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Abstract: In myocardial ischemia, melatonin confers antiarrhythmic action, but its electrocardio-
graphic expression is unclear. We aimed to evaluate the effects of melatonin treatment on elec-
trocardiogram (ECG) parameters reflecting major arrhythmogenic factors and to test the associ-
ation of these parameters with ventricular fibrillation (VF) incidence. Myocardial ischemia was
induced by 40 min coronary artery occlusion in 25 anesthetized pigs. After induction of ischemia,
12 and 13 animals were given melatonin or placebo, respectively. Twelve-lead ECGs were recorded
and durations of QRS, QT, Tpeak-Tend intervals and extrasystolic burden were measured at base-
line and during occlusion. During ischemia, VF episodes clustered into early and delayed phases
(<10 and >20 min, respectively), and QRS duration was associated with VF incidence. QT interval and
extrasystolic burden did not differ between the groups. The Tpeak-Tend interval was progressively
prolonged, and the prolongation was less pronounced in the treated animals. QRS duration increased,
demonstrating two maxima (5–10 and 25 min, respectively). In the melatonin group, the earlier
maximum was blunted, and VF development in this period was prevented. Thus, acute melatonin
treatment prevented excessive prolongation of the QRS and Tpeak-Tend intervals in the porcine
myocardial infarction model, and QRS duration can be used for the assessment of antiarrhythmic
action of melatonin.

Keywords: electrocardiogram; extrasystolic burden; melatonin; myocardial ischemia; ventricular
fibrillation

1. Introduction

Cardiovascular diseases remain the leading cause of death globally. Prediction and
prevention of the sudden cardiac death due to ventricular fibrillation (VF) in myocardial
infarction remains a challenge, which drives research aimed at identification of novel
potential therapeutic methods for treatment of myocardial ischemia/reperfusion injury
and protection against ventricular arrhythmias complicating myocardial infarction [1–6].
Melatonin is a promising cardioprotective agent with pleiotropic effects [1–3,7]. It has been
showed to reduce ischemic and reperfusion damage in animal models [8–10] and in clinical
settings [11,12]. Although melatonin does not influence reentry triggers [13], it has been
reported to ameliorate the arrhythmogenic substrate. Specifically, it enhanced ventricular
activation [14,15], improved cell coupling [16], reduced adrenergic tone [17], and caused
a faster and more complete restoration of action potential duration at reperfusion [14,18].
Collectively, these effects contribute to alleviation of the main arrhythmogenic factors.

Melatonin has shown its potential to reduce coronary artery bypass grafting-related
cardiac injury and oxidative stress [19]. Although intravenous and intracoronary melatonin
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during primary percutaneous coronary intervention in patients with STEMI was not associ-
ated with a reduction in infarct size [20], a significant effect appeared in a post hoc analysis
for patients who presented early after symptom onset [11].

To date, the antiarrhythmic and electrophysiological effects of melatonin have been
assessed only in animal experimental models [13–15,18,21–25]. In our previous study,
we analyzed the intramyocardial electrograms in the experimental porcine model, and
melatonin demonstrated the prevention the early ischemic VF via reduction in conduction
delay in the border myocardium [15]. However, melatonin-induced changes in ECG
parameters, reflecting the risk of malignant ventricular arrhythmias, were beyond the scope
of that work [15] and have not been studied.

The electrocardiogram (ECG) is a widely used tool for dynamic monitoring of the my-
ocardial infarction patients. ECG markers of myocardial ischemia and electrocardiographic
manifestations of ventricular arrhythmias are well-known [26]. Several ECG markers,
including prolongation of QT, QRS, and Tpeak-Tend intervals, have been shown to be asso-
ciated with the risk of VF and sudden cardiac death [27–30]. ECG parameters indicating
severity of myocardial injury and arrhythmic propensity may be useful for the monitoring
of melatonin effects on the myocardium. A clinically relevant model of acute myocardial
infarction in pigs is expected to reveal changes in ECG parameters under the melatonin
treatment, which can be subsequently tested in patients with myocardial infarction as a
method of assessing control therapy effectiveness.

This study aimed to evaluate the effects of acute melatonin treatment on ECG parame-
ters reflecting major prerequisites of reentrant arrhythmias—dispersion of repolarization
(Tpeak-Tend interval), action potential duration (QT interval), conduction velocity (QRS
interval), and reentry triggers (ventricular extrasystoles), and to test their association with
VF incidence during coronary occlusion in the experimental porcine model.

2. Results
2.1. ECG Parameters

QRS interval was prolonged immediately from the onset of coronary occlusion in both
groups. QRS duration demonstrated two maxima at 5–10 min and 25 min. In the animals
given melatonin, the early phase of QRS prolongation was reduced. As a result, QRS
complex was longer in the control group as compared to the melatonin group at 5–10 min
of coronary occlusion and the difference leveled off after 20 min (Figure 1A).

