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Developing an accurate and interpretable model to predict an individual’s risk for
Coronavirus Disease 2019 (COVID-19) is a critical step to efficiently triage testing and
other scarce preventative resources. To aid in this effort, we have developed an
interpretable risk calculator that utilized de-identified electronic health records (EHR)
from the University of Alabama at Birmingham Informatics for Integrating Biology and
the Bedside (UAB-i2b2) COVID-19 repository under the U-BRITE framework. The
generated risk scores are analogous to commonly used credit scores where higher
scores indicate higher risks for COVID-19 infection. By design, these risk scores can
easily be calculated in spreadsheets or even with pen and paper. To predict risk, we
implemented a Credit Scorecard modeling approach on longitudinal EHR data from 7,262
patients enrolled in the UAB Health System who were evaluated and/or tested for COVID-
19 between January and June 2020. In this cohort, 912 patients were positive for COVID-
19. Our workflow considered the timing of symptoms and medical conditions and tested
the effects by applying different variable selection techniques such as LASSO and Elastic-
Net. Within the two weeks before a COVID-19 diagnosis, themost predictive features were
respiratory symptoms such as cough, abnormalities of breathing, pain in the throat and
chest as well as other chronic conditions including nicotine dependence and major
depressive disorder. When extending the timeframe to include all medical conditions
across all time, our models also uncovered several chronic conditions impacting the
respiratory, cardiovascular, central nervous and urinary organ systems. The whole pipeline
of data processing, risk modeling and web-based risk calculator can be applied to any
EHR data following the OMOP common data format. The results can be employed to
generate questionnaires to estimate COVID-19 risk for screening in building entries or to
optimize hospital resources.
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INTRODUCTION

Despite recent progress in the Coronavirus Disease 2019
(COVID-19) vaccines approval and distribution, the pandemic
continues to pose a tremendous burden to our healthcare system.
Global resources to manage this current crisis continued to be in
short supply. It remains critical to quickly and efficiently identify,
screen andmonitor individuals with the highest risks for COVID-
19 so that distribution of therapeutics can be based on individual
risks. Many factors including pre-existing chronic conditions (Liu
et al., 2020), age, sex, ethnicity and racial background, access to
health care, and other social-economic components (Rashedi
et al., 2020) have been shown to affect an individual’s risk for
this disease.

Accordingly, several predictive models that seek to optimize
hospital resource management and clinical decisions have been
developed (Jehi et al., 2020a; Jehi et al., 2020b; Gong et al., 2020;
Liang et al., 2020; Wynants et al., 2020; Zhao et al., 2020). To a
large degree, these informatic tools leverage the vast and rich
health information available from Electronic Health Record
(EHR) data (Jehi et al., 2020b; Oetjens et al., 2020; Osborne
et al., 2020; Vaid et al., 2020; Wang et al., 2021a; Wang et al.,
2021b; Estiri et al., 2021; Halalau et al., 2021; Schwab et al., 2021).
EHR systems contain longitudinal data about patients’
demographics, health history, current and past medications,
hospital admissions, procedures, current and past symptoms
and conditions. Although the primary purpose of EHRs is
clinical, over the last decade researchers have used them to
conduct clinical and epidemiological research. This has been
notable especially during the COVID-19 pandemic where such
research that generated invaluable data about COVID-19 risks,
comorbidities, transmission and outcomes was quickly adapted
for clinical decision making (Daglia et al., 2021). To ensure
interoperability across multiple hospital systems, EHR data
incorporate standard reference terminology and standard
classification systems such as the International Classification of
Diseases (ICD) that organize and classify diseases and procedures
for facile information retrieval (Bowman, 2005). Incorporated
into the Medical Outcomes Partnership (OMOP) common data
model (Blacketer, 2021), these ICD9/ICD10 codes facilitate
systemic analyses of disparate EHR datasets across different
healthcare organizations.

Many of these insights were generated using machine
learning methods, based on multi-dimensional data (Mitchell,
1997). Studies have employed a variety of classification and/or
regression methods including Naive Bayes, Support Vector
Machine, Decision Tree, Random Forest, AdaBoost,
K-nearest-neighbor, Gradient-boosted DT, Logistic
Regression, Artificial Neural Network, and Extremely
Randomized Trees (Alballa and Al-Turaiki, 2021). Among
these, the most popular methods applied to COVID-19 have
been linear regression, XGBoost, and Support Vector Machine
(Alballa and Al-Turaiki, 2021).

