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The Role of Histone Acetylation in Mesenchymal Stem Cell 
Differentiation
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The mechanism and action concerning epigenetic modifications, especially that of his-
tone modifications, are not fully understood. However, it is clear that histone mod-
ifications play an essential role in several biological processes that are involved in cell 
proliferation and differentiation. In this article, we focused on how histone acetylation 
may result in differentiation into mesenchymal stem cells as well as histone acetylation 
function. Moreover, histone acetylation followed by the action of histone deacetylase 
inhibitors, which can result in the differentiation of stem cells into other types of cells 
such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also 
reviewed.
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INTRODUCTION

Epigenetic modifications are one of the primary mecha-
nisms causing early programming of cell proliferation, dif-
ferentiation, death, and disease. Mesenchymal stem cells 
(MSCs) differentiation through epigenetic manipulation 
into specialized cells has the potential to advance the field 
of regenerative medicine through several tissue engineer-
ing processes. Several studies support the involvement of 
epigenetic mechanisms through gene expression control, 
stem cell self-renewal and lineage fate determination. 
During differentiation into a particular lineage, the specif-
ic genes of this lineage undergo active transcription. Conse-
quently, the genes responsible for self-renewal and pluri-
potency are repressed. This on-off mechanism is associated 
with posttranslational modifications, especially histone 
acetylation/methylation and promoter DNA methylation. 
These epigenetic modifications are critical for regulating 
gene expression, and several researchers have shifted 
their focus to one or the other.

HISTONE MODIFICATION

Chromatin is an instructive DNA scaffold that can regu-
late several functional features of DNA and plays a vital 

role in histone modification. Histone modifications exert 
their function through specific enzymes, and different en-
zymes modify different sites (based on specificity at the en-
zyme’s active site) or have different functions. For example, 
Gcn5 and p300-CBP acetylate H3K9/H3K27 sites, Ezh2 
methylates H3K27 sites, and Suv39h1 plays a role in H3K9 
methylation. The enzyme, DNA methyltransferase (DNMT)- 
1, is responsible for maintenance of DNA methylation, and 
DNMT3a/b is responsible for de novo DNA methylation.1,2 
However, it remains unclear which specific enzymes are in-
volved in MSC differentiation and how these enzymes in-
teract with one another.

1. Histone acetylation and methylation
Histone acetylation was first reported by Allfrey et al.3 

in 1964, who suggested that histones are post-translation-
ally modified. The acetylation of lysine residues is highly 
dynamic and regulated by the opposing action of two fami-
lies of enzymes, i.e., histone acetyltransferases (HATs) and 
histone deacetylases (HDACs).

There are two general categories of HATs in humans: 
Type A HATs are nuclear and acetylate nucleosomal histo-
nes and other chromatin-associated proteins. Examples of 
type A HATs are the GCN5-related N-acetyltransferase 
family, Moz-Ybf2/Sas3-Sas2-Tip60 family, and p300/CREB- 
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binding protein (CBP/CREBBP) family.4 Typically, each of 
these enzymes modifies multiple sites within the histone 
N-terminal tails. Type B HATs are located in the cytoplasm 
and acetylates the newly synthesized histone H4 at K5 and 
K12, where this pattern of acetylation is important for dep-
osition of the histones. Additionally, type B HATs share se-
quence homology with scHat1 and have no direct impact 
on transcription.5

HDAC inhibitors are a class of compounds that increase 
acetylation of lysine residues on histone proteins as well 
as other, nonhistone, proteins by inhibiting the activity of 
HDAC enzymes. HDACs contain the presence of cellular 
and target proteins involved in cancer progression, apopto-
sis, cell cycle control, angiogenesis, and cell invasion. This 
is corroborated by HDAC inhibitors that show involvement 
in the activation of the apoptotic pathway, cell cycle arrest, 
and apoptotic induction via the extrinsic (death receptor) 
pathway or the intrinsic (mitochondrial) pathway, both of 
which lead to caspase activation and cell death induction. 
HDAC inhibitors can induce cell cycle arrest at G1/S or 
G2/M transcription, resulting in differentiation and/or 
apoptosis.

