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For the segmentation of magnetic resonance brain images into anatomical regions,
numerous fully automated methods have been proposed and compared to reference
segmentations obtained manually. However, systematic differences might exist between
the resulting segmentations, depending on the segmentation method and underlying brain
atlas. This potentially results in sensitivity differences to disease and can further complicate
the comparison of individual patients to normative data. In this study, we aim to answer two
research questions: 1) to what extent are methods interchangeable, as long as the same
method is being used for computing normative volume distributions and patient-specific
volumes? and 2) can different methods be used for computing normative volume
distributions and assessing patient-specific volumes? To answer these questions, we
compared volumes of six brain regions calculated by five state-of-the-art segmentation
methods: Erasmus MC (EMC), FreeSurfer (FS), geodesic information flows (GIF), multi-
atlas label propagation with expectation–maximization (MALP-EM), and model-based
brain segmentation (MBS). We applied the methods on 988 non-demented (ND) subjects
and computed the correlation (PCC-v) and absolute agreement (ICC-v) on the volumes.
For most regions, the PCC-v was good (> 0.75), indicating that volume differences
between methods in ND subjects are mainly due to systematic differences. The ICC-v
was generally lower, especially for the smaller regions, indicating that it is essential that the
same method is used to generate normative and patient data. To evaluate the impact on
single-subject analysis, we also applied the methods to 42 patients with Alzheimer’s
disease (AD). In the case where the normative distributions and the patient-specific
volumes were calculated by the same method, the patient’s distance to the normative
distribution was assessed with the z-score. We determined the diagnostic value of this
z-score, which showed to be consistent across methods. The absolute agreement on the
AD patients’ z-scores was high for regions of thalamus and putamen. This is encouraging
as it indicates that the studied methods are interchangeable for these regions. For regions
such as the hippocampus, amygdala, caudate nucleus and accumbens, and globus
pallidus, not all method combinations showed a high ICC-z. Whether two methods are
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indeed interchangeable should be confirmed for the specific application and dataset of
interest.

Keywords: brain region segmentation, subcortical, comparison study, normative modeling, magnetic resonance
imaging

1 INTRODUCTION
Quantitative imaging biomarkers are biological features that can
be measured using medical images. They are of interest for
diagnosis when changes in these features are due to disease. In
the case of traumatic brain injury or neurodegenerative disease,
typical valuable quantitative imaging biomarkers are brain
region volumes (Zagorchev et al., 2015; Ledig et al., 2015;
Scheltens et al., 2002). A well-known example is the volume
of the hippocampus. A relatively low volume may indicate the
presence of Alzheimer’s disease (AD)’ (Convit et al., 1997; Jack
et al., 1999; den Heijer et al., 2006). To determine if a patient
deviates significantly, one can compare it to the so-called
normative data (Brewer, 2009; Ziegler et al., 2014; Marquand
et al., 2016). Normative data are acquired in a reference
population, and they are used as baseline distribution for a
measurement, against which an individual measurement can be
compared. Normative data may incorporate covariates such as
age or gender, when the distribution is expected to vary
significantly as a function of these variables. Well-known
examples are head-circumference-for-age, height-for-age,
weight-for-age, and weight-for-height norms, provided by the
WHO (de Onis et al., 2006), for detecting abnormal growth in
children. The dependency on age is also the case for volumetric
magnetic resonance (MR) brain images. Brewer (2009)
proposed using quantile curves as a function of age as
normative data for volumetric MR measurements.

Volumetric MRmeasurements are acquired by segmenting the
brain into its different tissue types and regions of interest. The
manual segmentation of a brain image is a time-consuming task,
which has to be performed by an expert and is therefore too
expensive and impractical for a clinical setting (Brewer (2009)).
To automatically obtain brain region volumes from MRI brain
data, numerous fully automated brain segmentation methods
have been proposed in the literature. Each method relies on
different techniques to segment either the full brain or a specific
region. We can subdivide the methods that are based on prior
probability maps (Fischl et al., 2002), statistical shape and
appearance models (Babalola et al., 2008a; Patenaude et al.,
2011; Wenzel et al., 2018), multi-atlas registration and labeling
(Bron et al., 2014; Cardoso et al., 2015; Ledig et al., 2015; Murphy
et al., 2014; Wang et al., 2014; Wolz et al., 2010; van der Lijn et al.,
2008), deep learning approaches (Bao and Chung, 2018; Shakeri
et al., 2016; de Brébisson and Montana, 2015), and other
(Hammers et al., 2009; Corso et al., 2007; Morra et al., 2008;
Tue et al., 2008). Each method aims to segment the brain as
accurately as possible where manual segmentation serves as the
gold standard.
Various comparison studies have been performed with regard to
automated brain segmentation methods. Grimm et al. (2015)
assessed the differences in amygdalar and hippocampal volume

