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Abstract

Multispecies bacterial communities can be remarkably stable and resilient even though they consist of cells and species that
compete for environmental resources. In silico models suggest that common signals released into the environment may
help selected bacterial species cluster at common locations and that sharing of public goods (i.e. molecules produced and
released for mutual benefit) can stabilize this coexistence. In contrast, unilateral eavesdropping on signals produced by
a potentially invading species may protect a community by keeping invaders away from limited resources. Shared bacterial
signals, such as those found in quorum sensing systems, may thus play a key role in fine tuning competition and
cooperation within multi-bacterial communities. We suggest that in addition to metabolic complementarity, signaling
dynamics may be important in further understanding complex bacterial communities such as the human, animal as well as
plant microbiomes.
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Introduction

Members of complex bacterial communities communicate and

cooperate via the exchange of public goods and chemical signaling

molecules, while also compete for space and resources. Examples

of such communities include microbial mats of the oceans, the gut

microbiota of animals and many insects as well as the microbial

communities of the rhizosphere [1]. In spite of internal compe-

tition and changing environments, multispecies communities can

maintain remarkable stability over time and resiliency with respect

to environmental challenges [2]. For instance, the mammalian

gastrointestinal tract hosts an especially complex microbiota that is

capable of resisting invasion by pathogens. For a successful

colonization, incoming pathogens have to be able to scavenge

nutrients, to sense community signals, to compete with the resident

bacteria, and to timely regulate virulence genes [3,4,5]. For

instance, the microflora of the human oral cavity is estimated to

approximately 1010 bacteria belonging to about 100 different

bacterial species [6,7,8,9]. These species have been shown to

interact via mutualistic metabolic exchanges [10,11].

Quorum sensing (QS), a molecular regulatory mechanism in

response to bacterial cell density, is used by many bacterial

communities to communicate, synchronize and regulate behavior

[12,13,14]. QS is a cell-cell communication process wherein

bacteria emit diffusible autoinducer signal molecules that allow

them to monitor population density, and to turn on various

phenotypes in a precisely coordinated manner. Examples include

secretion of exoenzymes, of siderophores (iron-chelating com-

pounds), production of anti-microbial secondary metabolites,

biofilm formation, bacterial movement, bacterial conjugation

and regulation of virulence associated factors [15,16,17]. This

synchronous response confers bacterial populations a degree of

multicellularity that couples individual cell responses to popula-

tion-wide alterations. The fundamental steps are comparable in

virtually all QS systems [13]. In a canonical system, the

autoinducer molecules are passively released or actively secreted

outside of the cells. As the number of cells increases in an

environment, the extracellular signal concentration likewise

increases, and when it exceeds a minimal threshold level, cognate

receptors bind the autoinducers and trigger signal transduction

cascades that regulate gene expression. Acyl homoserine lactones

(AHLs) are believed thus far to be the major class of QS

autoinducer signals used by Gram-negative bacteria. These

molecules have a conserved homoserine lactone ring with an acyl

side chain, which may vary from three to 18 carbons. In an AHL-

QS circuit, AHLs are synthesized by a LuxI-type protein, and

above a critical concentration, the AHL molecule binds a LuxR-

type protein. This protein is then activated by exposing a DNA

binding domain that subsequently recognizes a palindromic lux

box cis-element localized in the promoter region activating the

expression of the target genes (8). There is also a growing list of

LuxR-type proteins that function in the apo-form, and are

inactivated by AHL binding [18]. Importantly, the luxI and luxR

genes are often under a positive induction feedback loop forming

a regulatory circuit that generates rapid amplification of the signal.
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Sharing of AHL signals by QS bacteria is not uncommon in

nature. Namely, AHL signals fall into closely related structural

classes and it is not rare that an AHL regulator receptor can react

to more than one of the chemically related signals. This

phenomenon is often ascribed to the ‘‘relaxed specificity’’ or

‘‘promiscuity’’ of the LuxR regulator-receptor protein [19,20].

The benefit that this brings to a bacterial cell is currently not well

understood. Furthermore, it has been noted that some regulator-

receptor proteins perceive certain signals at very low concentra-

tions while others at much higher concentrations [21].