To develop a COVD-19 risk model, we chose a Logistic
Regression based Credit Scorecard modeling approach to
estimate the probability of COVID-19 diagnosis given an
individual’s ICD9/ICD10 encoded symptoms and

conditions. Credit Scorecard is a powerful predictive
modeling technique widely adopted by the financial
industry to manage risks and control losses when lending to
individuals or businesses by predicting the probability of
default (Bailey, 2006). The Credit Scorecard model is most
frequently used by scorecard developers not only due to its
high prediction accuracy, but also due to its interpretability,
transparency and ease of implementation. This method has
been implemented previously for EHR data based COVID-19
risk prediction (Jehi et al., 2020a; Jehi et al., 2020b).

Application of feature selection methods that attempt to retain
the subset of features that are most applicable for classification has
been applied to increase interpretability, enhance speed, reduce data
dimensionality and prevent overfitting (Alballa and Al-Turaiki,
2021). While there are many feature selection methods, sparse
feature selection methods such as LASSO (Least Absolute
Shrinkage and Selection Operator) (Tibshirani, 1996) and Elastic-
Net (Zou and Hastie, 2005) provide advantages. LASSO places an
upper bound constraint on the sum of the absolute values of the
model parameters by penalizing the regression coefficients based on
their size and forcing certain coefficients to zero and eventually
excluding them to retain the most useful features (Tibshirani, 1996).
Expanded from LASSO, Elastic-Net adds a quadratic penalty term to
the calculation of coefficients to prevent the “saturation” problem
encountered when a limited number of variables are selected (Zou
and Hastie, 2005). Several COVID-19 risk prediction models
employed LASSO (Gong et al., 2020; Liang et al., 2020; Feng
et al., 2021) and Elastic-Net (Heldt et al., 2021; Hu et al., 2021;
Huang et al., 2021).

The major goals for this analysis were to determine whether
we could: 1) leverage the existing hierarchical structure of the
ICD9/ICD-10 classification system, in an unbiased approach, to
capture patients’ symptoms and conditions and estimate their
possibilities of having a COVID-19 diagnosis, 2) examine the
temporal aspect of EHR (i.e., within a timeframe, for example,
symptoms within 2-weeks of infection/diagnosis). to evaluate
what current symptoms and/or pre-existing conditions affect
COVID-19 risks, 3) apply a Credit Scorecard modeling
approach to develop and validate a predictive model for
COVID-19 risk from retrospective EHR data, and 4) develop a
pipeline requiring minimal manual curation capable of
generating COVID-19 risk models from any EHR data using
the OMOP common data model (Blacketer, 2021). To
demonstrate the latter goal a web application was created to
take answers from individuals and produces a COVID-19 risk
score. We have made the code freely available for anyone wishing
to reproduce and deploy such a model at gitlab.rc.uab.edu/center-
for-computational-genomics-and-data-science/public/covid-19_
risk_predictor.

MATERIALS AND METHODS

Dataset
The UAB Informatics Institute Integrating Biology and the Bedside
(i2b2) COVID-19 Limited Datasets (LDS) contain de-identified EHR
data that are also part of the NIH COVID-19 Data Warehouse
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(NCATS, 2020). Data was made available through the UAB
Biomedical Research Information Technology Enhancement
(U-BRITE) framework. Access to the level-2 i2b2 data was
granted upon self-service pursuant to an IRB exemption. Our
dataset contains longitudinal data of patients in the UAB Health
Systemwho had COVID-19 testing and/or diagnosis from January to
June 2020. Aggregated from six different databases, our dataset was
transformed to adhere to the OMOP Common Data Model Version
5.3.1 (Blacketer, 2021) to enable systemic analyses of EHR data from
disparate sources.

The UAB i2b2 COVID-19 LDS is comprised of 14 tables
corresponding to different domains: PERSON, OBSERVA-
TION_PERIOD, SPECIMEN, DEATH, VISIT_OCCURRENCE,
PROCEDURE_OCCURENCE, DRUG_EXPOSURE, DEVICE_
EXPOSURE, CONDITION_OCCURENCE, MEASUREMENT,
OBSERVATION, LOCATION, CARE_SITE and PROVIDER.
For the purpose of this study, we limit assessment to previous
reported conditions (from CONDITION_OCCURENCE) and
lifestyle/habits (from OBSERVATION).

Data Processing
Data wrangling was performed using Python 3.8.5 with the
Pandas package 1.2.1 and Numpy package 1.19.5. Code for
recreating our process is freely available (see code availability
statement below). The following subsections detail the
information retrieved from the database tables
mentioned above.

Person Table
Demographic information (i.e., age, gender, race, and ethnicity)
for each de-identified individual was extracted from the PERSON
table. Ages were extracted using the “year of birth” values.

Measurement Table
Information about COVID-19 testing was stored in the
Measurement table. We extracted the date, test type and test
result for each person.