QT interval was 359 ± 5 ms and 331 ± 5 ms in the control and melatonin groups at
baseline state, respectively, and did not show significant changes during coronary occlusion
(Figure 1B). Tpeak-Tend interval increased progressively during coronary occlusion from
69 ± 4 ms and 62 ± 3 ms, to maxima of 107 ± 5 ms and 89 ± 6 ms, in the control and
melatonin groups, respectively. However, the Tpeak-Tend interval was lower in the treated
animals and the differences between the groups became significant after 10 min of ischemia
(Figure 1C).

There were no differences between the groups in the RR interval duration and it did
not change during 40 min of ischemia in the groups of animals (Figure 1D).

2.2. Arrhythmias

VF developed in 9 cases out of 13 pigs in the control group and in 4 cases out of 12 pigs
in the melatonin group. VFs clustered into two subsets. Early episodes were observed
during the first 5 min of occlusion, whereas delayed episodes occurred later (17–40 min)
after a silent period (6–16 min). The observed early and delayed VFs corresponded to
phase 1A and phase 1B ischemic VF, respectively [31]. The 1A phase VFs were absent in
the melatonin-treated animals (0 out of 12 in melatonin group vs. 5 out of 13 in control
groups, p = 0.016). However, 1B phase VF incidence was similar in the melatonin-treated
(4 out of 12 animals) and control (4 out of 8 animals) groups (p = 0.456). Extrasystolic burden
(ESB) had two maxima at 10 and 25 min (Figure 2) and was significantly associated with
VF incidence in the logistic regression analysis (β = 1.092, 95%CI 1.027–1.160, p = 0.005).
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ESB tended to be lower in the melatonin group during the first 10 min of occlusion than in
the controls, although did not differ significantly between the groups (Figure 2). When the
associations of QRS and Tpeak-Tend intervals with VF incidence were tested, only QRS
duration was associated with VF (β = 1.071, 95%CI 1.025–1.118, p = 0.002). ROC curve
analysis (Figure 3) also demonstrated a significant association between QRS duration and
VF incidence (AUC 0.774, p = 0.001), and the optimal cut-off for QRS > 83 ms predicted VF
development with sensitivity of 0.77 and specificity of 0.73.
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VF development. Note that QRS duration does not exceed the cut-off point of 83 ms in the melato-
nin-treated animals; (B) QT interval; (C) Tpeak-Tend interval; (D) RR interval; *-p < 0.05 differences 
in respect to baseline state (0 min); §-p < 0.05 differences between control and melatonin groups. 
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Figure 1. Dynamics of ECG parameters during coronary occlusion in control and melatonin groups
(mean ± SEM). (A) QRS interval; note two peaks of QRS prolongation at 5–10th and 25th mins. In
the melatonin group, the early phase of QRS prolongation is blunted. 83 ms cut-off point of QRS
for VF development. Note that QRS duration does not exceed the cut-off point of 83 ms in the
melatonin-treated animals; (B) QT interval; (C) Tpeak-Tend interval; (D) RR interval; *-p < 0.05 differences
in respect to baseline state (0 min); §-p < 0.05 differences between control and melatonin groups.
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3. Discussion

The present study demonstrated that melatonin mitigated the ischemia-related pro-
longation of the QRS complex in the early period of ischemia and that this effect was
associated with prevention of the early ischemic VF. Melatonin has been reported to be
a promising cardioprotective and antiarrhythmic agent. Numerous experimental studies
using either isolated hearts, cardiomyocytes, or an in vivo model showed attenuation of
the ischemia/reperfusion-induced myocardial damage and reduction in the incidence
of arrhythmias [8,9,14,15,21]. The protective effects of melatonin involve its antioxidant
properties [32] as well as receptor-mediated actions [14,15].

Clinical studies showed that melatonin can ameliorate the degree of myocardial
ischemic-reperfusion injury related with coronary artery bypass grafting [19,33] and reduce
the infarct size after primary percutaneous coronary intervention in patients with STEMI and
provided with early melatonin administration [11,20,34]. The difference in melatonin treat-
ment outcomes depended on the time of application during ischemia or reperfusion [11,18,22]
and doses of melatonin [4]. In experimental studies, melatonin is applied in doses that are
significantly higher than those in clinical trials but still safe for usage in humans [35]. A
study of the effect of melatonin on ECG parameters in myocardial infarction is motivated
by the necessity to control the therapy effectiveness and estimate the melatonin influence
on ECG predictors of life-threatening arrhythmias. In pigs, myocardial infarction develops
approximately 7 times faster than in humans [36]. Therefore, the apparently short time of
melatonin application (1 min from the onset of occlusion) and phase 1A VF occurrence
(≤5 min from the onset of occlusion) in the present porcine model corresponds to a much
wider time window regarding humans.