While there is a substantial amount of theoretical and practical

work on the stability of biological communities, relatively little is

known about the stability of quorum sensing communities.

Recently it was shown by experiment that a wild type Pseudomonas

aeruginosa can form stable binary communities with its mutant that

is defective in signal production but able to contribute to the public

goods [22]. On the other hand, a non-cooperating mutant that

does not contribute to public goods can invade and collapse a wild

type community. The same study also showed that the existence of

QS signaling is sufficient to reproduce the above behavior patterns

in silico (see details in Methods).

In certain diseases, small cohorts of bacterial species appear to

mediate disease progression and that they do this via mutually

understanding each other’s signals, a process now referred to as

interspecies signaling [23,24]. For instance, in the olive-knot

disease of the olive tree (Olea europaea), the causative agent is the

bacterium Pseudomonas savastanoi pv. savastanoi (PSV). However, two

otherwise non-pathogenic bacterial species, namely Pantoea

agglomerans (PA) [25] and Erwinia toletana (ET) [26], are often

found associated with the olive-knot and the three species in the

knot grow more together than alone [27]. As the three species are

stably associated and appear to increase the fitness of each other,

there is reason to believe that these associations are not

coincidental. Recently it was shown that PSV, ET and PA not

only form stable communities but also react to the signals of one

another [27]. As a result we became interested in the potential role

of signaling in the stability of multispecies QS communities.

Figure 1 illustrates two types of QS interactions. PSV and ET

can mutually utilize the signals and public goods of each other, so

this is a symmetrical relationship, which for two species, A and B,

can be written as shown by Scheme 1, Figure 2. The arrows

indicate that each species perceives its own signal as well as that of

the other species. The other type of interaction is between PSV

and PA. PSV exploits the signals of PA, while PA cannot utilize

those of PSV. This is thus an asymmetrical relationship that can be

written as shown by Scheme 2, Figure 2. The ternary bacterial

consortium of the olive knot has another noteworthy feature - the

production of the plant hormone indoleacetic acid (IAA) which is

not regulated by QS [18]. IAA is essential for the tumorous growth

of plant tissue which ultimately leads to knot formation [28]. Even

though PSV is the niche-maker i.e. the only species within the trio

that can infect the host alone, all three species contribute to knot

formation by producing IAA which can thus be considered a public

good within the consortium [27]. In the present work we try to

answer the question of whether or not sharing signals and public

goods in a symmetrical or asymmetrical fashion can per se

contribute to the formation of stable bacterial communities.

Here we use agent-based in silico models to simulate the

competition between QS bacteria that share signals, public goods

and nutrients to varying extents. We show that bacterial species

sharing public goods can easily form stable, co-localizing

communities. We also show that relaxed specificity provides

a fitness advantage for a bacterium when competing with other

QS bacteria.

Figure 1. Experimentally observed sharing of bacterial signals and public goods in olive knot disease. Pseudomonas savastanoi and
Pantotea aggolomerans produce and perceive the same acyl-homoserine lactone signals, C6-3-oxo-HSL (C63O) and C8-3oxo-HSL (C83O), which is an
example of symmetrical sharing. On the other hand, Pantotea agglomerans uses two different signals, C6-HSL (C6) and C4-HSL (C4), one or both of
which are perceived (‘‘exploited’’) by P. savastanoi. All three species produce indolacetic acid (IAA), which is a public good that causes the plant host
mobilize nutrients for the bacteria (based on [27].).
doi:10.1371/journal.pone.0057947.g001

Figure 2. Scenarios for sharing signals and public goods in
quorum sensing. Scheme 1: Symmetrical sharing. The two species, A
and B, can both utilize the signals and public goods of the other
species. Scheme 2: Asymmetrical sharing. Species B can utilize the
signals and public goods of Species A, but not vice versa. The circular
arrows indicate that each species is capable of utilizing its own signals
and public goods.
doi:10.1371/journal.pone.0057947.g002
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Results