resulting from Freesurfer (Fischl et al., 2002), VBM8 (VBM1), and
manual segmentation. They concluded that volumes computed
with VBM8 and Freesurfer V5.0 were comparable, and systematic
and proportional differences were mainly due to different
definitions of anatomic boundaries. They concluded that large
differences can still exist even with high correlation coefficients.
Morey et al. (2009) also compared amygdalar and hippocampal
volumes but using methods such as FSL/FIRST 4.0.12, Freesurfer
4.0.5 (Fischl et al., 2002), and manual segmentation. They
concluded that for the hippocampus, Freesurfer was more
similar to manual segmentation in terms of volume difference,
overlap, and correlation. For the amygdala, FIRST represented
the shape more accurately than Freesurfer. Babalola et al. (2008b)
compared four different state-of-the-art algorithms for automatic
segmentation of subcortical structures in MR brain images and
evaluated spatial overlap, distance, and volumetric measures:
classifier fusion and labeling (Aljabar et al., 2007), profile
active appearance models (Babalola et al., 2007), Bayesian
appearance models (Patenaude et al., 2011), and
expectation–maximization–based segmentation using a
dynamic brain atlas (Murgasova et al., 2006). They concluded
that all four methods perform on par with recently published
methods. One of their evaluating methods (Aljabar et al., 2007)
performed significantly better than the other three methods
according to their evaluation. Perlaki et al. (2017) compared
the segmentation accuracy of the caudate nucleus and putamen
between FSL/FIRST (version FSL’s build: 507) and Freesurfer
(versions 4.5 and 5.3) by studying the Dice coefficient, and
absolute and relative volume difference. They also measured
consistency and absolute agreement. They concluded that for
caudate segmentation, FIRST and Freesurfer 4.5 and 5.3
performed similarly, but for putaminal segmentation, FIRST
was superior to Freesurfer 5.3.

The impact, however, of using different methods on the
analyses of individual patients within a normative modeling
framework is still unknown. This is relevant when volumetric
MR data are used to generate normative distributions for both
research and clinical use. In this study, we therefore aim to answer
two research questions: 1) to what extent are methods
interchangeable, as long as the same method is being used for
deriving normative volume distributions and patient-specific
volumes? and 2) can different methods be used for deriving
normative volume distributions and patient-specific volumes? To
answer these questions, we evaluated five state-of-the-art
segmentation methods (Bron et al., 2014; Wenzel et al., 2018;

1http://dbm.neuro.uni-jena.de/wordpress/vbm/
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Cardoso et al., 2015; Ledig et al., 2015; Fischl et al., 2002; Ikram
et al., 2015).

2 MATERIAL AND METHODS

2.1 Data
To derive the normative distributions as a function of age, we
applied the brain region segmentation methods to a subset of
the population-based Rotterdam Scan Study, a prospective
longitudinal study among community-dwelling subjects
aged 45 years and older (Ikram et al., 2015). This subset is
uniformly distributed over age and consists of 988 T1w MR
brain images from non-demented (ND) (425 male, age � 68.1 ±
13.0 years). The total sample size of the Rotterdam Scan Study
is larger: as of July 2015, a total of 12,174 brain MR scans have
been obtained on the research scanner in over 5,800
individuals (Ikram et al., 2015). The 988 subjects form a
subset with uniform age distribution (433 male, age �
68.3 ± 13.0 (mean ± std)). We adopted this dataset from
Huizinga et al. (2018). All brain images were acquired on a
single 1.5T MRI system (GE Healthcare, US). The T1w
imaging protocol was a 3-dimensional fast radiofrequency
spoiled gradient recalled acquisition with an inversion
recovery pre-pulse sequence (Ikram et al., 2015). The
images were reconstructed to a voxel size of
0.5 × 0.5 × 0.8mm3, and the number of voxels in each
dimension was 512 × 512 × 192.

In addition, we used the brain images of 42 (25 male, age �
81.9 ± 4.9 years) patients with AD at the time of the MRI scan
from the same imaging study. Different MR acquisition
protocols may lead to different image contrasts, and since
most automated methods are—partly or entirely—driven by
the contrast in the image; this may influence the segmentation
results. To rule out possible differences of the segmentation due
to the acquisition protocol, the methods were applied to the
same images, all acquired with the same acquisition protocol
(Ikram et al. (2015)).

2.2 Brain Segmentation Methods
We applied five previously proposed brain segmentationmethods
to the imaging data. The following five segmentation methods,
explained in detail later, were evaluated:

1. Multi-atlas registration combined with tissue segmentation for
cortical regions, developed at Erasmus MC (EMC), the
Netherlands;

2. Freesurfer 5.1 (FS), developed at the Athinoula A. Martinos
Center for Biomedical Imaging at Massachusetts General
Hospital, United States of America;

3. Geodesic information flows (GIF), developed at University
College London, United Kingdom;

4. Multi-atlas label propagation with expectation–
maximization–based refinement (MALP-EM), developed at
Imperial College London, United Kingdom; and

5. Model-based brain segmentation (MBS), developed at Philips
Research Hamburg, Germany.

The regions segmented by each method are shown in Table 1.
Later, a short description of each method is given.