COVID-19 positivity was determined by the presence of
either one of the three criteria: positive COVID-19 antibody
test, positive COVID-19 Polymerase Chain Reaction (PCR)
test, or the presence of ICD-10 U07.1 code in the EHR record.
COVID-19 negativity was assigned if the person were tested
for COVID-19 but has never had a positive test nor an ICD-10
U07.1 code.

Condition_Occurence Table
We extracted medical conditions (such as signs and symptoms,
injury, abnormal findings and diagnosis) for each patient from
this table by leveraging the inherent hierarchical structure of the
ICD-10 classification system.

Observation Table
Lifestyle and habits (i.e., BMI, smoking, alcohol and substance
use) were extracted from this table. This table also includes the
current status (i.e., current, former, never or unknown) of habits
for each patient.

Feature Filtering and Extraction
Demographics, lifestyle/habits and conditions (encoded by ICD-
9/ICD-10) are obtained as features in our model. For the purpose
of using the updated version of ICD codes as features, we
converted all ICD-9 codes to ICD-10 codes using a publicly
available converter script (Hanratty, 2019). We used these
converted codes along with the original ICD-10 codes to map
and extract conditions reported in the EHR for each patient.

Before feature extraction, we filtered out all COVID-19 related
ICD-10 codes such as U07.1 (COVID-19, virus identified),
Z86.16 (personal history of COVID-19), J12.82 (pneumonia
due to coronavirus disease 2019), B94.8 (sequelae of COVID-
19), B34.2 (Coronavirus infection, unspecified), and B97.2
(Coronavirus as the cause of diseases classified elsewhere).
Discarding COVID-19-related codes is imperative to prevent
data leakage in our predictive model. Data leakage refers to
the inclusion of information about the target of the prediction
in the features used for making the prediction that should not be
(legitimately) available at the time a prediction is made (Huang
et al., 2000; Nisbet et al., 2009; Kaufman et al., 2012; Filho et al.,
2021).

Temporal Filter for Medical Condition data
For the positive cohort, we used the date of patients’ first
COVID-19 testing or their first assignment of the COVID-
19-related ICD-10 codes (U07.1, U07.2, Z86.16, J12.82, B94.8,
B34.2, or B97.29) as the timestamp to apply a temporal filter for
feature selections. For the negative cohort, we also used the date
of their first COVID-19 testing as the timestamp. We define
temporal filter as a restricted timeframe to study the effect of
conditions for infection (i.e., to assess risk using medical
conditions occurred within 2 weeks before an infection). This
temporal filter is crucial to once again avoid data leakage by
excluding features that may emerge as a result of a COVID-19
infection or diagnosis.

To investigate how the timing of medical events and
conditions may affect the risk for COVID-19, we extracted the
condition data over two distinct time intervals. The first
timeframe only considers the conditions within the 2-week
window prior to the date of diagnosis whereas the second
timeframe retains all condition data before a given patient’s
first COVID-19 test or diagnosis.

Credit Scorecard Model
Variable (Feature) Selections
After extracting patients’ demographic information, lifestyle,
habits and ICD-10 condition codes, we converted them to
features using one-hot encoding. Features with more than
95% missing data or 95% identical values across all
observations were removed. The remaining variables
underwent weight-of-evidence (WoE) transformation, which
standardizes the scale of features and establishes a monotonic
relationship with the outcome variable (Zdravevski et al., 2011).
WoE transformation also handles missing and extreme outliers
while supporting interpretability through enforcing strict linear
relationships (Zdravevski et al., 2011). WoE transformations
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require all continuous or discrete variables to be binned. This
binning process is carried out programmatically based on
conditional inference trees (Hothorn et al., 2006). Missing
values for each feature are placed in their own bin and
eventually assigned their own WoE values. Each level (x) of
the binned values for each feature is then assigned a WoE value

via WoE(x) � ln(P(x|y�1)
P(x|y�0)) where P(x/y) is the conditional

probability of x given y, and y is the binary response
variable. All values of the independent variables, including
missing values, are then replaced with their corresponding
WoE value (Zdravevski et al., 2011; Szepannek, 2020). These
transformed variables were then used in logistic regression to
assign weights for the Scorecard.

For feature selection and regression on these transformed
variables, we tested two regularization approaches, LASSO
(Tibshirani, 1996) and Elastic-Net (Zou and Hastie, 2005),
using a cross-validation-based logistic regression method from
the Python package Scikit-Learn (version 0.23.2). This method
incorporates the use of stratified cross-validation to determine
optimal parameters for LASSO and Elastic-Net. LASSO is a
modification to typical generalized linear modeling techniques
such as logistic regression. Under the constraint the sum of the
absolute value of the model coefficients are less than a constant,
the residual sum of square errors is minimized (Tibshirani,
1996). The application of this constraint results in some
coefficients being 0, making LASSO a simultaneous variable
selection and model fitting technique. Building on LASSO,
Elastic-Net adds a quadratic penalty term to the calculation of
coefficients. Practically, this additional term prevents the
“saturation” (Zou and Hastie, 2005) problem sometimes
experienced with LASSO where an artificially limited number
of variables are selected. Both techniques employ penalty terms
to shrink variable coefficients to eliminate uninformative
features and avoid collinearity.