Simulation Outcomes: Competition Phenotypes
Competition experiments were set up in such a way, that equal

numbers of two species were placed randomly at the beginning of

a longitudinal 2D surface ‘‘track’’ (see Methods). This track was

covered with two kinds of nutrients (one for each species). At the

beginning of the simulation, the cell agents were in the solitary

(ground) state where they produced their own diffusible signals. As

the simulation began, the cells started to move randomly, to feed,

divide and continued to produce the diffusible signals. When the

signal concentration in the environment reached a threshold, the

cells switched to an active state, and started to produce their own

type of public goods. When public goods in the environment

reached a threshold concentration, the cells switched to the

swarming state i.e. they increased their random movement, food

intake as well as the production of signals and public goods. We

used simulation conditions wherein a species needed to commu-

nicate and cooperate in order to reach the swarming state that

enables the cell agents to survive. Viable species formed agent-

communities that proceeded forward along the longitudinal track

towards the nutrient. Such a viable community consisted of models

in the swarming state, and it had a steady population size. When

this population size was constant throughout at least 500

generations, the community was considered stable. Non-viable

communities on the other hand remained stuck in the solitary state

and could not move. Thus there was a clear difference between

viable and non-viable communities.

In order to incorporate (symmetrical or asymmetrical) sharing

into our model, we defined sharing coefficients for each species in

such a way that zero value indicated no sharing and a value of 1.0

indicated complete sharing (See Methods for details). We defined

different coefficients for signal sharing (a), public goods sharing (b),

and nutrient sharing (c), respectively. It is noted that that the

values of a, b, and c cover the entire ‘‘competition space’’, i.e.

a= b= c = 0 denotes full independence of the competing species

while, a= b= c=1.0 denotes full sharing. Mapping out the

competition space then consisted of carrying out experiments by

varying a, b and c between 0.00 and 1.00 by steps of 0.02. Such an

exercise requires a large number of simulations, each of them

resulting in a final distribution of two bacterial agent populations

which then has to be described in numerical and biological terms.

In order to facilitate this task, we carried out preliminary

experiments in order to explore the types of competition outcomes.

Interestingly, we observed only a limited number of outcomes:

A) Co-localization, co-swarming. In this case, the cells of the two

species from a homogeneous mixed population (Figure 3A,

Video S1) move together for at least 1000 generations. The

segregation coefficient of this state is close to zero and the

relative fitness of such a community could exceed 1.0, i.e.

both constituent species can grow better in a community,

than alone (eqn. 4, methods).

B) Winning, competitive exclusion. Only one of the species could

form a steady population (Figure 3B, top) while the other

species, depending on the nutrients available, either died out

or formed a small, stagnating population (Figure 3B, bottom,

also see Video S2). By inspecting a large number of

experiments conducted in a variety of conditions, we

observed two types of winning scenarios. In one type, either

of the two species could be the winner with a more-or-less

equal probability. We termed this situation ‘‘stochastic

exclusion’’. In the other type of cases, the same species, i.e.

the more competitive one, was always the winner - we

termed this case ‘‘competitive exclusion’’. The scenario of

exclusion was apparently the same in both cases: the loosing

Figure 3. Competition outcomes observed with two competing QS agent populations (filled and non-filled circles). A) Stable, mixed
community of two species (colocalization). Both types of cells are in the active, swarming state. B) Winning. The winner population forms a stable,
swarming community (filled cells on top) while the loosing species (non-filled cells, near the starting position) will form a small community that will
either stagnate in the solitary state, or die out, depending on the nutrients available. C1) Segregating populations. The species indicated with filled-
dots is nearer to the resources, i.e. to the region of intact nutrients. C2) Patch-wise (mosaic-like) segregation. In the dfferent patches, either one or the
other species is nearer to the resources.
doi:10.1371/journal.pone.0057947.g003
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species was left behind by the winner, with the distance

growing between the populations. The loser species either

started to stagnate at a very low population size or gradually

disappeared). The relative fitness of the winner was 1.0 in all

cases.

