due to faster responses to large probability differences (2/3) than
to small probability differences (1/3) in the post-learning stage.
However, the high flexibility group did not change significantly
with the change of probability pairs. For the high flexibility
group, although the number of red blocks on the left and
right sides changed constantly according to the settings of the
experimental conditions, high flexibility subjects may approach
all conditions by applying a unified ‘framework,’ or response

Frontiers in Psychology | www.frontiersin.org 8 March 2020 | Volume 11 | Article 415

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00415 March 13, 2020 Time: 14:6 # 9

Feng et al. High Cognitive Flexibility Perform Better

basis, with all conditions being parallel parts of that framework.
For the low flexibility learners, they may not have employed such
a framework. Their response basis may vary for each probability
condition even after entering the post-learning stage. This may
be evidenced by the low flexibility learners showing slower
response latencies for the 1/3 probability difference condition
that were not accompanied by accuracy levels comparable to that
of the 2/3 condition (accuracy is significantly lower in the 1/3
probability difference for the low flexibility group). It is perhaps
due to confusion about the response basis in the 1/3 probability
difference condition that the latency under this condition is
longer and the accuracy is lower. In fact, this condition appeared
to be particularly difficult for the low flexibility subjects. This
may be due to two reasons: (1) A greater number of learners
in the low group did not identify the correct response criteria
(rule) applicable to all conditions of the task during learning. (2)
Because the probability attributes of the rules were not indicated
before the task, and people generally tend to search for a simple
‘stimulus-response’ connection (i.e., correct response = reward),
it may be a greater challenge for the low cognitive flexibility group
to realize and accept a probability-based reward pattern.

Cognitive flexibility involves explicit and implicit forms of
processing (Fujino et al., 2017), and the flexible goal achievement
is not fully conscious (Custers and Aarts, 2010). Study has shown
that there are different areas of brain activity in individuals
with rationality-based explicit aspect of flexibility and experience-
based implicit aspect of flexibility, and there is strong connection
between them (Fujino et al., 2017). In present study, subjects were
required to describe the founded rule after the task. Most of the
subjects who had reached the acquisition level behaviorally could
describe the correct rule while others report being unclear or
not always following the same rule, not all the subjects who had
learned the rule could grasp the rule consciously. However, the
objective separation of implicit and explicit parts in probabilistic
rule learning was not yet realized. Meanwhile, for the confidence
of the rule, learner group had significant higher confidence score
than non-learner group. When subjects were further divided into
high CF – learner, high CF – non-learner, low CF – learner
and low CF – non-learner group, only high CF – learners’
confidence score was significantly higher than that of low CF –
non-learners. No matter high CF – learner vs. high CF – non-
learner group or low CF – learner vs. low CF – non-learner group,
the confidence scores were not significant. This was because
although some subjects had not learned the rules objectively, they
thought the rule had been found was correct and gave relatively
high confidence scores.

As mentioned before, the study has reached some conclusions
about differences between high and low CF learners in
probabilistic rule learning. And, there are some issues not taken
into account and deserve further attention. Firstly, the sample
was imbalanced by sex, and most of the subjects were mainly
women. The results of this study cannot exclude the effect of
potential gender differences. Secondly, it is possible that the
difference of two groups in acquisition speed of rule may be
disguised as the setting of the task, which depends on the use

of other probabilistic rule tasks for further investigation. Thirdly,
the differences between groups were in behavioral, post-learning
stage in detail. An unresolved issue concerns the question as to
what is the cause of the differences before the rule is acquired.
Further detailed analysis of the learning process using tools such
as ERP will be helpful. Finally, in present study, the artificial
80% response accuracy rate was used as the cut-off point for the
acquisition of rule, and the six-point scale also used to evaluate
the learners’ certainty of rule after the completion of the coin-
searching task. Whether there are some objective and implicit
indicators of rule acquisition in probabilistic rule learning is an
interesting point for further study.

CONCLUSION

This study preliminarily confirms that there are significant
differences in learning outcomes between high and low cognitive
flexibility learners in probabilistic rule learning. In short,
cognitive flexibility is associated with the performance after the
rule acquisition during the probabilistic rule task. The deep-
rooted reasons for these differences need to be further explored
by using other experimental techniques.
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