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Abstract

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers.
Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic
systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying
either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an
essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division
and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the
biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and
controllability, which determine how the systems maintain their functions and performance under a broad range of random
internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic
regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model
biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the
models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing
disease, scleroderma, and then perform dynamic analysis of partial TGF-b pathway in both normal and scleroderma
fibroblasts stimulated by silica. We find that TGF-b pathway under perturbation of silica shows significant differences in
dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the
functions of cells and mechanism operative in disease development.
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Introduction

Identifying differentially expressed genes across distinct condi-

tions and clustering co-expressed genes into different functional

groups have been general approaches for unraveling molecular

mechanisms involved in disease pathogenesis [1]. Although these

approaches are valuable for looking at isolated events and their

correlations, they do not explain the behavior of a bio-system.

Another approach to deciphering pathogenesis of complex diseases

is system thinking. Human complex diseases are believed to arise

from malfunction of a specific biological system, rather than from

isolated events. It is increasingly recognized that biological systems as

a whole are not just the sum of their components but, rather, ever-

changing, complex, interacted and dynamic systems over time in

response to internal events and environmental stimuli [2]. Cellular

functions, such as growth, differentiation, division and apoptosis, and

biological phenomena of the entire organisms are not only

determined by steady-state characteristics of the biological systems,

but also determined by inherent dynamic properties of biological

systems. Dynamic properties include stability, transient-response,

observability and controllability, which determine how the systems

maintain their functions and performance under a broad range of

random internal and external perturbations. Similar to differential

expression of genes between normal and abnormal tissues, we can

also observe the differential dynamic properties of the biological

systems across different types of tissues and conditions. Dynamic

properties are correlated with the health status of individuals and are

of central importance for comprehensively understanding human

biological systems and ultimately complex diseases.

The dynamic behavior of most complex biological systems

emerges from the orchestrated activity of many components (e.g.

genes and proteins) that interact with each other to form

complicated biological networks involving gene regulation and

signal transduction [3]. The nodes and links together are referred

to as networks. This report is a study of gene regulatory network

that focuses on dynamic properties of a biological system.
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Investigation of dynamic properties of gene networks has three

major tasks: development of mathematic models, estimation of the

parameters in the models, and dynamic analysis. Mathematical

modeling is to use mathematical language to describe the dynamic

characteristics of a system [4]. In the past decade, various methods

have been developed to model gene networks, including Boolean

networks [5–7], differential equations and Bayesian networks [8–

11], and vector autoregressive model [12]. A very powerful

approach in modeling complex systems is the state-space approach

[13,14], which is a special subclass of dynamic Bayesian networks.

It provides a general framework for the application of dynamic

systems theory in the analysis of gene regulation. The state-space

approach is the core of modern systems theory. Application of the

state-space equations to modeling gene networks allows us to use a

large body of methodologies and tools in dynamic systems theory

for studying dynamics of gene networks. We use Kalman Filter

and Expectation-Maximization (EM) to estimate the parameters in

the model [15,16]. After state-space model of the gene networks is

established, the next task is to perform dynamic analysis for the

model in response to perturbation of internal and external stimuli.

Dynamic analysis attempts to extract inherent features of the

systems that capture and describe the behaviors of the system over

time under different operating conditions. The most important

operating principle of a dynamic system is its stability (i. e., the

ability to return to the original state or equilibrium state after

perturbation). The concept of stability can be easily illustrated by

the example of a marble sitting at the bowl. When the marble is in

the bottom of the bowl it is stable. No matter where the marble is

pushed, up the side of the bowl or from the bottom of the bowl,

after it is released, the marble will finally settle to the bottom of the

bowl at the original, stable equilibrium point. However, when the

marble is on the top of an inverted bowl, it is unstable. The marble

can remain on the top of the bowl only when the forces acting on

the marble on the top of the bowl is completely balanced. Any

slight perturbation in the marble’s steady state will destroy the

balance of the marble and cause it to move away from the top of

the bowl. This indicates that when the system is in unstable state

small perturbation can cause the system move away from the

steady-state [17]. The biological systems are in constant change

under the influences of genetic and environmental differences. The

ability of the systems to maintain the stable states after

perturbation and to resist diverse disturbance of the internal and

external forces is critical to the viability of living organisms and

plays a central role in biology [18,19]. Consequently, studying

stability of biological systems is of great importance for discovering

mechanism of complex diseases. Although there has been long

history to investigate the stability of biologic systems, to our

knowledge, very few studies have been reported on stability of

gene networks. Particularly, the relationship between stability of

gene networks and status of diseases has not been explored. One of

purpose of this paper is to use gene expression data to show that

similar to the example of the marble in the bowl, the gene

networks will also have stable and unstable states and that unstable

gene networks may be associated with the diseases.

Another important property of the dynamic systems is the

transient response to disturbance of internal noises and external

environmental forces, which measures how fast the systems

respond to the perturbation and characterizes damping and

oscillation properties of the process in response to the perturbation

[13]. Feedback close loops are the basis for maintaining normal

function of cells and organisms in the face of internal and external

perturbation [19,20]. The essential feature of the transient

response of a feedback closed-loop system largely depends on

the location of the closed-loop poles. A simple and popular method

for searching the poles of the closed-loop system is the root-locus

analysis that plots a curve of the location of the poles of a transfer

function of the feedback system over the range of the variable

(usually loop gain) to determine whether the system will become

unstable or oscillate [13]. The third important property of a

dynamic system is controllability. Controllability is defined as the

capacity of the system to move from undesired states to certain

desired final states in finite time through accessible inputs [21].

Germline or somatic mutations lead to the subsequent transcrip-

tional and translational alterations which will affect the phenotypes

of the cells and cause diseases. Therapeutic interventions such as

radiation, drug and gene therapy intend to alter gene expressions

from an undesired state or abnormal state to a desired or normal

state. Theoretic and practical analyses in modern control theory

demonstrate that there exist systems which we are not able to

change from undesired states to desired states. Now the question

arises: are all genetic networks controllable? Can always

therapeutic interventions change levels of gene expressions to

desired states? Controllability provides answers to these questions.