2.2.1 EMC
This method combines multi-atlas registration and voxel-wise
tissue segmentation for cortical regions, and hippocampus and
amygdala. Probabilistic tissue segmentations are obtained on the
image to be segmented using the unified tissue segmentation
method (Ashburner and Friston, 2005) of SPM8 (Statistical
Parametric Mapping, London, United Kingdom). Thirty
labeled T1-weighted MR brain images are used as atlas images
(Gousias et al., 2008; Hammers et al., 2003). The atlas images are
registered to the subjects’ image using a rigid, affine, and non-
rigid transformation model consecutively, and a mutual
information-based similarity measure. The subjects’ images are
corrected for inhomogeneities to improve registrations using the
N3 algorithm (Tustison et al., 2010). Labels are fused using a
majority voting algorithm (Heckemann et al., 2006). For the
cortical regions, as well as hippocampus and amygdala, the label-
map is combined with the tissue map such that the brain region
volumes are determined on gray matter voxels only. For
subcortical regions, the volumes are determined with a multi-
atlas segmentation only as the probabilistic tissue segmentation
for these regions is inaccurate. A more detailed description of this
method can be found in Bron et al. (2014).

2.2.2 FS
Freesurfer is widely used neuroimaging software developed by the
Laboratory for Computational Neuroimaging at the Athinoula A.
Martinos Center for Biomedical Imaging at Massachusetts
General Hospital. It has many applications, but in this work,
we use the brain region segmentation method described in Fischl
et al. (2002). The method defines the problem of segmentation
using a Bayesian approach in which the probability is estimated of
a segmentation, given the observed image. First, the image is
transformed into the atlas space with an affine transformation.
Manually labeled atlas images provide the prior spatial
information of the brain regions. The final segmentation is
estimated by combining this spatial information with the
intensity distribution of each brain region in the individual
image. (For more detailed information about this method, we
refer the reader to Fischl et al. (2002).) In our experiments, we
used FS version 5.1. The user is able to use his own atlas, however,
we used the atlas provided by FS. This method is publicly
available3.

2.2.3 GIF
This method is atlas-based and uses the geodesic path of a
spatially variant graph to propagate the atlas labels (Cardoso
et al., 2015). The atlas image database contains 130 T1-
weighted MR brain images of cognitively normal
participants from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study and 35 T1-weighted MR brain
images from 30 young controls of the OASIS database

3http://freesurfer.net/
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(Marcus et al., 2007). The labeled images are made publicly
available by Neuromorphometrics4 under academic
subscription, as part of the MICCAI 2012 Grand Challenge
on label fusion. First, each atlas image is registered to the
individual image using a non-rigid transformation. A
morphological distance of this image to each atlas image is
estimated using the displacement field resulting from the
image registration and the intensity similarity. The
segmentation is estimated by fusing the labels of the
morphologically closest atlas images. (For more details
about this method, we refer the reader to Cardoso et al.
(2015).) This method is publicly available5.

2.2.4 MALP-EM
Like EMC, this method also combines multi-atlas registration and
voxel-wise tissue segmentation. The atlas database of this method
consists of 35 manually annotated T1-weighted MR brain images
of 30 subjects of the OASIS database, which are also part of the
atlas images of the GIF method (see Section 2.2.3). The atlas
images of these 30 subjects are transformed to the space of the
image that is to be segmented. These transformations are
obtained via a non-rigid image registration approach
(Heckemann et al., 2010). The subjects’ brains are extracted
using the method proposed in Heckemann et al. (2015). The
resulting 30 label images are fused, and a probabilistic map of
each brain region is obtained. The labels are refined using
expectation–maximization (EM) (Leemput et al., 1999), a
brain tissue segmentation technique based on the image
intensities. (More details can be found in Ledig et al. (2015).)

In our experiments, we used MALP-EM version 1.2. This method
is publicly available6.

2.2.5 MBS
The MBS method is based on the model-based brain segmentation
presented inWenzel et al. (2018). Themodel is shape-constrained and
represented by a triangulatedmesh of fixed topology. Shape variations
are modeled by principal component analysis of manually annotated
meshes of a set of training images, resulting in a point distribution
model (PDM) with a mean mesh and shape modes (Cootes et al.,
1992). To segment a new image, the mean mesh is placed within the
image by a generalized Hough transform compensating global
translation and translation. Subsequently, the mean mesh is
adapted by a global affine transformation and then region-specific
affine transformations by adding weighted shape modes. The global
and local affine transform parameters and the mode weights are
estimated using a boundary detection based, for example, on the local
intensity gradient and a penalization component regularizing the
mesh shape, including the PDM. Finally, in a deformable
deformation step, triangles can adapt individually, leading to a
close match of the model surface with the image boundaries.

A database of 96 3T scans following theMP-RAGE acquisition
protocol, split over three vendors (GE, Siemens, and Philips)
served as training data. These scans have been randomly selected
from the ADNI study (n � 87) and an Alzheimer’s disease study
at the Lahey Clinic, Burlington, MA (n � 9). Ground truth
delineations mostly followed structure definitions of the CMA
guidelines,7 with two exceptions: (1) lateral thalamus borders

TABLE 1 | Characteristics of each method. The input format of each method is a 3D NIFTI file.