Histone methyltransferase (HMT) are histone-modify-
ing enzymes involved in inhibiting gene expression and 
heterochromatin formation. Previous studies have reported 
that HMTs interact with HATs at the H3K9 site and affect 
histone methylation levels in this region. It has been in-
dicated that histone methylation is a vital part of epigenetic 
modification interactions. DNA methylation is best known 
for its role in gene silencing for it can alter gene expression 
without changing a given gene’s base sequence. Among epi-
genetic mechanisms, post-translational histone modifica-
tion plays a central role and are brought about by a series 
of ‘writing’ and ‘erasing’ events by histone-modifying enzy-
mes.2,6,7

2. Histone modifying enzymes; writers, erasers, and readers
A wide range of post-translational modifications (PTMs) 

primarily targeting amino acids within the N-terminal 
tails of histone proteins occurs, including phosphorylation, 
acetylation, methylation, ubiquitination, SUMOylations, 
and GlcNAcylation. Governance of chromatin structure 
through histone PTMs has emerged as an essential driver 
of transcriptional responses in numerous cells. Like his-
tone writers, erasers, and readers, the protein machinery 
that adds, removes, or recognizes PTMs has become revolu-
tionary in our understanding of physiological responses.8 
In this review, we summarize how histone acetylation or 
methylation are regulated by histone acetyltransferases or 
methyltransferases (writers), deacetylases or demethy-
lases (erasers), and domain-containing proteins (readers), 
as depicted in Table 1.

1) Writers
Writers are enzymes that add PTMs to histones and are 

divided into classes based on the specific PTM, HATs, and 
HMTs. In humans, there are three major families of HATs: 
the Gcn5-related N-acetyltransferase family (GNAT), the 

MYST family (MOZ, YbF2, Sas2, TIP60), and the orphan 
family (DBP/EP300 and nuclear receptors), whose struc-
ture and mechanism of action are elaborated by Marmorstein 
and Zhou9 in a paper published in 2014. In general, HATs 
function as components within a diverse set of multiprotein 
complexes that target promoters and enhancers in order to 
regulate specific transcriptional responses.

In 1999, Allis’s group first reported a link between his-
tone methylation and DNA transcription,10 and discovered 
and identified specific HMTs the following year.11 There 
are several families of HMTs, such as the SET family, 
which has a SET domain or non-SET domain-containing 
methyltransferases, and SUV39, which was the first pro-
tein identified in the SET family. Modifications associated 
with active transcription include di- or tri-methylation of 
H3K4 (H3K4me2, H3K4me3) and mono-methylation of H3K9 
(H3K9me1). However, di- and tri-methylation of H3K9 
(H3K9me2, H3K9me3), as well as H3K27 (H3K27me2, 
H3K27me3), are repressive markers. Unlike histone ace-
tylation, histone methylation can be linked to either tran-
scriptional repression or activation depending on the con-
text and extent of methylation.8,12

2) Erasers
Similar to writers, erasers are enzymes that remove spe-

cific PTMs from histone substrates. Erasers are classified 
on HDACs and histone demethylases. Currently, 18 mam-
malian HDACs have been identified and categorized into 
four major classes: Class I: HDACs 1, 2, 3, and 8; class IIa: 
HDACs 4, 5, 7, and 9; and class IIb: HDACs 6 and 10. The 
sirtuins comprise class III, and HDAC 11 comprising the 
sole HDAC in class IV. Identify the HDAC component mole-
cules as well as understanding their activity is essential in 
for their emergence as a potential therapeutic strategy for 
treatment of disease, including cancer, immune disorders, 
and heart disease.8,13,14

Histone demethylases play regulatory roles in tran-
scription for demethylation of histones, including the 
Jumonji C family, JHMD1, JMJD3, and JMJD2D. Similar 
to HDACs, small molecular inhibitors of demethylase ac-
tivity are being developed for use as potential therapeutics 
to modulate DNA transcription in disease.8,15,16

3) Readers
Readers are dedicated protein factors that recognize ei-

ther specific post-translational marks on histones or a com-
bination of marks and histone variants to direct a partic-
ular transcriptional outcome. Just as the function of his-
tone PTM is carried out by writers and erasers, their ac-
tions that govern DNA transcription are mediated by 
readers. They have domains, which have a high affinity for 
sites of histone methylation, chromo, Tudor, MBT, or acety-
lation Bromo. These domains are located within the chro-
matin modifying proteins and respond to histone PTMs. In 
addition, both the chromatin remodeler complex switching 
defective/sucrose non-fermenting (SWI/SNF) and the bro-
modomain and extra-terminal domain (BET) families are 
examples of readers.17,18
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TABLE 1. Summary of principal writer, eraser, and reader protein for histone acetylation and methylation in mesenchymal stem cells

Family Activity Major catalytic site Major classes Representative member Classic inhibitors