C) Segregation. The two species formed two independent popula-

tions moving separately, one leading i.e. nearer to resources,

and one lagging behind, i.e. farther from the resources

(Figure 3C). In this case we observed two main types of

outcomes. In one case, the same species, i.e. the more

competitive one, was always nearer to the resources – we

termed this case ‘‘competitive segregation’’ (Video S3). In the

other case, either species could be the winner - we termed

this case as ‘‘stochastic segregation’’. In both cases, the relative

fitness I(fitness relative to growing alone) of the leading species was

1.0 while that of the lagging one was lower, converging to

zero. Interestingly, when we repeated the stochastic segre-

gation experiments several times, in about half of the cases

we observed ‘‘patch-wise’’ or ‘‘mosaic-like segregation’’ where one

of the two separating species was leading at one location,

while lagging at another one (Figure 3 C1, Video S4). In the

leading patches (near to the resources), the relative fitness

was close to 1.0 while in the lagging patches (farther from the

resources) the relative fitness was lower. As a result, the

average relative fitness of both species was lower than 1.0.

Competition without QS
As a starting point, we carried out simulations with non-QS

populations. As there are no signals and public goods in these

systems, the growth rate of a species is solely determined by the

nutrient intake.

In the first competition experiments termed symmetrical sharing

(Figure 4), each of the two species consumed its own nutrient, and

in addition, it also consumed a part of the nutrient of the other

species. This part was determined by the nutrient sharing

coefficient c [0# c #1]. Nutrient sharing= 1.0 means that the

two species consume identical nutrients, and in this case, we

observed stochastic exclusion, i.e. either one or the other species

died out with 50% probability. When the nutrients were not

Figure 4. Competition of agent populations without QS. These systems lack signals and public goods, so the parameter space has only one
variable, nutient sharing (denoted c in Methods). Relative fitness is defined in relation to the growth of the same species growing alone in the same
conditions (eqn. 4, Methods). At lower nutrient sharing values the populations segregate. At higher nutrient sharing values, one of the populations
goes extinct in less than 500 generations. When segregation and exclusion are stochastic, either species can be the winner or the loser with equal
probabilities. Symmetrical sharing of nutrients (bottom curve) means that the two populations are equivalent, and their fitness decreases as nutrient
sharing increases. Asymmetrical sharing of nutrients means that the exploiter species (top curve) can consume the nutrients of the exploited species
(middle curve) but not vice versa. Note that the curve of the exploited species in asymmetrical sharing is virtually identical with the curve of the
symmetrically sharing species. The values are the average of 10 calculations, error bars represent the standard deviation of the mean.
doi:10.1371/journal.pone.0057947.g004
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shared (nutrient sharing = 0), both species survived, and they

segregated in a stochastic manner, i.e. either one or the other

species was nearer to the resources. When nutrients were

completely shared (c=1.0), only one stochastically chosen species

survived, so the relative fitness decreased to 0.5. In between the

two extremes we saw a smooth transition, stochastic segregation

was dominant at lower nutrient sharing, and stochastic exclusion

was characteristic at higher sharing values, respectively.

In a second series of competition experiments termed asym-

metrical sharing, each of the two species consumed its own

nutrient, but only one of them, the ‘‘exploiter’’, was able to

consume the nutrient of other ‘‘exploited’’ species. In this case, the

relative fitness of the two species was different (Figure 4, right), and

they were equal only if the two species were independent in terms

of nutrients (we note that in this case, there is no exploitation).

Importantly, both segregation and exclusion were stochastic in

nature.

It is worth mentioning that in both the symmetrical and

asymmetrical cases, the relative fitness of a species never exceeded

1.0, i.e. the competition apparently always decreased the fitness of

species as compared to the level of a species living alone in the

same conditions. This is in fact expected, since the only interaction

between the two species is competition for both resources

(nutrients) and space.

Another important point was that the outcomes were stochastic

in each case, i.e. either species could be the winner or the loser.

According to Gause’s competitive exclusion principle [29,30], if

two species with different growth rates compete for the same

nutrient, the fitter species will inevitably win. In our case, the two

competing species are equally fit, so, by extension, one might

expect a draw. However, the behavior of random-moving agents is

known to be inherently stochastic, so the competition between

agents is in fact expected to end with the victory of either one or

the other agent species (stochastic exclusion). This is exactly what

we see with our models without QS.