Method References Used reference data Method of
segmentation

#
Regions

Region description

EMC Bron et al.
(2014)

Hammers et al. (2003), Gousias et al.
(2008)

Multi-atlas segmentation with majority
voting for label fusion

83 Subcortical regions, cortical regions,
ventricles, corpus callosum, substantia
nigra, lobes, brain stem, and cerebellum

FS Fischl et al.
(2002)

Fischl et al. (2002) Multi-atlas segmentation with a
Bayesian approach for label
assignment

261 Subcortical regions, cortical regions,
ventricles, lobes, optic chiasm, ventral
diencephalon, lesions, vessels, corpus
callosum, choroid plexus, brain stem, and
cerebellum

GIF Cardoso et al.
(2015)

Petersen et al. (2010), Marcus et al.
(2007) and Neuromorphometrics4

Multi-atlas segmentation with heat-
kernel–weighted label fusion

144 Subcortical regions, cortical regions,
ventricles, optic chiasm, ventral
diencephalon, lesions, vessels, lobes, brain
stem, and cerebellum

MALP-
EM

Ledig et al.
(2015)

Marcus et al. (2007) and
Neuromorphometrics4

Multi-atlas segmentation with label
refinement using prior information

138 Subcortical regions, cortical regions,
ventricles, lobes, brain stem, and
cerebellum

MBS Wenzel et al.
(2018)

Petersen et al. (2010), an Alzheimer‘s
disease study at the Lahey Clinic,
Burlington, MA

Model-based segmentation using a
pretrained shape-constrained
deformable surface model

56 Subcortical regions, ventricles, corpus
callosum, fornix, septum pellucidum, lobes,
brain stem, pons, and cerebellum

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).

4http://neuromorphometrics.com/
5http://cmicti g.cs.ucl.ac.uk/niftyweb/program.php?p�GIF

6https://github.com/ledigchr/MALPEM
7https://web.archive.org/web/20180226014735/http://www.cma.mgh.harvard.edu/
manuals/
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follow image contrast, which may deviate from the CMA
description, and (2) hippocampus annotations follow the
EADC-ADNI harmonized protocol8 (Boccardi et al., 2015a;
Boccardi et al., 2015b). The training data and procedure are
extensively described in Wenzel et al. (2018).

2.3 Regions of Interest
The set of brain regions in which each image is segmented differs
per method. In this study, we focus on the following S � 6 regions:
hippocampus, amygdala, caudate nucleus and accumbens,
putamen, thalamus, and globus pallidus. Figure 1 shows an
example image of an ND subject with the analyzed brain
regions in colored overlay. In the analysis, the volumes of the

regions in the left hemisphere and the right hemisphere were
summed.
For all methods except MBS, the volume of the caudate nucleus
was added to the accumbens volume because MBS already
segments these as a single region.

2.4 Outlier Detection
Segmentation errors may occur due to bad image quality,
pathology, or other method-related problems. These errors
could lead to outliers in the volume data and may influence
the statistics excessively. We therefore remove them from the
volume data prior to the statistical analyses.

The segmentations of the ND subjects were not visually
inspected as this would be too time-consuming. Method
failures, that is, when the software pipeline did not result in a
segmentation for the image, were excluded. On the remaining

FIGURE 1 | T1w MR brain image from one of the subjects, with a colored overlay of the brain regions analyzed in this work, segmented with all methods. Slices in
the axial direction are shown in the top row, slices in the saggital direction are shown in the middle row, and slices in the coronal direction are shown in the bottom row.
The legend on the right side shows the regions and their corresponding colors in the overlay. Note that only for this visualization, the segmentations were registered to the
MNI space; some differences might be due to imperfections of this registration.

8http://www.hippocampal-protocol.net/SOPs/index.php
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images, outliers were defined as having an absolute z-score higher
than 5.0, derived with the population mean and standard
deviation. Note that a z-score > 5.0 does not necessarily imply
a failed segmentation. We chose an absolute z-score of > 5.0,
instead of the typical value of 3.0 because we wanted to include as
much of the normal population as possible to generate the
normative data, but we did not want to contaminate the
normative data with unrealistic volumes. The segmentations of
the AD patients were visually inspected, and obviously failed
regions were excluded.

2.5 Statistical Analyses
In the analyses, two scenarios are considered: 1) both the
normative volume distribution and the patient-specific
volumes are calculated by the same method, and 2) the
normative volume distribution and the patient-specific
volumes are calculated by different methods. The requirements
for two methods to yield comparable results under scenario 1) are
given as follows:

i) a high correlation on the absolute volumes, measured with the
Pearson’s correlation coefficient (PCC) and referred to as
PCC-v;

ii) a high absolute agreement on the patient’s distances relative to
the normative distribution, that is, a high absolute agreement
on the patients’ z-scores, measured with the intraclass
correlation coefficient (ICC) and referred to as ICC-z.

The requirements for two methods to yield comparable results
under scenario 2) are given as follows:

i) a high absolute agreement on the absolute volumes, measured
with the intraclass correlation coefficient (ICC) and referred
to as ICC-v;

ii) a high absolute agreement on the patients’ z-scores, measured
with the intraclass correlation coefficient (ICC) and referred
to as ICC-z.