It provides a convenient and sufficient criterion for assessing

whether we can change undesired gene expression levels to desired

gene expression levels. Controllability describes the ability of

biological systems to adapt to the changes of environments and

deeply characterizes the internal structure of the system. The

controllability of the biological networks may reflect the severity of

the disease. Thus, the controllability is a fundamental design

principle of biological system.

In summary, stability, transient response, feedback and

controllability are basic dynamic properties of the biological

systems and are essential to the function of the cells and organisms.

As a proof of principle, in this report we investigate the differential

dynamic properties of TGF-b pathway in response to perturbation

of silica between normal and scleroderma fibroblasts. Scleroderma

or systemic sclerosis (SSc) is a typical complex disease in which

fibrosis occurs in multiple organs. Although etiopathogenesis is

unknown, both genetic and environmental factors are believed to

play critical roles. The major source of fibrosis in SSc is over

production of collagens from fibroblasts. Fibroblasts obtained from

SSc patients appeared to be genetically engineered to produce

more collagens and cytokines [22]. Silica exposure is an important

environmental risk factor in some cases, which has been found in

association with the development and perturbation of SSc [23].

Subcutaneous injections of silica have been reported to induce

sclerodermatous skin changes and activation of skin fibroblasts

[23]. Therefore, interactions between fibroblasts and silica may

represent a magnification of biological events occurring in SSc

and/or SSc-like disorders. The biological system of fibroblasts

reacting to silica exposure must involve complex regulations and

coordination of molecules to maintain their desirable status.

Although multiple experiments of the in vivo and the in vitro

response to silica particles have revealed that fibroblasts are

activated to produce more collagens and other extracellular matrix

(ECM) components [24–26], there is a lack of a mathematical

model to quantify interactions among the molecules, and to

predict dynamic behaviors of this bio-system. The purpose of this

report is to use gene expression responses of scleroderma and

normal fibroblasts exposed to the stimulus of silica as an example

to address the issue of differential dynamic properties of the

biological systems in response to perturbation by environments

across different conditions. To accomplish this, we first formulate a

regulatory network involving TGFBRII, CTGF, SPARC, CO-

L1A2, COL3A1 and TIMP3 as a biological system that is

associated with TGF-b signaling, and then apply mathematical

methods and computational algorithms from engineering and

Unstable SSc Fibroblast
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control theory [13] to perform dynamic analysis of this network for

both normal and scleroderma fibroblasts in response to perturba-

tion of environmental Stimuli. Based on the results of dynamic

network analysis, we examine the differential dynamic properties

of this network between normal and scleroderma fibroblasts and

reveal the relationship between the dynamic properties of gene

networks and the phenotypes of the cells.

Results
State Space Model of a gene network responding to
silica

Gene regulation involves a large number of biochemical events.

Although kinetic models can be developed for gene regulation

[12,27,28], they involve many kinetic parameters that are difficult

to be estimated from gene expression data with small number of

samples. An alternative model of gene expression is a state-space

model. It can effectively deal with time invariant or time varying,

linear or nonlinear complex systems with multiple inputs and

outputs. A state-space model includes three types of variables:

input variables, output variables and state variables. A key idea

behind state-space model is the concept of the state. The state of a

dynamic regulatory system is the smallest set of variables which are

referred to as state variables such that the current knowledge of

these variables together with the current and future knowledge of

the input variables (environments or controls) will completely

determine the behavior of the regulatory system. All state variables

are hypothetical variables. State variables represent biological

forces to regulate transcription of genes, which describe the

behavior of gene transcription. Since the mechanisms of gene

regulation in the network have still not been well understood, the

state variables that determine the regulation may be unknown and

hidden in the regulatory process, the concept of state variables is

very suitable for description of the regulatory process. The

expression levels of genes are output variables and can be

observed. The expression levels of the genes are determined by the

state variables, which describe states of regulation of the gene

expressions.

Previously, we found that the SPARC (secreted protein, acidic,

and rich in cysteine) gene is involved in the regulation of

extracellular matrix genes such as COL1A2, COL3A1, CTGF and

TIMP3, and this regulation is associated with activation of the

TGF-b pathway [29,30]. We used this partial TGF-b pathway as

an example to illustrate how to perform dynamic analysis of

biological networks. This regulatory network was modeled by

linear state-space equations defined as:

xkz1~AxkzBukzwk

yk~CxkzDukzvk

ð1Þ

where xk is the vector of state variables that describes the behavior

of gene regulation, but are hidden; yk is the output vector whose

elements denote the measured gene expression levels; uk is the

input vector; w and v are noises assumed to be white Gaussian

noise with zero means and variance Q and R respectively, and they

are independent of each other. The inputs can be any external

stimuli that influence gene regulation, things like environmental

forces, drugs, proteins, RNAs, or the effects from the genes outside

the model. Matrix A is called state transition matrix whose

elements denote the regulatory strength of one gene on another, B

is input to state matrix whose elements quantify the regulatory

effects of the input variables on the genes of the network, C is state

to output matrix whose elements quantify the dependence of the

measured gene expression levels on the hidden regulatory states,

and D is input to output matrix whose elements measures the

strength of dependence of the observed gene expression levels on

the inputs. Matrices A, B, C, D and variance matrices Q and R

together make up the parameters of the dynamical system for gene

regulatory networks.