Collinearity is a major problem in extracting features from
ICD codes since some codes are frequently reported together, or
different providers may use inconsistent and incomplete codes.
Between the two approaches, LASSO is a more stringent variable
selector. For example, in the case of two highly similar features,
LASSO tends to eliminate one of them while Elastic-Net will
shrink the corresponding coefficients and keep both features
(Hastie et al., 2001).

The regularization strength (for both LASSO and Elastic-Net)
parameter and mixing parameter (for Elastic-Net) were selected
using 10-fold stratified cross-validation (CV). This method
creates 10 versions of the model using a fixed set of
parameters, each trained on 90% of the training data with
10% held out in each “fold” for scoring that particular
instance of the model. The stratified variant of CV ensures
that the distribution of classes (here COVID-positive patients
and COVID-negative patients) is identical across the 90%/10%
split of each fold. This process enables the model developer to
assess the predictive capability of the model given the specific set
of parameters being tested. The scores over all folds are averaged
to assign an overall score for the given set of parameters. This
process is repeated for all candidate sets of parameters being
tested. Cross-validation aids in preventing overfitting, i.e., failing
to generalize the pattern from the data, because the model is
judged based on its predictions on hold-out data, which are not
used for training the model.

For scoring candidate sets of parameters, we chose negative log
loss, a probability-based scoring metric, because a Scorecard
model is based on probabilities rather than strict binary
predictions. In particular, negative log loss penalizes
predictions based on how far their probability is from the
correct response (Bishop, 2016). For example, consider a
patient who is in truth COVID-negative. A forecast that a
COVID-positive diagnosis is 51% likely will be penalized less
harshly than a forecast that COVID-positive is 99% likely.

TABLE 1 | Demographics and Clinical Characteristics of the UAB LDS N3C
Cohort.

UAB LDS N3C cohort (n = 7,262)

COVID-19 testing:
COVID-19 results Positive (n � 912) Negative (n � 6,350)
Total COVID tests 1,328 7,596
COVID Tests/Person 1.46 1.20

All medical tests:
All tests 1,951,404 17,395,613
All tests/person 2,139 2,739
Age mean � 52 (10–119) mean � 52 (<1–119)

Gender:
Male (%) 394 (43%) 3,035 (48%)
Female (%) 516 (57%) 3,314 (52%)
Unknown (%) 2 (0%) 1 (0%)

Race:
White (%) 337 (37%) 3,441 (54%)
Black (%) 416 (46%) 2,497 (39%)
Asian (%) 27 (3%) 70 (1%)
Hispanic (%) 28 (3%) 174 (3%)
Others (%) 104 (11%) 168 (3%)

Conditions:
Total conditions 129,091 1,133,396
Unique conditions 9,224 24,101
#Conditions/Person 142 178
#Unique conditions/Person 10 4

Smoking:
Current smoker 81 (9%) 1,602 (25%)
Former smoker 196 (21.5%) 1,625 (26%)
Never smoker 368 (40%) 2,589 (41%)
Unknown 13 (1%) 64 (1%)

Substance use:
Current substance abuse 27 (3%) 895 (14%)
No substance abuse 632 (69%) 4,716 (74%)
Former substance abuse 32 (3.5%) 402 (6%)
Unknown 15 (1.6%) 74 (1%)

Alcohol use:
Current alcohol 273 (30%) 1954 (31%)
Former alcohol 58 (6%) 652 (10%)
No alcohol 379 (41.5%) 3,459 (54.5%)
Unknown 12 (1.3%) 80 (1%)

Weight:
Underweight (BMI < 19) 20 (2%) 271 (4%)
Normal weight (BMI � 20–25) 49 (5%) 563 (9%)
Overweight (BMI � 25–40) 320 (35%) 2,439 (38%)
Obese (BMI > 40) 120 (13%) 773 (12%)
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Conversely, a forecast that a positive diagnosis is 49% likely will
be rewarded less than one that such a diagnosis is 1% likely.

The hyperparameters evaluated for candidate LASSO
models was regularization strength, or the inverse of
lambda referred to in (Tibshirani, 1996). One-hundred
candidate values on a log scale between 1e−4 and 1e4 were
considered. The model with the best score from the technique
described above was considered to have the optimal
hyperparameters. For Elastic-Net, the same set of
regularization strength parameters was considered.
Additionally, Elastic-Net has a mixing parameter that
controls the relative strength of the LASSO-like penalty and
the additional Elastic-Net penalty term. Ten evenly spaced
values between 0 and 1 were considered for this
hyperparameter.