For scenario 2), requirement i naturally results in requirement
ii. The requirements for scenario 2) are stricter than those for
scenario 1). If in scenario 1), an offset or scaling is present in the
volumes of different methods, the resulting patient’s z-score will
be the same because the same method is used for comparing the
patient to the normative distribution. However in scenario 2),
absolute agreement on the volumes is necessary, that is, no offset
or scaling is allowed for comparing the patient to the normative
distribution as an offset or scaling will affect the patient’s z-score.
The next sections describe how the normative distribution was
established, how the correlation and absolute agreement are
measured, and, in the case of scenario 1), how the diagnostic
value of the z-scores was assessed.

2.5.1 Normative Distribution Fitting
We fit an age-dependent normative distribution with the
previously proposed LMS method (Cole and Green (1991)).
This method assumes that the data are standard and normally
distributed after applying the Yeo–Johnson transformation

(Yeo and Johnson (2000)). The method estimates the
λ−parameter of this transformation (L), the median (M), and
coefficient of variation (S) for the appropriate volume at each
age. With these three parameters, z-scores can be computed at
each age. The smoothness of the resulting iso–z-score curves is
influenced by the degrees of freedom δ, a user-defined
parameter. In our experiments, we set the smoothness
parameter δ to a value of 2. We used R-package VGAM for
fitting these iso–z-score curves (Yee, 2010). The value of the
brain region volume may also be influenced by other covariates
than age, for example, gender and height. We correct for these
covariates in the fitting procedure.

2.5.2 Correlation and Absolute Agreement
To verify if scenario 1) is applicable, we first measure the
correlation of the volumes calculated by the methods, with the
Pearson’s correlation coefficient (PCC). We refer to these
correlations as PCC-v. This coefficient is invariant for an
offset and scaling of the data.
To verify if scenario 2) is applicable, we compute the absolute
agreement on the volumes, which was measured with the
intraclass correlation coefficient (ICC). The type of ICC to be
chosen depends on the problem at hand. McGraw and Wong
(1996) give an overview of the possible ICCs. For the presented
experiments, ICC(A,1) is the appropriate absolute agreement
measure (McGraw and Wong, 1996). Let X be an n × k matrix
where each column contains the measurements of a single
method and each row contains the measurements of a single
subject, then ICC(A,1) is given by McGraw and Wong (1996) is
given as follows:

ICC(A, 1) � MSR(X) −MSE(X)
MSR(X) + (k − 1)MSE(X) + k

n (MSC(X) −MSE(X)),
(1)

where MSR(X) is the mean square for rows, MSC(X) is the mean
square for columns, and MSE(X) is the mean square error, which
is defined as follows:

MSE(X) � 1

(n − 1)(k − 1) ∑
nk

i,j�1
[Xij − Xi − Xj + X]

2
, (2)

where Xi � 1
k∑

k
j�1Xij, Xj � 1

n∑
n
i�1Xij, and X � 1

nk∑
nk
i,j�1Xij. We refer

to the absolute agreement on the volumes as ICC-v. The absolute
agreement is maximal (1.0) when the measurements are exactly
the same. When one or more measurements deviate, the absolute
agreement is no longer 1.0 and drops according to how large the
deviation is. A systematic error causing an offset in the
measurements with a magnitude of, for example, the
population standard deviation would lower the absolute
agreement to ∼0.67. Or a scaling of the data by a factor of 1.2
would lower the absolute agreement to ∼0.7. The higher the ICC-
v, the more reasonable it is to interchange methods.

We report all possible pairwise method combinations of PCC-
v and ICC-v for M � 5 methods for each of the S brain regions.
Since the correlation and absolute agreement are determined with
symmetric measures, we present PCC-v and ICC-v of the
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methods in a single 5 × 5 table, for each of the analyzed brain
regions.

2.5.3 Absolute Z-Score Agreement
To further assess the applicability of scenario 1), we also
computed the absolute agreement on the AD patient z-scores
with ICC(A,1). We indicated these values with ICC-z. We present
ICC-z on AD subjects with PCC-v for ND subjects (see Section
2.5.2) in the same table, to facilitate their comparison.

2.6 AUC
To estimate how well the AD patient z-scores discriminate
between normative volumes and patient-specific volumes in
scenario 1), we determine the area under the receiver
operating characteristic curve (AUC) of the z-score. The
z-score was computed, as described in Section 2.5.1. The
expected z-scores for the AD patients are <0, since we expect
their brain structure volume to be lower than normal. We
therefore define the AUC as the probability that a randomly
chosen ND subject will have a higher z-score than a randomly
chosen AD patient. The higher the AUC, the better will be the
discrimination between AD patients and ND subjects. Since not
every region is a known discriminative biomarker for AD, it is not
necessarily expected that the AUC is high for each region. The
hippocampus and amygdala are known to be discriminative
biomarkers for AD, so for these regions, a high AUC is
expected. For the computation of the AUC, only ND subjects
within the age range of the AD patients, [71, 91] years, were
included. A 95% confidence interval was computed by
bootstrapping the z-scores 1,000 times.