In this study, we evaluated the effects of acute melatonin treatment on ECG parame-
ters reflecting major prerequisites of reentrant arrhythmias—dispersion of repolarization
(Tpeak-Tend interval), action potential duration or APD (QT interval), conduction velocity
(QRS interval) and reentry triggers (ventricular extrasystoles), and ESB. QRS duration has
been demonstrated to be associated with increased all-cause mortality, arrhythmia events,
and sudden cardiac death [28]. Although the clinical utility of the Tpeak-Tend interval
remains ambiguous [29,37], it has been proven to be a measure of dispersion of ventricular
repolarization [38,39]. Prolongation of the QT interval has long been associated with an
increased risk of ventricular arrhythmias [27]. The data of meta-analyses conducted in
recent decades suggest that QT interval may be an important risk factor for sudden cardiac
death [40].

QRS duration significantly prolongs under ischemic conditions, reflecting ischemia-
induced ventricular depolarization delay [30,41]. Melatonin treatment was associated with
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less pronounced QRS prolongation in the present study. In our previous study, we analyzed
the intramyocardial electrograms in this porcine model, and melatonin was observed to
reduce activation prolongation in the normal and border myocardium when administered
at the beginning of an ischemic episode [15]. The shorter myocardial activation times in the
melatonin-treated animals correspond to the blunted QRS widening in ECGs found in the
present study.

Although exact mechanisms of melatonin action could not be evaluated in this study,
several plausible explanations of the observed effects could be provided. We speculate
that melatonin may mitigate conduction slowing in the myocardium due to a decrease
in ischemia-related depolarization of resting membrane potential [14], which may be due
to enhanced IK1 current. This melatonin effect can, in turn, increase the availability of
sodium channels and improve propagation. Another probable mechanism of the melatonin
effect may be due to preserving connexin properties. Melatonin has been shown to enhance
connexin Cx43 expression [42]; however, the realization of this action may be limited by
the short period from melatonin infusion to the electrophysiological changes. Moreover, ac-
tivation of melatonin receptors can prevent connexin lateralization and dephosphorylation,
which was reported to be associated with reduction in QRS prolongation in hypokalemic
conditions [16].

Effects of melatonin on the repolarization ECG parameters appear to be complex.
Melatonin did not modify QT interval duration in our study. The absence of such effects
may be due to a weak melatonin influence on APD, if any [14,16,22]. By comparison,
melatonin prevented excessive lengthening of Tpeak-Tend interval. The global Tpeak-Tend
interval (measured from the earliest Tpeak to the latest Tend throughout all available leads)
reflects dispersion of repolarization of the entire ventricular myocardium. Dispersion of
repolarization depends not only on APD (which was hardly modified by melatonin) but
also on the activation time (which was demonstrated to be affected by melatonin). It is note-
worthy that in the study of intramyocardial electrophysiological changes in the pigs [15],
we did not find evidence of the acute melatonin effect on dispersion of repolarization,
which was probably due to the relatively small region where dispersion of repolarization
was measured. This region was limited by the number of intramural leads, which were
introduced in the ischemic area and adjacent myocardium, whereas melatonin may also
affect remote regions.

Collectively, our data show that melatonin has a prevalent effect on the parame-
ters of depolarization in the ischemic conditions. In the present study, among the tested
ECG indices, only QRS interval was associated with VF incidence. This fact was con-
firmed by studies performed by our group, which showed that myocardial activation
parameters strongly correlated with VF incidence in a porcine model of acute coronary oc-
clusion [30,41] and were modified by melatonin [14,15]. In the present study, QRS duration
in the melatonin-treated animals who did not develop phase 1A VF did not exceed the
cut-off point of 83 ms, which demonstrated the best sensitivity and specificity for associa-
tion with VF otherwise. Melatonin, however, did not affect the 1B phase VF, which was
probably due to the fact that it did not decrease the ESB, which was also associated with
VF incidence. These data correspond to our recent findings obtained in a rodent model of
ischemia-reperfusion, demonstrating the lack of melatonin effects on the trigger factors [13].
The triggers of reentry arrhythmias occurrence are related to sympathetic activation [43],
modification of connexin properties [44], and generation of early or delayed afterdepo-
larizations [45,46]. It may be speculated that the short-term melatonin treatment in the
present experimental model was insufficient to change properties of connexin, APD, or
demonstrate sympatholytic effect. Hence, melatonin could not reach the ischemic zone and
exclusively affected the perfused myocardium. A preventive melatonin treatment before
coronary occlusion may be supposed to lead to electrophysiological effects on ischemic
myocardium and have a more pronounced influence on the arrhythmogenic substrate
and triggers.
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4. Materials and Methods
4.1. Animal Preparations and Experimental Protocol