We performed experiments on cultured human fibroblasts. We

have 5 pairs each of normal and SSc patients’ samples. For each

sample, we have two replications were perturbed by Silicon. The

transcript levels of six genes: SPARC, CTGF, COL1A2, COL3A1,

TIMP3 and TGFBRII were measured daily from 1 to 5 days. Let x1,

x2, x3, x4 and x5 be the expression levels of the SPARC, TIMP3,

COL3A1, CTGF and COL1A2, respectively. Let u1 and u2 be the

expression of the TGFBRII [31] and 10 mg silica. The estimated

state-space model for the normal cell line and SSc are respectively,

given by

x1 kz1ð Þ~0:84603x1 kð Þz0:03207u1 kð Þ{0:09050u2

x2 kz1ð Þ~0:32847x2 kð Þ{0:14840u1 kð Þz1:41049u2

x3 kz1ð Þ~5:21569x1 kð Þz0:23997x3 kð Þ{1:39180x4 kð Þ{

0:94591u2

x4 kz1ð Þ~1:27852x1 kð Þ{0:24027x4 kð Þz0:19823u2

x5 kz1ð Þ~0:47401x1 kð Þz0:01406x4 kð Þz0:66237x5 kð Þ{

0:21877u2

and

x1 kz1ð Þ~0:63654x1 kð Þz0:25128u1 kð Þz0:49013u2

x2 kz1ð Þ~0:78374x2 kð Þz0:07741u1 kð Þz0:11173u2

x3 kz1ð Þ~{0:61896x1 kð Þz1:106627x3 kð Þz0:44131x4 kð Þz

0:25307u2

x4 kz1ð Þ~{0:06644x1 kð Þz1:00586x4 kð Þz0:00700u2

x5 kz1ð Þ~{0:82173x1 kð Þz0:28944x4 kð Þz1:46736x5 kð Þz

0:26477u2

A graph will be used to represent a genetic network. The nodes

in the graph will represent the variables that correspond to the

expressions of the genes. The edge between two nodes denotes that

two variables are dependent. The number next to edges is the

elements of the parameter matrices A, B, C and D in the state-

space model. The estimated state-space model is shown in Figure 1

where the numbers next to the edges are the coefficients in the

above equation for the normal (black color) and SSc (red color)

fibroblasts, respectively. We observe differential regulation of

SPRAC on CTGF, COL3A1 and COL1A2, and CTGF on COL3A1

between the SSc and normal fibroblasts. Figure 1 and above

equations also demonstrate that the effects of silica (environmental

factor) on TIMP3, COL3A1 and COL1A2 between the SSc and

normal fibroblasts are different. Their coefficients in the state-

space equations for the normal fibroblasts are negative, but

become positive for the SSc fibroblasts. This implies that

perturbation of scleroderma fibroblasts by silica will increase the

expressions of COL1A2 and COL3A1. This statement can be

supported by early observation that excessive amounts of various

collagens mainly type I and type III collagens were generated in

the fibroblasts from affected scleroderma skin [32–34].

Unstable SSc Fibroblast
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Stability
The most important dynamic property of gene regulatory

networks is concerned with stability. Stability is an organizing

principle of gene regulatory networks [35–37]. When gene

regulatory networks are perturbed, the expressions of the genes

in the network will be changed in response to perturbation of

environments. There are two possibilities. One possibility is that

although the expressions of the genes will be changed after

perturbation of environments, they will finally return to their

original values or stay at other equilibrium values forever. In this

case, regulatory networks will maintain their steady states under

perturbation of environments and hence will function normally.

Another possibility is that the expressions of the genes after

perturbation of the environments will diverge from their original

states and never stay at any steady states, which will finally lead to

damage and malfunction of the gene regulatory network.

Formally, a dynamic system is called stable if their state variables

return to, or towards their original states or equilibrium states

following internal and external perturbations [38]. The stability of

the system is a property of the system itself. One of the methods for

assessing the stability of the linear dynamic systems is to analyze

eigenvalues of the state transition matrix A of the linear dynamic

systems. For a discrete linear system, if the norm of all eigenvalues

of the transition matrix A is less than 1 then the system is stable.

The eigenvalues of the transition matrix A of the state-space

model for silica responding gene network for normal and SSc

fibroblasts are given in Table 1. It indicates that all eigenvalues of

the transition matrix A for the normal fibroblasts are less than 1,

but for SSc fibroblasts, three eigenvalues whose absolute values are

larger than 1. Therefore, the examined network for normal

fibroblasts after perturbation of silica stimulation are relatively

stable, but for SSc fibroblasts are unstable. Unstable gene

regulatory or signal transduction networks will lead to erratic

changes and malfunction of the whole biological system, which

may be the case in the SSc fibroblasts that are associated with

dramatic and irregular changes of COL1A2 and COL3A1.

Transient-Response Analysis of Genetic Networks
The dynamic behavior of a system is encoded in the temporal

evolution of its states. Cell functions are essentially temporary

processes and largely determined by the dynamic properties of the

biological systems in the cells. Transient and steady state responses

are two steps of the response of a gene network to perturbation of

external environments. The transient response of the gene network

to perturbation of environments is defined as rapid changes of the

expressions of the genes in the network over time which go from

their initial states to final states after perturbation of external input

[13]. Steady-state response studies the system behavior at infinite

time. The transient response of the dynamic systems is also a

property of the system itself. The transient response of the gene

network to environmental changes characterizes the dynamical

process of the gene regulation networks in response to perturba-

tion of environments. It can be used to study damped vibration

behavior of the gene network and reveal how fast the gene

networks respond to perturbation of environments and how

accurately the networks can finally achieve the designed steady-

Figure 1. State-space model for the regulatory gene network responding to silica stimulation in cultured human fibroblasts. The
numbers next to the edges are the coefficients in the state-space equations for the normal (black color) and SSc (red color) fibroblasts, respectively.
The numbers in the boxes denote the mean expression values of the genes in normal (black color) and SSc (red color) fibroblasts.
doi:10.1371/journal.pone.0001693.g001

Table 1. Eigenvalues of the transition matrix A of the state-
space model for the genes in a regulatory network
responding to silica in cultured human normal and SSc
fibroblasts.

Normal fibroblasts SSc fibroblasts

0.23997 1.10627

0.66237 1.46736

20.24207 1.00586

0.84603 0.63654

0.32847 0.78374

doi:10.1371/journal.pone.0001693.t001

Unstable SSc Fibroblast
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state values. In the previous section we studied stability of the

whole gene network, but we did not investigate the stability of the

expression of the individual gene in the network. Since the transient

response analysis of the gene network will study the dynamic process

of the expression of the individual gene, it can be used to assess

whether the expression of individual gene after perturbation of

environment is stable or unstable. Although many transient response

analyses is concerned with delay time, rise time, peak time,

maximum overshoot and setting time, in this report, our transient

response analysis mainly focuses on investigation of the stability,

divergence or oscillation of individual gene expression.