3 RESULTS

We used the following rating scale for PCC-v, ICC-v, and ICC-z,
adopted from the rules of thumb in Mukaka (2012):

• Poor: < 0.5
• Fair: 0.5 − 0.7
• Good: 0.7 − 0.9
• Excellent: > 0.9

3.1 Outlier Detection
Method FS failed for nine ND subjects, either by not finishing the
segmentation pipeline or by giving a zero volume output for some
of the analyzed brain regions. Visual inspection of the MRI scans
of these subjects did not show pathology or severe artifacts that
would clearly explain failure. The method EMC failed for one ND
subject, which was due to the failure of the brain extraction tool
(Smith (2002)), which is used at the beginning of the pipeline. The
remainder of the methods provided a segmentation for all images.
The number of outliers per region and method on the remaining
978 subjects is reported in Table 2 Two T1w images of AD
patients were excluded due to large scanning or motion artifacts.
The number of failed segmentations per region andmethod in the
remaining 40 images is shown in Table 3. In one image, there was

a large lesion in the frontal lobe, affecting the segmentation of the
caudate nucleus and accumbens of all methods. In one other
image, the method MBS failed to segment the putamen and
globus pallidus correctly.

3.2 Volume Distributions
Table 4 shows the mean and standard deviation of the volumes of
the ND subjects for each method and region. We performed a
one-way ANOVA test, which showed that the p-values for each
brain structure is p< 0.05, indicating that the volume
distributions differ significantly between the methods. A
multiple comparison post hoc analysis was done with the
Tukey test. This test showed a limited number of non-
significant differences, namely, the amygdala for methods
EMC vs. GIF, the thalamus for methods FS vs. GIF and FS vs.
MBS, and, finally, the putamen for methods FS vs. GIF. All other
pairwise differences were statistically significant. The
hippocampus volume of methods EMC and GIF deviates
substantially from the other methods. The method EMC
deviates due to a different definition of the hippocampus in
the atlases that are used by the methods. The Hammers’ atlas
(Hammers et al. (2003), Gousias et al. (2008)), used by the
method EMC, defines the posterior border of the
hippocampus such that the hippocampus tail is not included
in the definition, whereas the other methods include the
hippocampus tail. The method GIF deviates because it
generally delineates the hippocampus in a larger volume.
These same methods have a smaller average globus pallidus
volume than the other methods. Visual inspection on a
representative subset showed that these methods delineated a
smaller globus pallidus. Methods MALP-EM and MBS calculated
a smaller amygdala than the other methods.

Figure 2 shows the normative brain structure volume
distribution fitted on 978 ND subjects, visualized in iso-z-score
lines, for each method and brain structure. The red scatters show
the volumes of the 40 AD patients, segmented with the same
method as the normative distribution (scenario 1).

3.3 Correlation and Absolute Agreement
Table 5 present PCC-v and ICC-v for each pairwise combination
of the five methods. For most regions, PCC-v was good (≥ 0.75)
and was excellent for the region thalamus (0.91 − 0.97) and good
to excellent for the putamen (0.88 − 0.96).
For the three smallest structures, the hippocampus, amygdala
and globus pallidus, ICC-v was generally poor, with some
exceptions. The combination MALP-EM–MBS scored
relatively high on ICC-v compared to the other method
combinations. Visual inspection on a representative subset
showed that the delineated hippocampus, amygdala, and
globus pallidus for MALP-EM and MBS was similar in
shape, explaining the good ICC-v. For the amygdala, the
combination GIF–EMC also showed a good ICC-v. The
three larger structures, the caudate nucleus and accumbens,
thalamus, and putamen, showed generally higher ICC-vs.
Visual inspection showed that their shape was, on average,
more similar, possibly due to the less irregular shape of these
regions than the smaller regions. Some method combinations
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showed poor ICC-v values for these larger regions, for example,
MBS—EMC and MBS–MALP-EM for the caudate nucleus and
accumbens, and GIF–MALP-EM for the putamen. MALP-
EM–MBS also had a fair PCC-v for the regions caudate nucleus
and accumbens; however, the other combinations showed a good
PCC-v, indicating that the low ICC-v can mainly be explained by a
volume offset and/or scaling.

3.4 Absolute Z-Score Agreement
Table 6 shows ICC-z in the lower left triangle. In the upper-
right triangle, PCC-v of the ND subjects is showed again, for easy
comparison. ICC-z was good to excellent for regions thalamus
(0.75 − 0.94) and putamen (0.83 − 0.96), fair to good for regions
hippocampus (0.56 − 0.81), amygdala (0.65 − 0.88), and globus
pallidus (0.50 − 0.72), and fair to excellent for the caudate nucleus
and accumbens (0.51 − 0.96). The two method combinations with

the lowest PCC-v of the caudate nucleus and accumbens,
MBS–EMC and MBS–MALP-EM, also have the lowest ICC-z.
This is also the case for the globus pallidus, where combinations
EMC–FS and MALP-EM–FS have the lowest PCC-v and the
lowest ICC-v.