To address the class imbalance between COVID-19 positive
and negative group in the training data, we weighted each
observation inversely proportional to the size of its class.

Likewise, the use of a stratified cross-validation method
reduces the risk of inflating some scoring metrics by the
model preferring to simply predict the dominant class. Using
the above methods, we wanted to compare and contrast four
models to predict the risk for infection. Below are the four
models:

1. LASSO with all conditions/features reported before the
infection/diagnosis

2. Elastic-Net with all conditions/features reported before the
infection/diagnosis

3. LASSO with only conditions/features reported within 2 weeks
of infection/diagnosis

4. Elastic-Net with only conditions/features reported within
2 weeks of infection/diagnosis

Model Evaluations
Data were randomly split into 80% for the train set and 20% for
the test set. The quality of the four models built from two different
time-filtered datasets and two different regularization techniques
were evaluated by plotting the Receiving Operating Characteristic
(ROC) curve and measuring the corresponding Area Under the
ROC Curve (AUC). We also considered other model quality
metrics such as Accuracy (ACC)—the percent of correct
responses—and F-score—the harmonic mean of precision and
recall. We also used the confusion matrices to judge the quality of
our candidate models. Considering that these models are built to
recommend COVID-19 testing, we sought to avoid False
Negative predictions while being more lenient towards False
Positive errors.

Risk Score Scaling Using the Scorecard Method
Coefficients from the resulting logistic regression models were
then combined with the WoE-transformed variables to
establish scores for each feature in the Scorecard. This
scorecard generation was performed using the Scorecard
method implemented in the scorecardpy python package
(version 0.1.9.2). As opposed to pure logistic regression
models, scorecard models allow a strictly linear
combination of scores that can be calculated even on a
piece of paper, without the aid of any technology.
Calculating the probabilities from a logistic regression
model would require inverse transformations of log odds.
We chose the scorecard model for the strict linear
interpretation and corresponding ease of deployment
anywhere.

This method requires users to select target odds and target
points (a baseline number of points corresponding to a baseline
score) along with the points required to double the odds. As these
choices are arbitrary, we used the package defaults, which set the
target odds to 1/19, the corresponding target points to 600, and the
default points required to double the odds to 50. Supplemental
Figure S1 shows an example of a Scorecard distribution calculated
in this manner. Since the final Scorecard model is a linear function
of the predictors (i.e., higher scores indicate higher COVID-19
risks), using scorecards has many benefits such as transparency,
interpretability and facile implementation.

FIGURE 1 | Overview of workflow.
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Building a Web Application to Predict
COVID-19 Risks
Based on the final Scorecard model results, we used the
streamlit package (version 0.77.0) in Python to build an
interface and used interactive indicator plot from plotly to
visualize the risk score. The Python code to build this
application can be found in our gitlab repository at gitlab.
rc.uab.edu/center-for-computational-genomics-and-data-
science/public/covid-19_risk_predictor.

RESULTS

Our dataset was composed of 7,262 patients from within the UAB
Health System who received COVID-19 testing or diagnosis from
January to June 2020. The demographic information of this study
population is shown in Table 1. Among them, 912 patients were
diagnosed with COVID-19 and the remaining 6,350 patients,
were not. On average, patients in the positive group received 13%

more COVID-19 tests (1.45 vs. 1.19 tests/person). While there is
no statistically significant difference in age and gender between
the two groups, African American (46 vs. 39%), Asian (3 vs. 1%)
and Others (11 vs. 3%) ethnicity were overrepresented in the
positive group, a finding which is concordant with other reports
about the racial disparity in COVID-19 (Kullar et al., 2020). In
this UAB Health System dataset, a greater number of patients in
the negative group reported substance abuse (14 vs. 3%) and
current smoking (25 vs. 9%). There was no difference in Body
Mass Index (BMI) between the two groups. Although the
COVID-19 negative group had more reported medical
conditions (178 vs. 142 medical conditions/person), they had
fewer unique medical conditions (4 vs. 10 unique conditions/
person).