In the present investigation, we analyzed ECG data obtained in previous animal ex-
periments described elsewhere [15]. In brief, experiments were performed in 25 Landrace
pigs (30–45 kg body weight, both sexes). The study conformed to the ARRIVE guidelines
(PLoS Bio 8(6), e1000412, 2010), the Guide for the Care and Use of Laboratory Animals,
8th Edition published by the National Academies Press (USA) 2011, the guidelines from
Directive 2010/63/EU of the European Parliament on the protection of animals used for
scientific purposes, and was approved by the ethical committee of the Institute of Physiol-
ogy of the Komi Science Centre, Ural Branch of Russian Academy of Sciences (Russia). The
animals were anesthetized with telazol (TELAZOL 100, Zoetis Inc., Parsippany, NJ, USA,
10–15 mg/kg, i.m.) and propofol (Norbrook Laboratories Ltd., Newry, Northern Ireland,
UK, 1 mg/kg, i.v.), intubated, and mechanically ventilated.

The thorax was opened by a midsternal incision and the pericardium was cut for
further ligature placement around the left anterior descending coronary artery (LAD) just
distal to the first diagonal branch origin. Then, the ligature was tightened, and the animals
in the melatonin group (n = 12) were given melatonin (4 mg/kg, intravenously, Sigma-
Aldrich, St. Louis, MO, USA) at the first minute of ischemia. Control animals (n = 13)
received saline in the amount matching the volume of fluid given to the animals in the
intervention group. In the current study, melatonin was administered intravenously after
coronary artery occlusion simulating a situation when medication is given after the onset of
a heart attack. The chest was reclosed immediately after coronary occlusion. The duration
of coronary occlusion was 40 min. The animals were euthanized by potassium chloride
infusion under deep anesthesia at the end of the coronary occlusion period or immediately
after VF development.

4.2. ECG Recordings and Processing

Continuous 12-lead ECG monitoring (KT-07-3/12, INCART, St. Petersburg, Russia)
was performed with a sampling rate of 1028 Hz, dynamic range of ±310 mV and 19-bit
ADC, which provides an amplitude resolution of 1.18µV per bit. V1-V6 lead placement
corresponded to that in humans.

ECG measurements were performed in each lead at baseline, the 1st, 2.5th, 5th, and
10th, and then every 5 min until the end of 40 min occlusion. The following ECG parameters
were determined: RR interval (heart rate), QRS interval, QTp max and QTp min (the longest
and shortest intervals between the onset of the QRS complex and the peak of the T-wave in
all 12 leads, respectively), and QTe max and QTe min (the longest and shortest intervals
between the onset of the QRS complex and the end of the T-wave in all 12 leads). The
values from three consecutive beats were averaged.

Analysis of QRS interval was undertaken automatically with subsequent visual control.
Two independent investigators (A.S.T. and O.G.B.) performed manual computer-assisted
measurements of QTp, QTe, and RR intervals and in case of a difference of >20 ms in
each measurement, an agreement was obtained, or a third expert was recruited (A.O.O).
Tpeak-Tend interval was taken as the difference between the earliest T-peak (QTp min) and
the latest end of the T-wave (QTe max) from all 12 leads at each time point.

Ventricular arrhythmias were evaluated during the ischemia period. For each time-
point, starting from 1 min of occlusion, the number of ventricular extrasystoles (ESs) was
calculated. VT was considered as three or more consecutive premature ventricular beats.
Extrasystolic burden (ESB) was calculated for 1 min (the sum of ES for the time-point
period divided by the duration of the period in minutes). In cases of VF and VT occurrence,
the ESB was measured for the appropriate time excluding the period of VT and VF. The
VF episodes occurring during the first 10 min of ischemia were considered as early or 1A
phase VF, while VF cases after 20 min of coronary occlusion were referred to as delayed or
1B phase [31].
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4.3. Statistical Analysis

Statistical analysis was performed with SPSS package (IBM SPSS Statistics 23, Armonk,
North Castle, NY, USA). Data are expressed as mean ± SEM. Parametric tests were used
according to the Kolmogorov–Smirnov normality test. Two-way ANOVA with Dunnett
post hoc test was used for assessment of ischemia effects on electrophysiological parameters.
Comparisons between the control and melatonin groups of animals were undertaken with
Student’s t-test. Logistic regression analysis was used to assess the relationships between
ECG predictors and VT and VF incidence. The differences were considered significant
at p < 0.05.

5. Conclusions

The present study demonstrated that acute melatonin treatment prevented the ex-
cessive QRS and Tpeak-Tend prolongation in a clinically relevant experimental model of
myocardial infarction in pigs. From the tested ECG parameters, QRS duration can be used
for the assessment of antiarrhythmic action of melatonin.
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