Popular methods for investigation of the transient responses of

the dynamic systems are to study the time domain characteristics

of the system under perturbation of the external signals. The

transient response of the dynamic system depends on the input

signal. Different input signal will lead to the different transient

response of the system. There are numerous types of signal in

practice. For the convenience of analysis and comparison, we

consider two types of signals: (i) unit-step signal and (ii) unit-

impulse signal as shown in the Figure 2.

For discrete dynamic systems, the transient response of the

system is obtained by using the inverse z transform method [13].

To investigate the transient response of the genes in the network

responding to silica, the silica was taken as input signal. Figures 3A

and 3B show transient response of genes to a unit step

perturbation of silica for normal and SSc fibroblasts, respectively.

Figures 3C and 3D show transient response of genes to an impulse

perturbation of silica for normal and SSc fibroblasts, respectively.

Figures 3A, 3B, 3C and 3D demonstrate that the transient

response of SPARC, TIMP3, CTGF to the perturbation of silica

between the normal and SSc fibroblasts are similar, but the

transient response of COL1A2 and COL3A1 to the perturbation of

the silica between the normal and the SSc fibroblasts were

dramatically different. The expressions of COL1A2 and COL3A1

after perturbation of the silica in normal fibroblasts quickly reach

the steady states. However, the expressions of COL1A2 and

COL3A1 in the SSc fibroblasts after perturbation of silica were

unstable and will never reach the steady-state values. This

phenomenon suggests that dynamic responses of the expressions

Figure 2. Unit step signal and impulse signal.
doi:10.1371/journal.pone.0001693.g002

Figure 3. Step response and impulse response of the genes to perturbation of silica in cultured fibroblasts.
doi:10.1371/journal.pone.0001693.g003

Unstable SSc Fibroblast
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of COL1A2 and COL3A1 in the SSc fibroblasts to environmental

stimuli are irregular.

Root-Locus Analysis
The performance of the gene networks under the design for

stability, time response and reliability can be studied by analysis of

their corresponding closed-loop system. The basic features of the

stability and transient response of the closed-loop system are

largely determined by the location of the closed-loop poles, which

in turn is related to the value of the loop gain [13]. The roots of the

characteristic equation of a system which is derived from the

denominator of transfer function of the closed-loop system are the

system’s closed-loop poles. In general, the poles are complex

variable and can be represented on the complex plane which is

called s-plane. (Negative real) poles on the left hand side of the

complex plane cause the response to decrease, while poles on the

right hand side cause it to increase. Consequently, if the poles of

the closed-loop system lie in the left half s plane, the system is

stable. If any of these poles lies in the right-hand side of the s-

plane, then the system is unstable. In this case, with increasing

time, the transient response of the system will increase monoton-

ically or oscillate with increasing magnitude [13]. As the loop gain

changes the location of the closed-loop, poles will also changes. A

root locus is defined as the locus of the poles of a transfer function

of a closed-loop as a specific parameter (generally, loop gain) is

varied from zero to infinity. The locus of the poles will be plotted

on the complex plane (s-plane) as the system gain is varied on some

interval. Since the location of the poles will change as the gain

changes a system that is stable for gain K1 may become unstable

for a different gain K2. We often observe that the root-locus will

move from the left-hand of the s-plane to the right-hand of the s-

plane, which implies that stable system becomes unstable as the

system gain changes from one region to another region.

The root-locus plots the locations of the poles of the closed-loop

single input and single output system (SISO) as the system gain

varies. We use the symbol ‘‘x’’ to denote the poles of the closed-

loop SISO and the symbol circle ‘‘o’’ to denote the zeros of the

open-loop SISO. If the pole and zero coincide then the symbol :

will be used to represent this situation. To study the dynamic

behavior of the five genes to respond to the perturbation of silica,

we consider the SISO system which takes one of the five genes as

the output and silica as the input.

Figures 4A, 4B, 4C, 4D and 4E, and Figures 5A, 5B, 5C, 5D

and 5E show the root-locus plot of SPARC, TIMP3, COL3A1,

CTGF, and COL1A2 with silica as the input in the normal and SSc

fibroblasts, respectively. We noted that three remarkable features

emerged from two panels of the Figures. First, all poles of the

closed-loop SISO systems for five genes in the normal cell lines lie

in the left hand side of the s-plane, but their corresponding poles in

the SSc fibroblasts lie in the right hand side of the s-plane. This

indicates that the expressions of all five genes to respond to the

disturbance of the environmental silica in normal fibroblasts are

stable, but become unstable in the SSc fibroblasts, which confirms

the previous stability assessment. Second, although all poles of the

closed-loop SISO for five genes in the normal fibroblasts are on

the left hand side of the s-plane, the SPARC, COL3A1, CTGF and

COL1A2, each has at least one branch of the root-locus plot which

will enter the right-hand side of the s-plane. This indicates that the

system becomes unstable as the increasing system gain reaches the

some range. This may imply that the regulations of these four

genes are sensitive to the changes of the system. Third, the poles

and zeros of the SISO on the right hand sides of the s-plane for the

Figure 4. Root-locus of gene expression in normal fibroblasts.
doi:10.1371/journal.pone.0001693.g004

Unstable SSc Fibroblast

PLoS ONE | www.plosone.org 6 February 2008 | Volume 3 | Issue 2 | e1693



SPARC and TIMP3 in the SSc fibroblasts have the same location,

i.e., the poles and zeros are cancelled out. This shows that the

expressions of CTGF, COL1A2 and COL3A1 in response to the

perturbation of the silica are more unstable than that of SPARC

and TIMP3. Differential regulations of CTGF, COL1A2 and

COL3A1 in response to the perturbation of silica between the

normal and SSc fibroblasts may imply that the interactions of

these three genes with the silica may be involved in the

pathogenesis of the SSc. Forth, these Figures also demonstrate

that when normal fibroblasts were changed to SSc fibroblasts, the

root-locus will be moved toward the right-half s-plane. Classical

control theory indicates that moving of the root-locus toward the

right-half s-plane will reduce stability and increase response time

of the system.