Writers
   Histone 

acetyltransferase
Catalyze histone 

acetylation
H3K9/K14/K56, 

H4K5/K8/K16, 
H3AK5

(1) Gcn5/PCAF
(2) MYST
(3) p300/CBP
(4) Rtt109

P300/CBP, Tip60, 
Gcn5, ELP3, HAT1, 
MYST

Acetyl-CoA 
derivatives, 
anacardic acid, 
curcumin

   Histone 
methyltransferase

Catalyze histone 
methylation

H3K4/K9/K27/K
35/K79. H4K20, 
H3R8

(1) SUV39
(2) SET1
(3) SET2
(4) RIZ
(5) PRMTs

DOT1L, EZH2, 
SUV39H1, 
SUV4-20, SMYD

EPZ00477, 
GSK343, 
UNC1999

Erasers
   Histone deacetylases Catalyze histone 

deacetylation
H3K9/K14, 

H4K5/K12/K8
(1) HDACI
(2) HDACII
(3) HDACIII
(4) HDACIV

HDAC1,2,3,8
HDAC5,6,7,9 
SIRT1-6
HDAC11

TCA, vorinostat, 
romidepsin

   Histone demethylase Catalyze histone 
demethylation

H3K4/K9/K27/
K36/K79, 
H4K20

(1) Lysine-specific 
demethylases

(2) Jumonji 
domain-contain
ing demethylase

JMJD2A, KDM5B, 
KDM2A

Tranylcypromine, 
GSJ-J1, 
8-hydroxyquin-
olines

Readers
   Bromodomain- 

containing proteins
Binding the 

acetylated 
lysine residue

H3K14, 
H4K5/K8/K16

Bromodomains GCN5, Brdt, Rsc4 JQ1, GSJ2801

   PHD-containing 
proteins

Binding the 
methylated 
lysine residue, or 
the acetylated 
lysine residue

H3K4/K9/K14 PHD domains RAG2, BHC80, TAF3, 
Tandem-PHD

   Methyl-lysine-and/
or methyl-arginine- 
binding domain- 
containing proteins

Binding the 
methylated 
lysine residue, or 
the methylated 
arginine residue

H3J4/K9/K23/K2
7/K36/K79, 
H4K20, H1K26, 
H3R17, H4R3

(1) Tudor domains
(2) MBT domains
(3) Chromodomains
(4) PWWP domains

53BP1/Crb2, HP1, 
PHF20L1, TTD, 
ZF-CW, MBT, DCD

UNC669, 
UNC1215

HISTONE ACETYLATION IN MESENCHYMAL 
STEM CELL DIFFERENTIATION

MSCs are emerging as extremely promising therapeutic 
agents for tissue regeneration and disease, in part because 
of their multipotent properties and capacity for self-renewal. 
Several studies have successfully induced MSC differ-
entiation into specialized cells through different methods. 
However, the molecular mechanism of differentiation re-
mains unclear, which results in low induction efficiency 
and limits the clinical application of MSCs. Stem cell self- 
renewal and differentiation require selective action or si-
lencing of specific transcriptional programs in response to 
environmental cues. This crosstalk between transcrip-
tional factors and epigenetic modulators regulating the 
chromatin conformation affects stem cell differentiation 
following specific gene promoters. The epigenetic mecha-
nisms governing MSC identity and fate determination are 
not well understood and remain an active area of in-
vestigation. Furthermore, the enhancement of stem cell 

differentiation ability is a challenge for type specialization, 
and it is possible to increase its ability of stem cells through 
histone modification in basic research and clinical treat-
ment.

Differentiation requires orchestration of numerous par-
allel cellular responses and altered physiological states as-
sociated with the novel cell fate. These changes are induced 
by environmental cues, such as soluble factors or cell-to- 
cell connection, that is expected to transduce and translate 
gene expression.19,20 Cell differentiation following histone 
modification requires the coordination of transcriptomic 
reprogramming and nucleosome remodeling. We summa-
rize how histone regulator act to differentiate into other cell 
lineages in mesenchymal stem cells (Fig. 1).

1. Cardiomyogenic differentiation
There are several studies regarding cardiomyogenic dif-

ferentiation of MSCs. In 2009, Feng et al.21 reported that 
histone acetylation, not DNA methylation, might be one of 
the mechanisms of cardiac differentiation of rat MSCs. 
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FIG. 1. Role of histone acetylation in MSC differentiation. Histone 
acetylation is regulated by the histone acetyltransferase (HAT) 
and histone deacetylase (HDAC) which converts chromatin struc-
tures. A variety of histone modifying enzymes is involved in the 
MSC fate determination with acetylation and methylation of spe-
cific catalytic sites through their representative members.