3.5 AUC
Table 7 shows the AUC for each method and brain region. The
highest AUCwas achieved for the hippocampus (on average 0.79) and
amygdala (on average 0.78), demonstrating their involvement in AD.
For the thalamus and putamen, the AUC was > 0.5 for all methods,
indicating that these regions are also affected by AD. For the method
GIF, the AUC of regions thalamus and globus pallidus were high
compared to the other methods. The methods FS, MBS, and GIF had
comparable thalamus volumes for the ND subjects, but the AD
thalamus volumes segmented by GIF were, on average, 120mm3

TABLE 2 |Number of outliers in the ND subjects per method for each brain region. The outliers were defined as having an absolute z-score > 5.0, derived with the population
mean and standard deviation. The ten subjects that failed in the in the postprocessing were not included. As the outliers of the methods may overlap, the last column of
the tables indicates the number of subjects included in the statistical analysis.

EMC FS GIF MALP-EM MBS TOTAL N

Hippocampus 0 0 0 0 0 978
Amygdala 0 1 1 0 0 976
Caudate nucleus and accumbens 2 1 0 2 0 975
Thalamus 0 1 0 0 0 977
Putamen 0 2 0 1 0 976
Globus pallidus 0 0 0 0 0 978

EMC is ErasmusMC by Bron et al. (2014), FS is FreeSurfer by Fischl et al. (2002), GIF is geodesic information flows by Cardoso et al. (2015), MALP-EM is multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is model-based segmentation by Wenzel et al. (2018).

TABLE 3 | Number of rejected segmentations in the AD subjects per method for each brain region, determined by visual inspection. The two subjects that failed in the
postprocessing were not included. As the outliers of the methods may overlap, the last column of the tables indicates the number of subjects included in the statistical
analysis.

EMC FS GIF MALP-EM MBS Total N

Hippocampus 0 0 0 0 0 40
Amygdala 0 0 0 0 0 40
Caudate nucleus and accumbens 1 1 1 1 1 39
Thalamus 0 0 0 0 0 40
Putamen 0 0 0 0 1 39
Globus pallidus 0 0 0 0 1 39

EMC is ErasmusMC by Bron et al. (2014), FS is FreeSurfer by Fischl et al. (2002), GIF is geodesic information flows by Cardoso et al. (2015), MALP-EM is multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is model-based segmentation by Wenzel et al. (2018).

TABLE 4 | Mean (standard deviation) of brain region volumes in mm3 for the ND subjects.

Hippocampus Amygdala Caudate nucleus
and accumbens

Thalamus Putamen Globus pallidus

EMC 3,652 (494) 2,289 (320) 8,428 (1,265) 11,926 (1,637) 8,049 (1,139) 1897 (281)
FS 7,533 (1,166) 2,664 (402) 7,995 (1,154) 12,328 (1,614) 9,008 (1,338) 2,834 (480)
GIF 8,766 (906) 2,284 (269) 7,882 (1,059) 12,581 (1,333) 9,014 (1,090) 1735 (207)
MALP-EM 5,723 (862) 1887 (299) 7,640 (1,568) 13,678 (1,654) 7,427 (1,218) 2,472 (349)
MBS 6,052 (782) 1775 (243) 7,280 (895) 12,422 (1,451) 7,746 (977) 2,561 (304)

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with the expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel
et al. (2018).
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lower than those segmented by MBS and 50mm3 lower than those
segmented by FS. Themethods EMC andGIF had comparable globus
pallidus volumes for theND subjects, but for AD subjects, the volumes
segmented by GIF were, on average, 320mm3 lower than those
segmented by EMC.

3.6 Computational Efficiency
All methods were executed on a Linux Sun Grid Engine (SGE)
computing cluster with eight computing nodes, each having
multiple cores. All methods, except FS, provide an option for

using multiple cores. This is especially efficient for methods
that use multi-atlas registration, where the registrations of
the subjects in the atlas database can run in parallel. In
practice, the method GIF had the longest computation
time, despite the usage of multiple cores. This was mainly
due to the non-rigid image registrations of the 165 images in
the atlas database. The method MBS was most efficient,
needing only a few minutes to segment all 56 regions in a
brain image on a single core. Except for MALP-EM, needing
33 GB of RAM per brain image, the memory usage of the

FIGURE 2 | Normative brain structure volume distribution fitted on 978 ND subjects, visualized in iso-z-score lines from −3 to 3. All volumes are given in mm3 as a
function of age [y]. The columns show volumes of each method, and the rows show the volumes per brain structure. The light gray scatters show the volumes of the ND
subjects, and the red scatters show the volumes of the 40 AD patients, segmented with the samemethod as the normative distribution (scenario 1). The distribution was
corrected for gender and height and is shown here for males of height 170 cm. EMC is the method Erasmus MC by Bron et al. (2014), FS is the method FreeSurfer
by Fischl et al. (2002), GIF is the method geodesic information flows by Cardoso et al. (2015), MALP-EM is the method multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al. (2018). The caudate nucleus
and accumbens was shortened to caudate n & a for visualization purposes.
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methods was modest (≤8 GB) for the hardware in modern
computers.