The workflow to build the predictive model for COVID-19
diagnosis based on EHR data is summarized in Figure 1. We used
condition data extracted from ICD-9/ICD-10 codes from two
different timeframes to assess how the timing of medical
symptoms and conditions may affect our COVID-19 risk

FIGURE 2 | LASSO vs Elastic-Net model performance on two sets of data Receiver operating characteristic (ROC) curves are shown for the final model for each of
the four assessed techniques (A,B), and the corresponding areas under curves (AUC) are presented in the figure legend. By AUC on hold out data (0.815), the models
built on data filtered by two-week before COVID (non)diagnosis perform the best (B).
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predictions. The first timeframe considers the data reported
within a 2-week window of testing/diagnosis while the second
timeframe retains all condition data prior to a COVID-19 test
or diagnosis. Such condition data suffer from collinearity
issues in that a group of medical conditions tends to be
reported together, and different providers may use
inconsistent codes for the same conditions. To address
these collinearity issues, we utilized two different
regularized regression techniques, LASSO and Elastic-Net.
Applying these two methods on the two data timeframes
yielded four different models with reasonable
discriminatory power, as judged by performance metrics on
testing data. With LASSO, we achieved 0.75 accuracy and 0.84
[CI: 0.81–0.87] AUC for the 2-week data and 0.74 accuracy and
0.80 [CI: 076–0.83] AUC for all-time data (Figure 2; Table 2).
Elastic-Net models also performed with a similar accuracy of
0.76 and AUC of 0.84 [CI: 0.81–0.87] for the 2-week data and
an accuracy of 0.74 and AUC of 0.79 [CI: 0.76–0.83] for the all-
time data (Figure 2; Table 2).

Using LASSO, a more stringent regularization method where
many variables are eliminated through shrinkage, after filtering,
30 out of the 58 features were retained (Supplemental Table S1)
in the 2-week data, and 93 out of 212 features were retained in the
all-time data (Supplemental Table S2). Within two weeks before

a COVID-19 diagnosis, features that predict higher risks for this
disease were cough (R05), abnormalities of breathing (R06), pain
in throat and chest (R07), abnormal findings on diagnostic
imaging of lung (R91), respiratory disorder (J98), disorders of
fluid, electrolyte and acid-base balance (E87), nicotine
dependence (F17), major depressive disorder (F32) and
overweight and obesity (E66) (Supplemental Table S1). The
LASSOmodel on all-time data identified similar features from the
2-week data such as cough (R05), but it also delineated other
important features related to acute respiratory infections such as
fever (R50), pain (R52), acute upper respiratory infections (J06),
respiratory failure (J96), respiratory disorder (J98), pneumonia
(J18), vasomotor and allergic rhinitis (J30), and other disorders of
nose and nasal sinuses (J34). Most notably, the all-time model
uncovered several chronic conditions in other organ systems
besides the respiratory system including neurological disorders
e.g. postviral fatigue syndrome (G93, R41), kidney diseases (I12,
I13, N17), diseases of the heart and circulation including
hypertension and kidney failure (I49, I51, J95) and fibrosis/
cirrhosis of the liver (K74), suggesting that long-term chronic
conditions in other organ systems may increase the risks for
contracting an acute respiratory illness such as COVID-19.

Even though LASSO is an effective method to handle
collinearity issues, it may not work well with multicollinearity
where several features are correlated among each other, as
observed in our condition data. Considering that LASSO may
eliminate important features through the stringent shrinkage
process, we also implemented the Elastic-Net regularization
method as a less stringent variable selector. This approach
retained more features than the LASSO with 43 features
remained for the 2-week data and 179 features for the all-time
data. All features selected from the LASSO method also remained
in the Elastic-Net method. Several new predictive features
emerged from the 2-week data including primary hypertension
(I10) and gastro-esophageal reflux disease (K21). In the all-time
data, many distinct yet similar conditions from the LASSOmodel
also appeared such as acute myocardial infarction (I21),
cardiomyopathy (I42), other cardiac arrhythmias (I49),
cerebral infarction (I63), complications and ill-defined
descriptions of heart disease (I51), peripheral vascular diseases
(I73), and other cerebrovascular diseases (I67), pointing to
vascular disorders. Other medical conditions also emerged
including viral hepatitis (B19), bacterial infection (B96),
thrombocytopenia (D69), epilepsy and recurrent seizures
(G40), although the predictive powers of these variables were low.

Among the four candidate models we generated based on the
UAB-i2b2 data, the LASSO method on the 2-week filtered data
retained the fewest variables while achieving similar performance
with other more complex models (Figures 2, 3; Table 2;
Supplemental Tables S1–S4). For this reason, we believed this
is a superior model and selected it as the model for our web
application. This interactive web application (Figure 4) gathers
participant questionnaire inputs and generates a risk prediction
score of having COVID-19. The Scorecard distribution based on
the logistic regression model can be found in Supplemental
Figure S1. This tool can be used for individuals to check their
risks based on their symptoms or conditions, or for organizations

TABLE 2 | Model metrics Evaluation of four models (LASSO and Elastic-Net with
patient’s conditions information from two timeframes) while training and
testing (i.e., holdout) data set. For each model, the accuracy, F-Score, and AUC
with 95% CI using DeLong’s method (DeLong et al., 1988) are shown. The
accuracy metric indicates the percent of correct predictions. F-score is the
harmonic mean of precision and recall. Area under receiver operating curve
(AUC) is the area under the curve resulting from plotting the true positive
against the false positive rate.