They induced differentiation into cardiomyocyte with sub-
eroylanilide hydroxamic acid (SAHA, a HDAC inhibitor) or 
5-azacytidine (5-aza, a DNA methylation inhibitor) and 
demonstrated that SAHA effectively promoted cardiomyo-
cyte differentiation in vitro.21 In addition, they focused on 
Gcn, which linked a known transcriptional coactivator 
with catalytic histone acetyltransferase activity, and de-
termined its importance in differentiating into cardiomyo-
cytes caused by modification of histone H3.22 Inhibition of 
HDAC1 or HDAC2 by siRNA targeting increased car-
diac-specific gene expression and local enrichment of the 
level of histone acetylation of H3 and H4 in MSCs, further 
verifying that HDAC1 and HDAC2 are involved in cardiac 
differentiation.23,24

Recently, several studies reported that Islet-1 induced 
cardiac differentiation in MSCs. Islet-1 is located in the sec-
ond heart field and various types of congenital heart dis-
ease can be cause by Islet-1 insufficiency.25,26 Zhu’s group 
investigated that Islet-1 is a main factor in acetylation dur-
ing heart development and the cardiomyocyte-like differ-
entiation. In addition, Islet-1 upregulated the expression 
of Gcn5 and enhanced the binding of Gcn5 and promoters; 
consequently, downregulating DNMT-1 expression.25-28 In 
other words, Islet-1 may influence histone acetylation and 
DNA methylation via Gcn5 and DNMT-1 during differ-
entiation into cardiomyocyte-like cells.

2. Osteogenic differentiation
For long-term cultivation, MSCs in early and late pas-

sage were examined for different gene expression; the os-
teogenic genes increased, while the stemness genes, such 
as Oct4 and Sox2, declined markedly. Several studies have 
reported that histone acetylation levels, specially histone 

H3 acetylation in K9 and K14 and gene promoter DNA 
methylation, are essential to regulate osteogenic differen-
tiation.29-31 In addition, valproic acid (VPA), a HDAC in-
hibitors, promoted the level of histone H3 lysine 9 acetyla-
tion (H3K9Ac) and the expression of osteogenesis-related 
genes, including Runx2, Osterix, osteocalcin, osteopontin, 
and likalinephosphate, and induced the regulation of Runx2 
activity.32,33 Following the study by Fani et al.,34 chromatin 
immunoprecipitation results showed significant changes 
in the H3K9Ac on regulatory regions of stemness (Nanog, 
Sox2, Rex1), osteogenic (Runx2, OC, Sp7), and adipogenic 
(PPARγ, Lpl, adiponection) marker genes between un-
differentiated and differentiated cells. In addition, adrena-
line inhibited osteogenic differentiation by reducing miRNA- 
21 expression and enhancing RUNX2, OSX, OCN, and OPN 
expression in hMSCs.35 Recently, Fu et al.36 reported that 
c-Jun signaling could help facilitate acetylation of H3K27, 
which has acetyltransferase p300 to RUNX2 promoter, 
during osteogenic differentiation.

Zhou’s group reported that the histone H3K9 acetyl-
transferase, PCAF has an essential role in osteogenic dif-
ferentiation of MSCs and controlled BMP signaling both 
in vitro and in vivo, especially aged mice.37 In addition, the 
activity between histone acetylation and Wnt genes, espe-
cially, Wnt1, Wnt6, Wnt10a, and Wnt10b, increased Gcn5 
and promoted osteogenic differentiation.38 These results 
might represent a therapeutic target for stem cell-based re-
generative medicine and the treatment of disease.

Last year, Hansen’s group revealed that the activation 
of the PLZF transcription factors encoded by ZBTB16 plays 
a role in osteogenic differentiation at the pre-osteoblast 
stage and is influences H3K27 acetylation and osteogenic 
gene expression. Furthermore, the nicotinamide N-meth-
yltransferase (NNMT) gene is a promoter of PLZF and re-
quires osteogenic differentiation.39

3. Adipogenic differentiation
Adipogenesis is a complex physiological process with 

gene expression by various adipogenic factors, including, 
Pref-1, C/EBPβ, C/EBPα, PPARγ2, and aP2.40,41 In undifferen-
tiated stem cells, inactive lineage-specific promoters are in 
an enriched combination of trimethylated H3K4m3 and 
H3K27m3 in the absence of H3K9m3, a heterochromatin 
mark. Following differentiation, adipogenic and myogenic 
promoters are enriched in trimethylated H3K4, K27, and 
K9, which is associated to the potential of activation.40,42 
The balance between osteogenesis and adipogenesis of 
bone marrow-derived MSCs is known to induce stem cell 
differentiation and is a promising therapeutic approach in 
disease.43 Several studies have suggested that DNA meth-
ylation and histone acetylation have been linked by PPARγ 
in regulating MSC differentiation, which allows for the ac-
cumulation of HDAC1 to downregulate the acetylation 
status. Therefore, the status of DNA methylation and his-
tone acetylation might be regarded as an adipogenic po-
tential.43-45