Competition of Species with Symmetrically Overlapping
QS Systems: Sharing
In this scenario (Figure 2, Scheme 1) there is QS present, and

both competing species can utilize the signals, public goods and

nutrients of the other species (i.e. the interactions are symmetrical).

The results of the simulations are summarized in Figure 5. The

parameter space can be divided into two large compartments. In

one of them (Figure 5A, shaded area) the two species can form

stable, mixed (i.e. co-localizing) communities. This outcome was

not observed when QS was not present. In addition, the relative

fitness of both species was higher than 1.0 if nutrients consumed by

the two species were at least partly different (Figure 5B, upper

curve). This is a logical consequence, since two species can

increase the performance of each other only if they mobilize

independent resources for producing the common molecular

Figure 5. Sharing. Competition of species A and B that can utilize each other’s signals, public goods and nutrients to a varying extent. a= signal
sharing, b=public goods sharing, c=nutrient sharing. Left: regions of co-colocalizing communities (i.e. segregation coefficient is below 0.5, see
Methods). Right: Relative fitness of the mixed communities (shaded area on the left) as a function of food sharing (top curve). RF.1 indicates that
both species grow faster in a community than alone. Bottom curve: relative fitness of non-colocalizing communities. The values are the average of 10
calculations, error bars represent the standard deviation of the mean.
doi:10.1371/journal.pone.0057947.g005
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signals and public goods. In the rest of the parameter space, the

system showed a transition between stochastic segregation (at low

nutrient sharing) and stochastic exclusion (high nutrient sharing).

This behavior is thus identical to that seen with competition but

without QS. As such we can conclude that symmetrical sharing of

QS signals and public goods can lead to the formation of co-

localizing, mixed communities if the public goods are shared. This

happens in a substantial part of the parameter space, meaning that

we can suppose that such mixed communities form relatively

easily. Outside this region, QS apparently does not influence

competition between the species.

Competition of Species with Asymmetrically Overlapping
QS Systems: Exploitation
In this scenario (Figure 2, Scheme 2) there is QS present, both

species are capable of surviving alone, but only one species (species

B) can utilize the signals and public goods of the other species

(species A). In other words, species B exploits the QS machinery of

species A. The behavior of the system (Figure 6, left) was markedly

different from the previous, symmetrical case. The difference was

that the exploiter either clearly won, or, if segregated and stable

populations form, it was always the exploiter nearer to the

resources. In other words it seems that eavesdropping on the

signals and/or parasitizing on the public goods of the other species

clearly pays. In this case, the relative fitness of the two species are

clearly different from each other (Figure 6, right), and they are

equal only if the two species are independent in terms of signals,

public goods and nutrients (we note that in this case, there is no

exploitation) The differences between the two species are

qualitatively shown on the plot of relative fitness vs. nutrient

sharing.

The behavior of this system was qualitatively very similar to that

of non-QS systems throughout the entire parameter space

(Figure 3). The important difference was that here the exploiter

has a unilateral fitness advantage even in the absence of nutrient

exploitation.

Discussion

In this work we sought to answer the question of whether or not

sharing QS signals and public goods can influence the competition

of two bacterial species. We carried out computational simulations

of quorum sensing [31,32] in which competing agent populations

shared QS signals, public goods and nutrients to varying extents,

and compared the simulation outcomes with those obtained

without QS.

We found that mutual sharing of signals and public goods allows

the formation of stable mixed communities in a substantial part of

Figure 6. Exploitation. Species B exploits the QS system (signals, public goods) and nutrients of species A. This provides a fitness advantage to the
exploiter species B in the entire parameter range. Left: Regions of the parameter space represent either competitive exclusion or competitive
segregation. Right: Fitness of the two species relative to growing alone, as a function of nutrient sharing. Relative fitness = 1 in the top curve indicates
that the growth of species B is not hampered by the competition. The values are the average of 10 calculations, error bars represent the standard
deviation of the mean.
doi:10.1371/journal.pone.0057947.g006
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the parameter space (Figure 5). This outcome was not observed in

the absence of QS. In the stable QS communities the members of

the two competing agent populations were randomly mixed, i.e.