Training metrics

All-Time + LASSO All-Time + Elastic-Net

Accuracy 0.746 Accuracy 0.755
F-Score 0.834 F-Score 0.840
AUC 0.838 AUC 0.840
95% AUC CI [0.82 0.86] 95% AUC CI [0.82 0.86]

2-Week + LASSO 2-Week + Elastic-Net

Accuracy 0.774 Accuracy 0.775
F-Score 0.847 F-Score 0.848
AUC 0.848 AUC 0.848
95% AUC CI [0.83 0.87] 95% AUC CI [0.83 0.87]

Testing Metrics

All-time + LASSO All-time + Elastic-Net

Accuracy 0.741 Accuracy 0.744
F-Score 0.832 F-Score 0.834
AUC 0.796 AUC 0.794
95% AUC CI [0.76 0.83] 95% AUC CI [0.76 0.83]

2-Week + LASSO 2-Week + Elastic-Net

Accuracy 0.753 Accuracy 0.755
F-Score 0.833 F-Score 0.835
AUC 0.837 AUC 0.837
95% AUC CI [0.81 0.87] 95% AUC CI [0.81 0.87]
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FIGURE 3 | Confusion matrices Confusion matrices using training (A–D) and holdout (E–H) data are shown for the final model for each of the four assessed
techniques. Considering that these models are built to recommend COVID-19 testing, we sought to avoid False Negative predictions while being more lenient towards
False Positive errors.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6758828

Mamidi et al. COVID-19 risk prediction with EHR

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


to build questionnaires to perform COVID-19 screening for
building entries. An example questionnaire from our final
model is provided in Table 3.

DISCUSSION

In this project, we built a data processing and predictive analytics
workflow to predict the risks for COVID-19 diagnosis using
patients’ longitudinal medical conditions encoded by the ICD-9/
ICD-10 classification system. We tested the implications of
applying different time windows and alternative variable

regularization methods to extract the most predictive features
from the condition data.

Although the all-time data model selected more features with
implications about pre-existing chronic medical conditions
increasing the risk of contracting COVID-19, we determined
that it was prone to capturing spurious correlations with distant
historical data and had weaker performance than the 2-week
models (Figures 2, 3; Table 2; Supplemental Tables S1–S4).
With regards to modeling techniques, we found that a more
stringent regularized regression approach such as LASSO
resulted in simpler models and still achieved high
performance as compared to more complex models built

FIGURE 4 | Web application demonstration Four representative snapshots with different scorings from the COVID-19 risk predictor web application are shown.
Scores were calculated based on participant answers to questions related to their symptoms and conditions using the Credit Scorecard method.
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from the Elastic-Net method (Figures 2, 3; Table 2;
Supplemental Tables S1–S4). As simpler models tend to be
more generalizable, more interpretable, and less likely to be
overfit, we consider the LASSO model using the 2-week data
filter the superior model for its parsimony without sacrificing
performance. Many COVID-19 risk prediction studies also
employed LASSO (Alballa and Al-Turaiki, 2021) with a few
other studies used Elastic-Net (Heldt et al., 2021; Hu et al., 2021;
Huang et al., 2021) as feature selection methods. A COVID-19
diagnostic prediction study by (Feng et al., 2021) compared the
performance of four different feature selection methods
including LASSO, Ridge, Decision Tree and AdaBoost also
found LASSO produced the best performance in both the
testing and the validation set.

While our workflow focuses on automatically extracting
predictive features from ICD9/10 codes, the majority of
COVID-19 prediction studies selected features from a wide-
range of additional clinical data components such as chest
computed tomography (CT) scan results, laboratory blood
tests, which includes complete blood count (e.g., leukocyte,
erythrocyte, platelet count, and hematocrit), metabolic factors
(e.g., glucose, sodium, potassium, creatinine, urea, albumin, and
bilirubin), clotting factors (e.g., prothrombin and fibrinogen),
inflammation markers such as C-reactive protein and interleukin
6 (IL-6) (Alballa and Al-Turaiki, 2021). Furthermore, whereas
some studies selected the initial sets of features from EHR data
based on expert opinions (Estiri et al., 2021; Feng et al., 2021;
Schwab et al., 2021) and/or literature review (Joshi et al., 2020;
Schwab et al., 2021), we took an unbiased approach to use ICD9/
10 codes along with demographic information as the initial set of
features. Our data wrangling workflow is limited to the data
available in the OMOP common data model, which facilitates

scaling up the analyses when we have access to more data of the
same format in the future.