Controllability
Changes in expression levels of genes and proteins in the

regulatory networks will lead to status transition of the cells from

normal cells to abnormal cells. One way to correct molecular

changes is to transform cells from an undesirable state to a

desirable one by altering gene or protein expressions. Now the

question is whether we can use potentially therapeutic interven-

tions to change gene or protein expressions from undesired states

to desired states. This important issue can be addressed by

examining the controllability of gene regulatory networks.

The fundamental controllability in gene regulation is associated

with two questions. The first question is whether an input (therapy)

can be found such that the system states can be driven from the

undesired initial value to the desired values in a given time

interval. The second question is how difficult it may be to change

the system from undesired states to the desired states if the system

is controllable.

The system (regulatory network) is called controllable, if for any

state of the system, there exists a finite time and an admissible

control function such that the system can achieve the desired state

transition. In other words, the state controllability indicates that

we can find an input to change the states from any initial value to

any final value within some finite time. The controllability

provides a binary information about whether the system is

controllable or not, but it does not provide a quantitative measure

to quantify the amount of control effort needed to accomplish the

control task. It has been recognized that to get into insides of

controllability of the system it is indispensible to define a quantity

to measure how the system is controllable. In other words, we need

to develop a measure to evaluate the amount of control efforts

required to change the system from the initial state to the desired

state [39]. The test for controllability is that the controllability

matrix (see methods) has full rank, i.e., the rank of the

controllability matrix is equal to the number of the state variables

of the system. To assess how difficult to achieve control goal, we

calculated the conditional number of the controllability matrix

which measures the degree of difficulty to change the state of the

system (or gene expression in our problem) by the external forces

such as treatments. The larger the conditional number of

controllability matrix, the more control efforts required to

accomplish control task.

The rank of controllability matrix of the system in the state-

space model of this partial TGF-b pathway under perturbation of

silica in both normal and SSc fibroblasts is equal to 5 which is the

number of the state variables in the model. Thus, TGF-b pathway

is controllable in both normal and SSc fibroblasts. However, the

conditional numbers of the controllability matrix of the system for

normal and SSc fibroblasts were 80 and 398, respectively, which

showed that the conditional number of the controllability matrix

Figure 5. Root-locus of gene expression in SSc fibroblasts.
doi:10.1371/journal.pone.0001693.g005
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for the SSc fibroblasts is much larger than that for normal

fibroblasts. Therefore, much more control efforts are required to

change gene expressions to desired levels for the SSc fibroblasts

than that for the normal fibroblasts. This implies that the

controllability of this network between the normal and SSc

fibroblasts are differentiable.

Discussion

In the past, large efforts have been devoted to studying the

function of individual genes and static properties of biological

pathways. However, the molecular concentrations and activities in

living organisms are in constant change as a result of their

interactions. The pathogenesis of disease involves evolution and

temporal process. The functions of the cells, tissues and entire

organisms are not only due to the steady states of the biological

pathways, but also due to the dynamic interactions of biological

pathways with the external environments. Although investigation

of the function of individual genes, proteins and steady-states of

the biological pathways is still valuable, it is time to devote more

efforts and resources to study dynamic behaviors and properties of

the biological pathways. It is dynamic properties that play a central

role in giving rise to the function of cells and organisms [40].

To exemplify this principle, we studied the differential dynamic

properties of a partial TGF-b signaling network under perturba-

tion of silica between normal and SSc fibroblasts. We took this

network as a dynamic system and performed dynamic system

analysis. Investigation of differential dynamics of this network

between the normal and SSc fibroblasts consisted of three steps.

The first step was to use the EM algorithm and Kalman filter to

estimate the parameters in the state-space model of this TGF-b
signaling network. The second step was to study stability, the

transient response and controllability of the system, and to perform

root-locus analysis based on the identified state-space model of the

gene network. The third step was to assess whether the dynamic

properties of this network between the normal and SSc fibroblasts

were different.

Our study in dynamic analysis of these gene regulations

addressed several remarkable issues. First, the stability analysis

may be used as a powerful tool for identifying biological pathways

that are associated with the diseases. The stability is one of

systems-level principles underlying complex biological pathways

[41]. The stability of the system is the ability of the system to

return to the equilibrium states after perturbation of the internal

and external stimuli. The requirements for stable biological

pathways are necessary conditions for the normal operations of

the cells and organisms. The unstable biological pathway will

inevitably lead to the malfunction of cells or even death of the

living organism. Our results showed that a gene network in

responding to perturbation of silica is relatively stable in the

normal fibroblasts, but unstable in the SSc fibroblasts. This

assessment of differential stability of biological pathway between

normal and abnormal cells represents a novel approach in study

associations of biological pathways with human diseases.

Second, root-locus analysis can provide valuable information for

finding genes that show strong differential dynamics between

normal and abnormal cells. Not all genes in the unstable pathway

show unstable dynamics. Expressions of some genes in the

unstable pathway may be stable themselves. Our task is to

distinguish the genes that show stable expressions from those show

unstable expressions in the unstable pathway. The state transition

matrix of the state-space model of the studied gene network in the

SSc fibroblasts has three poles that were in the right hand sides of

the complex s-plane (Figures 3 and 4), which implies that this

network in the SSc fibroblasts is unstable. The zeros of the genes of

SPARC and TIMP3 in SISO system coincided with three poles.

Therefore, although this gene network was unstable in the SSc

fibroblasts, the expressions of the genes of SPARC and TIMP3

were stable. At least one branch of the root locus plots of other

three genes (CTGF, COL1A2 and COL3A1) were on the right hand

sides of the s-plane. This indicates that the responses of the genes

of CTGF, COL1A2 and COL3A1 to the perturbation of silica in

the SSc fibroblasts were unstable no matter how the system gains

were changed. These findings can be confirmed by the transient

response analysis of the genes. The poles and zeros of

characteristic equations of the SISO systems of the genes in

response to the perturbation of internal and external signals are

intrinsic properties of the gene regulations and are largely not

affected by the expressions of other genes. Unlike the concept of

differential expressions of the genes where the differentially

expressed genes may be just consequences of differential

expressions of other genes lying up in the pathway, the differential

stability of the response of the genes to the perturbation of the

signal between normal and abnormal tissues may be involved in

the pathogenesis of the diseases. Therefore, the genes showing

differential stability are supposed to be associated with the diseases.