the two populations were co-localized. As the two populations use

increasingly different nutrients (c tends to 0), the co-operation

produces a clear growth advantage as compared to both non-co-

localizing species or to either of the two species grown alone

(Figure 5, right). The use of different nutrients can be regarded as

a case of metabolic complementarity, which has been experimen-

tally observed in the case of several coexisting microbial consortia

[33,34]. On the other hand it is worth noting that forming a stable

community may provide a fitness advantage for a variety of other

reasons [23]. For instance, it was recently noted that two, co-

swarming species can mutually help each other in situations where

only one of the species is resistant to an antibiotic [32]. In other

words, mixed populations can help the constituent species

combine their skills, which is per se an advantage. A different

tendency was apparent in the rest of the parameter space where

the system tended to behave like those without QS. Namely, when

the two species did not share nutrients, the result was stochastic,

patch-wise distribution. Moreover, as nutrient sharing increased,

the equilibrium shifted towards stochastic exclusion.

The analysis of symmetrical sharing suggested that sharing

public goods and utilizing different nutrients is the key to forming

co-localizing communities, while sharing QS signal seemed to be

much less important – at least according to the present modeling

scenarios. We think that this somewhat counterintuitive result

follows from the fact that in our modeling experiments the two

species were confined to the same space. On the other hand, it is

known that external signals can recruit bacteria to precise

locations via the well known mechanism of chemotaxis [35], and

it was shown that agent models of QS bacteria are able track

external signals [31]. This leads us to conclude that one of the

plausible roles of shared signals is to attract bacterial species to

each other via mutual chemotaxis so that they can act together if

necessary.

We also found that unilateral exploitation of signals and public

goods produced by one species provides a fitness advantage to the

other, exploiting species within the entire parameter range

(Figure 6). This situation is qualitatively very similar to non-QS

competition. However we found that the exploiter of QS signals

and public goods was a clear winner in all situations, in sharp

contrast to the stochastic winning and loosing outcomes observed

in the absence of QS. In other words, eavesdropping on QS signals

and parasitizing on public goods is profitable. This finding suggests

that cells equipped with a LuxR type receptor of broad specificity

or harboring a LuxR solo [19] will have a fitness advantage

because they will be able to respond to the signals of other

competing species, which in turn may explain why receptors of

relaxed specificity and LuxR solos are often observed in nature. A

similar conclusion was reached by a recent article of Chandler and

Figure 7. Principle of the dendrit growth model [31,32]. The dendrite is modeled as a longitudinal, infinite 2D surface covered with a nutrient.
Cell agents (black dots) placed at the start will begin to consume the nutrients and migrate. In the environment of the cell agents (the active zone)
there are signals and public goods (indicated as grey area) sufficient to keep the cells in an activated state.
doi:10.1371/journal.pone.0057947.g007

Table 1. Sharing coefficients for competing species used in
the different scenarios.

Signal Public goods Nutrients1

S1 S2 F1 F2 N1 N2

Scenario 1: Symmetric sharing

Species A 1 a 1 b (12c)/2 c/2

Species B a 1 b 1 c/2 (12c)/2

Scenario 2: Exploitation

Species A 1 0 1 0 1 0

Species B a 1 b 1 c/2 (12c)/2

1Note that the multiplier of 1/2 in the definition of c follows from the condition
of constant nutrient intake. This multiplier is not necessary in the case of signals
(a) and public goods (b).
doi:10.1371/journal.pone.0057947.t001
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associates who studied the in vitro competition of two bacterial

species that require QS for the production of antimicrobial factors

that inhibit the adversary species [36]. In contrast, the present

work suggests that the advantage of eavesdropping is not restricted

to the special case of antimicrobial factors, i.e. the phenomenon

seems to exist whenever signals and public goods are shared.