4 DISCUSSION

We evaluated the correlation and absolute agreement on
regional volumes computed with different automated brain
segmentation methods, and the impact of the volume
differences between these methods on single-subject analysis
in a normative modeling framework. We evaluated two
scenarios: 1) The normative volume distributions and the

patient-specific volumes were calculated by the same
method, and 2) the normative volume distributions was
calculated by a different method than the patient-specific
volumes. To this end, we applied five state-of-the-art
automated brain segmentation methods on the T1w MR
brain images of 988 ND subjects, and 42 AD patients
acquired with the same MR acquisition protocol.

The PCC-v showed that the volumes of all regions
correlated well, indicating that volume differences between
methods in ND subjects are mainly due to systematic
differences, such as the usage of different atlases and region
definitions. The ICC-v however was generally low, especially

TABLE 5 | PCC-v (upper-right triangle) and ICC-v (lower-left triangle) of ND volumes.

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).
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for the smaller regions, including the hippocampus, amygdala,
and globus pallidus. The low ICC-v indicates that the methods
cannot be interchanged in a normative modeling framework
and scenario 2) is not applicable. This also becomes visually
clear from Figure 2, when comparing the location of the red
dots across graphs in a row.

The ICC-z, with which the agreement on the AD patient
position relative to the normative distribution was measured in
the case of scenario 1), was good to excellent for the thalamus and
putamen, which also showed a good to excellent PCC-v. The
other four regions showed lower ICC-z, indicating that different
methods would result in different AD patient positions relative to
the normative distribution, even when the normative distribution
was computed using the same method as the patient data. A low

PCC-v also seemed to result in a low ICC-z. A high PCC-v
however does not necessarily result in a high ICC-z. This may
indicate that brain morphology changes because AD affects each
method differently.

The AUC, with which the z-score discrimination between the
patient and normative volumes was measured in the case of
scenario 1), was relatively high for the regions hippocampus and
amygdala for all methods, demonstrating the involvement of
these regions in AD. For the method GIF, the thalamus volume
showed to be a better discriminator for AD than the
hippocampus volume, which is unexpected, as this region is
not known for its involvement in AD, and the other methods did
not show such a high AUC for the thalamus. A possible
explanation is that the method GIF is more affected than the

TABLE 6 | PCC-v of the ND volumes (upper-right triangle) and ICC-z of AD volume z-scores (lower-left triangle). The ICC-z is computed according to scenario 1.

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).
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other methods by the brain morphology change due to AD, such
as larger ventricles.

Several limitations of this study can be highlighted. First, the
segmented results rely strongly on the atlas that was used by the
method. As was shown with the hippocampus, differences in
volume may be largely explained by the atlas and how the
region was defined. For this reason, operationalized and
quantitated landmark differences to help a Delphi panel
converge on a set of landmarks on the hippocampus and
provided a set of manually segmented images for training
models for automatic hippocampus segmentation. In this study
however, we considered the atlas a part of the method, and we did
not study specific atlas-related volume differences. Second, the
number of AD patients was limited, which limits the generalization
of the conclusions drawn from these results. In future studies, a
higher number of AD patients should be used to generalize the
study results. Third, we used images that were acquired on a single
1.5 T scanner with the same acquisition protocol. This allowed us
to study the effect of differences in segmentation methods, while
not considering the confounding effect of differences in acquisition
protocols. Future research should investigate how differences in
acquisition protocols influence the comparison of individual
patients to normative data and to study the generalizability of
our results in more heterogeneous datasets. Previously, tools have
been developed to cope with volumetric differences due to
scanning artifacts. The effectiveness of these tools can be tested
using our research setup with normative data. Finally, we limited
our study to five automatic segmentation methods. Many more
have been previously proposed, and it remains an active area of
research, particularly since the rise of deep learning techniques
(Bao and Chung, 2018; Shakeri et al., 2016). These methods may
achieve higher accuracy and precision, and therefore, the AUC of
the AD patient z-scores may increase. Future studies should
therefore also include deep learning–based approaches.

4.1 Conclusion
In this study, we aimed to answer two research questions: 1) to
what extent are methods interchangeable, as long as the same

method is being used for computing normative volume
distributions and patient-specific volumes? and 2) can
different methods be used for generating normative volume
distributions and patient-specific volumes? Based on the
absolute agreement results on the volume data of 988 non-
demented subjects, we conclude that it is essential that the
same method is used to generate normative volume
distributions and patient-specific volumes. For most regions,
the correlation was good (> 0.75), indicating that volume
differences between methods in ND subjects are mainly due to
systematic differences. When the same method is being used for
generating normative and patient data, we found that the
agreement on the AD patient’s position relative to the
normative distribution (ICC-z) was high for the regions
thalamus and putamen. Our results are encouraging as they
indicate that the studied methods are interchangeable for these
regions. For the regions hippocampus, amygdala, caudate nucleus
and accumbens, and globus pallidus, not all method
combinations showed a high ICC-z. Whether two methods are
indeed interchangeable should be confirmed for the specific
application and dataset of interest.
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