The root-locus analysis and the transient response will provide

new tools for identifying the genes that are associated with the

diseases. The differential stability and the transient response of the

gene in the response to perturbation of the environment between

the normal and abnormal cells characterize the interaction

between the genes and environments. Therefore, the root-locus

analysis and the transient response analysis also provide a powerful

tool for detection of the gene-environment interaction.

Third, the controllability of biological pathway is an important

property of the system. Germline or somatic mutations lead to the

subsequent transcriptional and translational alterations which will

finally cause diseases. Therapeutic interventions such as radiation,

drug and gene therapy are intended to alter gene expressions from

an undesired state to a desired or normal state. Gene regulation is

a complex biological system. Theoretic and practical analyses in

modern control theory demonstrate that there exist systems which

we are not able (or find difficult) to change from undesired states to

desired states of gene regulation. Now the question arises: are all

biological pathways controllable? Are degrees of controllability of

the biological pathways different between normal and abnormal

Cells? The controllability measures the ability to move a system

around in its entire state space using certain admissible

intervention. In this report, we developed a conditional number

of controllability matrix, to measure the degree of controllability of

the system. Our results show that although a gene expression

network responding to silica in both normal and SSc fibroblasts is

controllable, the degree of controllability of this regulatory

network between the normal and SSc fibroblasts is different. This

regulatory network in the SSc fibroblasts has a low degree of

controllability. In other words, adjustment of regulation of genes in

the network by external intervention in the SSc fibroblasts is more

difficult than that in the normal fibroblasts. We suspect that the

degree of controllability is correlated with the severity of the

diseases. When the diseases are at the initial stages, the biological

systems are easy to move from abnormal states to the normal

states. The degree of controllability of the system will provide

valuable information on the curability of the diseases. Although in

the past a number of authors have studied dynamic properties of

biological networks, their studies have mainly used kinetic data or

artificial data and nonlinear models [28,35–37]. Due to limitation

of experiments, many kinetic parameters in the genetic regulation

have not been available in practice. Large-scale kinetic analysis of
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biological networks is infeasible. Here we use gene expressions and

linear models to study dynamic properties of genetic networks. The

results of this report showed that the dynamic properties of genetic

network between normal and abnormal cells were differential.

In summary, dynamic properties of the biological systems are

intrinsic system properties. The gene expressions are the phenotype

of the cells. Their changes are governed by the hidden dynamic

properties of the gene regulatory systems. It is dynamic properties

that determine the phenotypes of the cells. This report represents a

paradigm shift from the studies of individual components and static

properties of the system to the studies of dynamic properties of the

system consisting of individual components.

Although the preliminary results are appealing, they suffer from

several limitations. First, sample sizes were small. Small sample

size will limit the accuracy of the state-space models for biological

pathways, which in turn affect estimation of dynamic properties of

the systems. No much attention in control theory has been paid to

investigation of impact of uncertainty inherent in dynamic systems

on dynamic properties of the system. We will treat biological

networks as stochastic dynamic system and study dynamic

properties of stochastic dynamic systems in the future. Second,

the quantities to characterize the dynamic properties are

essentially random variables. Their distributions are unknown.

We have not developed statistical methods to test significant

differences in the dynamic properties of the pathways between the

normal and abnormal cells. Third, the relations between the

dynamic properties of the genes and their genotypes have not been

investigated. Fourth, we have not performed large-scale dynamic

analysis of the biological pathways. More theoretical development

and large-scale real data analysis for the dynamic properties of the

biological pathways are urgently needed.

Methods
Dermal fibroblast cultures

Skin biopsies of clinically uninvolved skin (3 mm punch) were

obtained from 5 patients with SSc and 5 normal controls after

informed consent was granted. All five patients fulfilled American

College of Rheumatology criteria for SSc [42]. All five had diffuse

skin involvement as defined by LeRoy et al [43], and disease

duration of less than five years. Skin biopsies from five normal

controls with no history of autoimmune diseases undergoing

dermatologic surgery were matched for age (+/2 5 years) and sex.

The study was approved by the Committee for the Protection of

Human Subjects at University of Texas Health Science Center at

Houston.

The skin sample was transported in Dulbecco’s Modified

Essential Media (DMEM) with 10% fetal calf serum (FCS)

(supplemented with an antibiotic and antimycotic) for processing

the same day. The tissue sample was washed in 70% ethanol, PBS,

and DMEM with 10% FCS. Cultured fibroblast cell strains were

established by mincing tissues and placing them into 60 mm

culture dishes secured by glass cover slips. The primary cultures

were maintained in DMEM with 10% FCS and supplemented

with antibiotic and antimycotic.

Silica stimulation on fibroblasts
The 5th passage of fibroblast strains were plated at a density of

2.56105 cells in a 35 mm dish and grown until 80% confluence.

Culture media then were replaced with FCS–free DMEM

containing different doses (1, 5, 10, 25 and 50 mM) of silica

particles obtained from Sigma-Aldrich, St Louis, MO. After 24-

hour culture at this condition, the fibroblasts were harvested for

extraction of RNA. The RNAs were examined with RT-PCR for

gene expression of COL1A2, COL3A1, TGFBRII, CTGF, SPARC

and TIMP3. The results from this dose-response assay provided an

optimal dose (10 mM) in a time-dependent exposure for fibro-

blasts, in which 24-, 48-, 72-, 96- and 120-hour exposure of silica

were assayed in cultured fibroblasts.

Quantitative RT-PCR
Quantitative real time RT-PCR was performed using an ABI

7900 sequence detector (Applied Biosystems, Foster City, CA).