As this is an in silico study, a note on the scope and limitations of

the modeling approach is appropriate. We use an agent-based

approach with symbolic parameters that are not calibrated in

terms of actually measurable physical quantities [31,32]. As

a consequence, the modeling results are qualitative i.e. they

suggest only tendencies rather than exact values. The fact that the

competitions described in this study led to biologically meaningful

outcomes lends support to this approach. Second, the models

assign identical metabolic efficiency (growth rate) to competing

populations. This is not expected to occur in nature where

interspecies differences are almost inevitable. At the molecular

level, for instance, one cannot expect that LuxR proteins of two

different species will produce a precisely identical effect in response

to an AHL signal, and so on. In other words, species exactly equal

in their fitness and their QS parameters are not likely to exist in

nature. The meta-stable states found in our modeling experiments

are also not likely to occur in nature. Consequently, we consider

the meta-stable outcomes only as an indication of QS not

influencing the competition at a given parameter combination.

In summary, we found that two factors, sharing of public goods

and metabolic complementarity foster the formation of stable, co-

localizing communities of QS bacteria. Sharing of signals was not

found to sensitively influence the competitions, and so, based on

earlier results [31], we suppose that the role of signal sharing is to

help the different bacterial species to cluster at common locations.

On the contrary, exploitation of the QS system of another species

(eaves-dropping on signals and/or parasitizing on the public

goods) tends to provide a unilateral fitness advantage to the

exploiter, which may explain why promiscuous signal receptors

and common presence of LuxR solos are observed in nature. In

other words, our in silico study predicts that QS systems can fine-

tune the equilibrium of bacterial populations.

Methods

Modeling
For modeling bacterial populations we used a model we

previously developed [31,32], with parameters summarized in

Table S1. The model represents bacteria as random moving

agents that move along a 2D longitudinal track corresponding to

a dendrite of a colony growing on an agar plate. Cell agents

release signals S and public goods F into the environment, while

consuming a nutrient N evenly spread on the plate (Figure 7).

When S reaches a threshold, cell agents enter an activated phase

and increase their signal and public goods production. When

public goods F reach a threshold, the cells enter a swarming phase

with increased movement, S and F production. As a result, cell

agents start to swarm (Video S5). In previous studies [31,32] we

have shown, that the model adequately describes the fundamental

behavior of QS cells. We have shown, for example, that i) QS cells

are able to follow external signals (Video S6); ii) Wild type QS cells

form stable communities with cells that do not produce signals but

Figure 8. A heat map of segregation as a function of signal and public goods sharing. The black area indicates the parameter range
wherein the two competing populations form a mixed community i.e. segregation coefficient is below 0.5. The data are from a simulation of
asymmetrical sharing of signals and public goods at intermediate sharing of nutrients (c= 0.6).
doi:10.1371/journal.pone.0057947.g008
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can respond to it (Video S7); and iii) cheater cells that do not

produce public goods will collapse a community of wild type cells

(Video S8), even a very small number of cheaters can invade and

collapse a healthy community (Video S9). In the competition

experiments carried out in this work, we model two cell

populations feeding on two kinds of nutrients (N1 and N2),

producing and sensing two kinds of signals (S1 and S2) and two

kinds of public goods, (F1 and F2), respectively.

We defined sharing coefficients for each diffusible material for

each species. ‘‘a’’ and ‘‘b’’ determine the sensitivity towards the

signal S and the public goods F of the other species, respectively,

while ‘‘c’’ determines the fraction consumed from the nutrient N of

the other species. The values of a, b and c are between zero and

1.0. For example, if Species1 understands only its own signal S1,

the following equation will be used during the simulation:

SSp1~1 � S1z0 � S2 ð1Þ

When Species1 consumes N1 and N2 in equal amounts, the

following equation is used:

NSp1~0:5 �N1z0:5 �N2 ð2Þ

We will examine two different competition scenarios, namely

symmetric sharing and exploitation (Details in the Results section).

These two scenarios can be expressed by an appropriate choice of

the multiplier coefficients, as shown in Table 1.

A modeling experiment within a given scenario (1–4 in Table 1)

consisted of creating two competing populations, present in equal

numbers (typically 1000 each), and letting them compete at given

predetermined values of a, b and c, for 40,000 time steps. This

corresponded to over 500 generations. The analysis of an entire

scenario (e.g. symmetric sharing (Scenario 1, Table 1) consisted of

varying the values of a, b, and c respectively between 0 and 1 in

a grid-like fashion, with increments of 0.02. The data of the

populations resulting after 40,000 time steps were stored after each

simulation for numeric analysis and visualization.