Our results showed several COVID-19 predictive features that
overlapped with existing published findings. For example, several
respiratory symptoms such as cough, abnormalities of breath, and
chest pain prioritized by our models—particularly within the 2-
week timeframe—are well-known symptoms of COVID-19 (Fu
et al., 2020; Huang et al., 2020). Other chronic conditions selected
from our models have also been reported to increase COVID-19
risks such as obesity (Popkin et al., 2020), allergic rhinitis (Yang
et al., 2020), cardiovascular diseases (Nishiga et al., 2020) and
kidney diseases (Adapa et al., 2020) while there are still on-going
debates about the role of nicotine and smoking in COVID-19
risks (Polosa and Caci, 2020). Similar to other studies, we found
that major depressive disorder is associated with COVID-19
diagnoses. However, it is unclear whether severe mental health
problems are the cause, the effect, or the confounding factors with
other features associated with COVID-19 (Ettman et al., 2020;
Nami et al., 2020; Skoda et al., 2020).

A major limitation in our predictive modeling pipeline relates
to the fact that our model is based entirely on correlations
between medical conditions and COVID-19 testing/diagnosis.
Therefore, by design, this workflow cannot establish causal
relationships. As examples, there are several medical
conditions associated with lower risks for COVID-19
(Supplemental Tables S1–S4) which may highlight distinct
features in our negative cohort but may not directly affect
COVID-19 risks. This problem, however, is inevitable in
predictive analytic workflows that derive inferences from
retrospective data. Similar to all studies that apply machine
learning methods to model COVID-19 diagnosis, our classifier
is prone to imbalanced class distribution where there the positive

TABLE 3 | Example questionnaire Example questionnaire built using our selected model using the UAB-i2b2 data—the LASSO method on the 2-week filtered data. Base
score is 320 and the risk increases/decreases based on the answers in the questionnaire. Any score between 450 and 696 is considered high risk for infection.
Disclaimer: This questionnaire is intended only as an example output from a model built using our pipeline. It is not itself a diagnostic tool.

Questions Yes No

Do you have chronic kidney disease? 36 −6
Do you have cough? 36 −44
Have you delivered a baby? 35 −2
Are you having acute upper respiratory infections? 30 −6
Do you have fever? 24 −5
Are you having depression, anxiety, problems with cognitive functions or other brain disorders? 17 −4
Are you having pneumonia? 17 −3
Are you having respiratory failure? 16 −3
Are you dependent on nicotine? 14 −4
Do you have allergic rhinitis? 14 −2
Do you have retention of urine? 14 −1
Do you have pain? 14 −1
Do you have hernia? 13 −1
Do you have liver fibrosis/cirrhosis? 13 −1
Do you have disturbances of skin sensation? 12 −2
Are you having anemia? 10 −1
Are you having bacterial infection? 9 −1
Do you have complications from heart disease? 8 −2
Do you have hypotension? 8 −1
Do you have complications of cardiac and vascular prosthetic devices, implants and grafts? 6 0
Are you vitamin D deficient? 2 0
Do you have cardiac arrhythmias? 2 0
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COVID-19 instances are underrepresented in the training data
(Alballa and Al-Turaiki, 2021). However, we addressed this class
imbalance issue by weighing each observation inversely
proportional to the size of its class (see the Methods Variable
(Feature) Selections). Finally; we choose a generalized linear
model approach where we assume linear relationships on a
logistic scale between medical conditions and COVID-19 risks,
and consequently, potential non-linear relationships are not
considered.

Although our workflow is straightforward to implement, there
are substantial trade-offs by using the ICD-9/ICD-10 standard
vocabulary system as opposed to alternative text mining
approaches to extract medical conditions from EHR data. ICD
code accuracy is a major problem in some cases with classification
error rates as high as 80% (O’Malley et al., 2005). The sources of
these errors are wide-ranging including poor communication
between patients and providers, clinician’ mistakes or biases,
transcription/scanning errors, coders’ experience, and
intentional or unintentional biases (e.g., upcoding and
unbundling for higher billing/reimbursement value) (O’Malley
et al., 2005). Inconsistent, incomplete, systemic and random
errors in ICD coding (Cox et al., 2009) introduce noise in the
dataset, which is another limitation of our workflow.

Despite these inherent limitations, our study shows the promising
utility of incorporating the ICD-10 system in an unbiased manner
for novel inferences of EHR data, particularly to study medical
symptoms and conditions that influence the risks for COVID-19.
Future studies can consider incorporating other standard
vocabularies available in EHR data such as Systemized
Nomenclature of Medicine (SNOMED), Current Procedural
Terminology (CPT), Logical Observation Identifiers Names and
Codes (LOINC) as well as adding additional datasets such as patient’
medication uses to further understand the risks and the long-term
consequences of COVID-19.
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