The specific primers and probes for each gene were purchased

through Assays-on-Demand from Applied Biosystems. As de-

scribed previously (19), total RNA from each sample was extracted

from cultured fibroblasts described above using TRIzol reagent

(Invitrogen Life Technology) and treated with Dnase I (Ambion,

Austin, TX). cDNA was synthesized using Superscript II reverse

transcriptase (Invitrogen Life Technology). Synthesized cDNAs

were mixed with primers/probes in the 26 Taqman universal

PCR buffer, and then assayed on an ABI 7900. The data obtained

from assays were analyzed with SDS 2.1 software (Applied

Biosystems). The amount of total RNA in each sample was

normalized with 18 S rRNA transcript levels.

State-Space Model and Parameter Estimation
A biological pathway is taken as a dynamic system. The biological

system is modeled by linear state-space equations defined as

xkz1~AxkzBukzwk

yk~CxkzDukzvk

ð2Þ

where xk is a vector of state variables at the time k that determine the

dynamics of the regulation and unobserved, uk is a vector of input

variables at the time k such as drugs, environmental forces, and other

state variables that lie outside the model, yk are observed variables at

the time , for example, the gene expressions, A, B, C, and D are

matrices called state matrix, input matrix, output matrix and direct

transmission matrix, respectively, w and v are noises assumed to be

white Gaussian noise with zero means and variance Q and R

respectively, and they are independent of each other.

A fundamental and widely applicable parameter estimation

method is Maximum Likelihood (ML) method that maximizes the

likelihood of the observed data with respect to parameters.

However, the state-space models involve unobserved state

variables that are unavailable. It makes calculation of the

likelihood in the setting of state-space models very difficult. To

solve this problem, we use expectation-maximization (EM)

Algorithm that is widely used iterative parameter estimation

method [15]. Specifically, we first assume that the state variables

are available and then calculate the likelihood of both the observed

data and hidden state variables which will be maximized with

respect to the parameters in the models. After the estimated

parameters are in our hands we then specify new state space

models using the estimated parameters.

For the convenience of presentation, equation (2) can be

rewritten as

jk~Czkzgk ð3Þ

where Zk~
xk

uk

� �
, jk~

xkz1

yk

� �
, C~

A B

C D

� �
, and

gk*N
0

0

� �
,

Q 0

0 R

� �� �
: Then, the conditional density function

of fk, given Zk is given by N(Czk, P), where P~
Q 0

0 R

� �� �
.
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Assume that the distribution of the initial state is given by x1,N(m1,

P1). Let a sequence of input-output data samples and the state be

denoted by

UN~ u1, . . . ,uNf g,YN~ y1, . . . yNf g,XNz1~ x1, . . . ,xNz1f g:

The E-M algorithm for estimation of the parameters in the

state-space model of discrete dynamic systems consists of two

iterated steps: E-step and M-step. They are summarized as follows

[16].

E-Step
Calculate the expectation of the augmented log-likelihood

function of both the observed data and hidden state variables

defined as follows:

Q h,h0ð Þ~Eh0 log Ph X ,Y jUð ÞjY ,U½ �:

To calculate Q(h, h9), we first need to calculate the conditional

likelihood function Ph(X, Y|U). From the model (3), we have

Ph YN ,XNz1jUNð Þ~Ph x1ð Þ P
N

k~1
Ph xkz1,ykjxk,ukð Þ, ð4Þ

where

Ph x1ð Þ*N m,P1ð Þ and Ph

xkz1

yk

� �����xk,uk

� �
*N Czk,Pð Þ ð5Þ

Combining equations (4) and (5), we have

{2 log Ph YN ,XNz1jUNð Þ~log P1j jz x1{mð ÞT P{1
1 x1{mð Þz

N log Pj jz
XN

k~1

jk{Czkð ÞTP{1 jk{Czkð Þ
ð6Þ

Let

W~
1

N

XN

k~1

Eh0 jkjT
k

��YN ,UN

� �
, y~

1

N

XN

k~1

Eh0 jkzT
k

��YN ,UN

� �
,

S~
1

N

XN

k~1

Eh0 zkzT
k

��YN ,UN

� �
:

Taking expectation Eh{.|YN, UN} on both sides of equation (6), we

obtain

{2Q h,h0ð Þ~log P1j jzTr P{1
1 Eh0 x1{mð ÞT x1{mð Þ

n on
z

Nlog Pj jzNTr P{1 W{YCT{CYTzCSCT
�� � ð7Þ

To calculate the matrices W and Y, we use the following quantities

Eh0 ykxT
k

��YN ,UN

� �
~ykx̂xT

kjN

Eh0 xkxT
k

��YN ,UN

� �
~x̂xkjNx̂xT

kjNzPkjN

Eh0 xkxT
k{1

��YN ,UN

� �
~x̂xkjNx̂xT

k{1jNzMkjN ,

ð8Þ

and they can be calculated using Kalman smoother [44]:

Jk~PkjkAT P{1
kz1jk

x̂xkjN~x̂xkjkzJk x̂xkz1jN{Ax̂xkjk{Buk{R{1yk

� 	
PkjN~PkjkzJk Pkz1jN{Pkz1jk

� 	
JN

k

MkjN~PkjkJT
k{1zJk Mkz1jN{APkjk

� 	
JT

k{1

ð9Þ

The quantities x̂k|k, Pk|k, Pk|k21 are calculated by the Kalman filter

equations as follows:

Pkjk{1~APk{1jk{1ATzQ

Gk~Pkjk{1CT CPkjk{1CTzR

 �{1

Pkjk~Pkjk{1{GkCPkjk{1

x̂xkjk{1~Ax̂xk{1jk{1zBuk{1

x̂xkjk~x̂xkjk{1zGk yk{Cx̂xkjk{1{Duk


 �
,k~1, . . . ,N

MNjN~ I{GNCð ÞAPN{1jN{1

ð10Þ

M-step
Maximizing the likelihood function defined in equation (7) with

respect to parameters yields

m~x̂x1jN

P1~P1jN

C~
A B

C D

" #
~YS{1, P~W{YS{1YT :

ð11Þ

Since the network has structure, which enforces certain param-

eters in the model to be zeros and leaves others to free to change,

we develop constrained EM algorithms.