Numerical Characterization of Competing Populations
Agent populations were primarily characterized by their

average size attained during the steady state of the simulation.

The separation of two populations was calculated by an intuitive

segregation index which was based on the work of Nadell et al.

[37] and Mitri et al. [38]. This consisted of counting, for each

agent, the members of its own population within an arbitrary

number (in our case 10) of nearest neighbors, and calculating an

average for the entire population. We scaled this measure in such

a way that no overlap corresponded to 1.0 and a homogeneous

mixture corresponded to 0.0 [39]. Note that the value of this index

does not directly depend on how far the non-overlapping

populations are from each other.

Fitness of a population was calculated as:

F~
1

Dt
log2

Nend

Nstart

ð3Þ

where F is the fitness value, Dt denotes the elapsed time, and Nend

and Nstart are the size of the population at the beginning and end of

the simulation respectively. Fitness is a dimensionless quantity that

is often represented on a relative scale (dividing it by the fitness of

a reference species) [37,38]

Frel~
log2(Nend=Nstart)

log2(Nend,ref =Nstart,ref )
ð4Þ

where Frel is the relative fitness, and Nstart,ref and Nend,ref are

the population sizes for the reference population. Note that the Dt
terms are cancelled by the division. Our reference population was

the same agent species growing alone (i.e. not in community with

another species.). Therefore the Frel value calculated in this

manner expresses the fitness difference caused by community

formation. To make this distinction clearer, we term this quantity

‘‘fitness relative to growing alone’’. The value of Frel is greater

than 1.00 only if the community formation is beneficial for

a species.

Visualization of the Results
As the simulations resulted in a great number of individual

results, we used abbreviated forms of visualization of selected

groups of simulations. Heat-maps were produced with public

goods sharing versus signal sharing plots at given values of nutrient

sharing. In a typical example (Figure 8), the parameter ranges

were colored in a thresholded manner, i.e. different colors were

assigned to areas that were above or below a threshold value of

a separation coefficient or relative fitness. For the visualization of

an entire scenario, such as asymmetrical sharing (Figure 6, left),

graphically simplified heat maps were overlaid in 3D.

Supporting Information

Table S1 Parameters used for the simulations.

(PDF)

Video S1 Mixed community forming from two quorum
sensing agent populations (partly) sharing signals and
public goods and using (partly) different nutrients.
(symmetrical sharing, a=0.3; b=0.3; c=0.1)

(AVI)

Video S2 One quorum sensing population excluding the
other species by competition.

(AVI)

Video S3 Two segregating quorum sensing agent popu-
lations (asymmetrical sharing, a=0.3; b=0.3; c=0.1)

(AVI)

Video S4 Patchwise segregation of two quorum sensing
agent populations (symmetrical sharing, a=0.7; b=0.2;
c=0.1)

(AVI)

Video S5 Swarming of a quorum sensing agent popula-
tion. As the simulation proceeds, the initial population grows to

a much larger size, and this larger population proceeds at

a constant swarming speed (steady state).

(AVI)

Video S6 Tracking of an external signal by an agent
population that does not produce the signal.

(AVI)

Video S7 Co-swarming of a wild type quorum sensing
population (blue) with a population that does not
produce the signal (green). At the beginning the populations

are present in equal quantities, as the simulation proceeds, a steady

state is reached in which the population that does not produce the

signal (green) is around 90%. The fluctuations of swarming speed
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and population size is more intensive in this steady state than in

the case of a pure wild type community (Video S6).

(AVI)

Video S8 Collapse of a wild type quorum sensing
population (blue) by a cheat population that does not
produce public goods (red). At the beginning the populations
are present in equal quantities. As the simulation proceeds, the

non-cooperating population (red) first becomes the majority, then

the community collapses and swarming stops.

(AVI)

Video S9 Collapse of a wild type quorum sensing
population (10 thousand cells, blue) by a small cheat
population that does not produce public goods (10 cells,
red).

(AVI)
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