Sakai’s group recently reported that H3K4/H3K9me3 
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bivalent domain is important in both MSCs and embryonic 
stem cells. They mentioned that H3K4/H3K9me3 was ex-
pressed and inhibited the action of MBD1/SETDB1/MCAF1 
complex. However, once H3K4/H3K9me3 was blocked, the 
cells differentiated into adipocytes and the signals were 
activated.46 In addition, SIRT1 (a class III HDAC) over-
expression inhibited adipogenic differentiation in MSCs 
by deacetylation of the histone promoters sFRP1, sFRP2, 
and Dact1 and activation of the Wnt signaling pathway.47

4. Neurogenic differentiation
In mammals, adult neurogenesis is necessary to re-

generate neurons and existing neural circuitry for cogni-
tive functions. Terskikh’s group reported that SOX2-Lin28/ 
let7 complex play an essential role in neuronal stem cell dif-
ferentiation and proliferation of neural precursor cells.48 
Several studies reported that histone acetylation has a po-
tential effect of neurogenesis in neurodegenerative dis-
eases and CNS injures.49,50 Currently, scientist have revealed 
that microtubules undergo a dynamic process of assembly 
and disassembly to control cell shape remodeling, cell mo-
tility, tubulin stability, and terminal branching in neurons.51-53 
In addition, histone acetylation, which induces HDAC in-
hibitors, leads to neurogenesis and inhibits inflammation 
in a rat neonatal hypoxia-ischemia model.54 Jang et al.55-57 
reported that HDAC inhibitor-mediated histone acetyla-
tion enhanced directed neurogenic differentiation in MSCs 
via upregulation of non-canonical Wnt signaling and acti-
vation of JNK and GSK-3β protein levels. These results 
demonstrated that transcriptional control in chromatic re-
modeling and epigenetic modifications is a vital factor in 
neurogenic differentiation in hMSCs.

5. Others
Voncken’s group reported that polycomb associated 

H3K27me3 blocked chromatin access of EGR1 in early 
chondrogenic epigenetic programming by early gene-envi-
ronment interactions in chondrogenesis of MSCs. These re-
sults suggested that epigenomic remodeling is important 
in chondrogenesis and depends on the early or late stage 
during differentiation.19

Rogiers’s group reported that hepatogenic factors com-
bining TSA could show hepatic differentiation of hMSCs 
following TSA-induced histone acetylation and inducible 
cytochrome P450-dependent activity.58 TSA is known as 
one of the HDAC class I, II, IV, and has the potential for 
long-term cultivation and successful transdifferentiation 
of hMSCs. Other groups examined that VPA (HDAC class 
I and II) improved histone H3 and H4 acetylation and dif-
ferentiated hepatocytes in hMSCs.59 A few years ago, Raut 
and Khanna60 studied the role of microRNAs in the control 
of cell fate determination during hepatic trans-differ-
entiation in hMSCs. During hepatic differentiation, VPA 
improved hepatic trans-differentiation by enhancing the 
expression of hepatocyte-specific miRNAs and activation 
of histone H3 and H4.

There still remains a limitation in the understanding of 

hair follicle formation and hair genesis in the clinical field. 
Recently, Guo et al.61 studied how hair follicles rely on der-
mis MSCs or are regenerated from skin-derived precursors 
using spheroid. They found TSA-mediated histone H3 ace-
tylation in K9 and K14 modulated a wide variety of cellular 
activities and markedly alleviated culture expansion and 
restored the hair inductive capacity.

CONCLUSION

Recent advances in the field of regenerative medicine, 
Biochemistry, and Molecular Biology have demonstrated 
that histone modifications in mesenchymal stem cells play 
crucial roles in determining stem cell fate, including pro-
liferation and differentiation. In this review, we described 
that histone acetylation followed by HDAC inhibitors or 
HATs are involved in MSCs differentiation into specialized 
cell types. This suggests how epigenetic modifications are 
a promising technique for stem cell therapy and regen-
erative medicine. Future investigations are needed to iden-
tify the link between histone acetylation and stem cell 
engineering. 
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