First we define a matrix product operation of two matrices called

Hadamard product, denoted by 0, as element wise product, i.e.

AB½ �ij~ A½ �ij B½ �ij:

Then, we define a modification of the vector V, denoted by [V]mod, as

the vector in which all elements corresponding to the zeros elements

in the matrix C are deleted. We define a modification of the matrix as

the matrix in which if intersection of the row and column corresponds

to the zeros elements in the matrix C then such row and column are

deleted. The equation for estimation of parameters (18) is reduced to

Y i1

Y i2

..

.

2
664

3
775

mod

{Smod Ci½ �Tmod~0

P~ W{YCT{CYTzCYCT
� �

0I

Transient-Response Analysis
Response of a biological pathway to perturbation of internal and

external stimuli has two parts: the transient and the steady state

response. The time varying process generated in going from the

initial state to the final state in the response to the perturbation of the
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internal and external stimuli is called transient response. Steady-state

response studies the system behavior at infinite time. Transient-

response analysis of biological pathways can be used to quantify their

dynamics. It can reveal how fast the biological pathways respond to

perturbation of environments and how accurately the pathways can

finally achieve the desired steady-state values. It can also be used to

study damped vibration behavior and stability of the biological

pathways.

The transient response of the dynamic systems depends on the

input signals. Different signal will cause different response. There

are numerous types of signal in practice. For the convenience of

comparison, we consider two types of signals: (i) unit-step signal

and (ii) unit-impulse signal as shown in Figure 2.

The transient response of dynamic systems can be studied by

transfer function that is used to characterize the input-output

relationships of a linear, time-invariant, differential equation

system. The transfer function is defined as the ratio of the Laplace

transform of the output to the Laplace transform of the input

under the assumption of zero initial conditions. The transfer

function of the response of the biological pathway to unit-step and

unit-impulse input signals are given by Y sð Þ~ G sð Þ
S

and Y(s) = G(s)

respectively, where G(s) is the transfer function of the biological

pathway. The transient-response analysis of the biological pathway

can be performed by inverse Laplace transformation. We

performed the transient-response analysis with MATLAB [13].

Stability Analysis
The most important dynamic property of biological pathways is

concerned with stability. Dynamic systems are called stable if their

variables such as gene expressions return to, or towards, their

original or equilibrium states following internal and external

perturbations. For any practical purpose, the biological pathways

must be stable. Unstable gene regulations will lead to the

malfunction or even the death of the cells. A biological pathway

will remain at steady state until occurrence of external perturbation.

Depending on dynamic behavior of the system after perturbation of

environments, the steady-states of the system are either stable (the

system returns to the initial state or changes to other steady-states) or

unstable (the system leaves the initial equilibrium state).

One of the methods for assessing the stability of the linear

dynamic systems is to analyze eigenvalues of the state transition

matrix A of the linear dynamic systems. For a continuous linear

dynamic system, if real parts of all eigenvalues of the transition

matrix A are strictly negative then the system is stable. For a

discrete linear system, if the norm of all eigenvalues of the state

transition matrix A is less than 1 then the system is stable.

Root-Locus Analysis
Open and close loop poles and zeros largely determine the

stability and performance of the open and close systems. They

provide valuable information on how to improve stability and

transient response of the systems. Root-locus analysis, in which the

roots of the characteristic equation of the closed-loop system are

plotted for all values of a system parameter, is a powerful tool for

study and design of dynamic pathway. The loop gain is often

chosen to be the parameter. Varying the gain value will change the

location of the closed-loop poles.

Consider a SISO system that consists of a gene regulator and an

input to the gene regulator shown in Figure 6. The transfer

function of the closed-loop system is given by

C sð Þ
R sð Þ~

G sð Þ
1zG sð ÞH sð Þ ,

which implies the following characteristic equation of this closed-

loop system:

1zG sð ÞH sð Þ~0: ð12Þ

In general, G(s) H(s) involves a gain parameter K. A plot of the

points in the complex plane satisfying the characteristic equation (12)

is the root locus. As the gain parameter changes the root locus will

plot a curve in the complex s-plane. A simple method for plotting

root-locus has been developed by W. R. Evans [29]. In this report,

we use MATLAB to generate root-locus plots [13].

Controllability
A dynamic system is called controllable, if there is an admissible

control function, which can change the system from any given

initial state to any finite state or to the origin of the state space in

the finite time. Define the controllability matrix of the system as

H = [B, AB, ..., An21B], where A and B are the state transition

matrix and input to the state matrix in the linear dynamic system,

respectively. If rank (H) = n, i.e., the rank of the controllability

matrix is equal to the number of the state variables of the system,

then the genetic network is completely controllable.

We use the condition number of the controllability matrix to

measure the degree of the controllability of the system. The

condition number of the controllability matrix is defined as [45]

k Hð Þ~ H{k k Hk k:

where H2 is a generalized inverse of the matrix H and ||.||

denotes a matrix norm. This can be justified by the following

arguments. The general solution of the discrete linear system is

given by [13]

xk~Akx 0ð Þz
Xk{1

j~0

Ak{j{1Buj , ð13Þ

By definition, if the system is controllable, then at some time tk, we

have xk = 0, which implies that

0~Akx 0ð Þz
Xk{1

j~0

Ak{j{1Buj ð14Þ

Equation (14) can be reduced to

B AB A2B . . . Ak{1B
� 	

uk{1

:

:

:

u0

2
6666664

3
7777775
~{Akx 0ð Þ

Figure 6. Scheme of a SISO system
doi:10.1371/journal.pone.0001693.g006
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Or

Hu~{Akx 0ð Þ ð15Þ

where u is a control vector. Solving the equation (15) yields

u~H{Akx 0ð Þ ð16Þ

The norm of the control vector represents the amount of control

efforts required to change the states from initial value to the

desired value and hence measures the degree of the controllability.

From equation (16), we note that the norm of the control vector

||u|| is proportional to the condition number:

k(H) = ||H2||||H||. Therefore, we can use the condition

number of the controllability matrix to measure the degree of

controllability.
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