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A B S T R A C T   

Ganoderma lucidum is a traditional Chinese healthy food with many kinds of nutritious activities, and poly-
saccharide is one of its main active components. Ganoderma lucidum polysaccharide plays a vital role in 
improving human immunity and anti-oxidation. At present, the methods of detecting polysaccharide content of 
Ganoderma lucidum are destructive, and the steps are complicated and time-consuming. This study aims to 
explore the possibility of using hyperspectral imaging (HSI) to predict polysaccharide content in a nondestructive 
way during the growth of Ganoderma lucidum. The partial least square regression (PLSR) model shows good 
performance for Ganoderma lucidum (R2

p = 0.924, RPDp = 3.622) with pretreatment method of Savitzky-Golay 
(SG) and standard normal variate (SNV), and feature selection method of successive projections algorithm (SPA). 
This study indicates that HSI can quickly and nondestructive detect the polysaccharide content of Ganoderma 
lucidum, provide guidance for the cultivation industry and improve the economic benefits of Ganoderma 
lucidum.   

1. Introduction 

Ganoderma is an edible mushroom, also known as Lingzhi in China, 
which has been used for centuries as nutraceuticals to improve health 
(Bishop et al., 2015; Huie & Di, 2004). Ganoderma belongs to Basidio-
mycota, Agaricomycetes, Polyporales, Ganodermataceae. There are 
many species of Ganoderma and Ganoderma lucidum is recognized as 
one of the most effective. At present, polysaccharides, triterpenes, ste-
roids, nucleotides, amino acids, fatty acids, and lipids have been isolated 
from Ganoderma lucidum. Polysaccharides derived from plant foods are 
major components of the human diet, and cell wall polysaccharides are 
the major components of dietary fiber (Lovegrove et al., 2017). 
Numerous researches have demonstrated that polysaccharides are the 
most important components responsible for immunomodulatory (Ren 
et al., 2021). Due to its high nutritional value, Ganoderma is formulated 
in numerous health foods (functional foods or nutraceuticals, or dietary 
supplements) to promote longevity and improve human health. Tradi-
tional consumption methods include making soup, wine, and tea with 

the fruiting body of Ganoderma, the current study of Ganoderma food is 
the use of Ganoderma extract as raw materials, added to a variety of food 
and beverage, configured as a functional food with health effects (Li 
et al., 2019). 

Although Ganoderma was considered to be a “fairy herb” in China, 
this precious food was not widely used due to lack of resources until 
Ganoderma was successfully cultivated by researchers from the Institute 
of Microbiology of the Chinese Academy of Sciences in the 1950 s (Lin, 
2015). Since then, the artificial cultivation of Ganoderma fruiting body 
has become more and more popular in China, followed by Ganoderma- 
related food and industry. It is particularly important to detect the 
polysaccharide content of the Ganoderma lucidum fruiting body during 
its growth. The percentage content of polysaccharides in Ganoderma 
lucidum will change with growth, the highest in the mycelium and the 
lowest in the fruiting body, but the total content is still rising (Ren et al., 
2021). To quantitatively analyze the polysaccharide content, the phenol 
sulfuric acid and anthrone sulfate methods are mainly used at present. 
The results of these methods are more accurate, but they also have many 
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disadvantages, such as complex operations, time-consuming, and 
destructive. To achieve non-destructive monitoring, real-time quanti-
tative prediction of polysaccharide content, determine the optimal 
harvest time node of Ganoderma lucidum, and improve the quality, a 
method was proposed to predict the polysaccharide content of Gano-
derma lucidum by using hyperspectral images in this paper. To our 
knowledge, the application of this method to the quantitative detection 
of polysaccharides in the cultivation process of Ganoderma lucidum has 
not been reported yet. 

Hyperspectral imaging (HSI) is a technique that combines traditional 
imaging and spectroscopy to obtain spatial and spectral information of 
objects (Gowen et al., 2007). Although HSI was originally designed for 
remote sensing (Goetz et al., 1985), it has been increasingly used for 
nondestructive content detection, such as lipid prediction in cocoa beans 
(Caporaso et al., 2021), soluble solids content in kiwifruit (Ma et al., 
2021) and Chlorophyll content of winter wheat (Cai et al., 2021). Yang 
et al. measured pectin polysaccharides using HSI in mulberry fruit 
showed that HSI is a promising alternative to the chemical method to 
rapidly and nondestructively measure the polysaccharides (Yang et al., 
2021). Chen et al. collected the near-infrared spectrum of Ganoderma 
powder proving the feasibility of using HSI to measure polysaccharide 
content (Chen et al., 2012). 

However, there are new challenges for the non-destructively poly-
saccharide detection of Ganoderma lucidum in the process of cultiva-
tion. Ganoderma lucidum fruiting body has low polysaccharide content, 
about 0.73% (Linghua et al., 2017), and the distribution is uneven, and 
the content of the cap surface is even lower. To improve the detection 
accuracy, more detailed research was presented in this paper. 

A method was proposed to quickly and non-destructively detect the 
polysaccharide content of Ganoderma lucidum fruiting bodies using HSI 
technology. We collected both visible and near-infrared spectra of 
Ganoderma lucidum samples at the same time, extracted characteristic 
bands, and used machine learning algorithms to establish the regression 
relationship between the spectra of different tissue regions of the 
Ganoderma lucidum cap and polysaccharide content. 

2. Materials and methods 

2.1. Sample preparation 

280 Ganoderma lucidum samples were provided by Guangdong 
Yuewei Edible Fungi Technology Co. These samples were cultured at a 
temperature of 26.8 ◦C±1.27 ◦C, the humidity of 81.78% ± 6.43%, the 
CO2 concentrations of 2355.62 ppm ± 631.69 ppm and light intensity of 
300 lx to 600 lx. Four collection points were designed in this experiment, 
the diameters of the Ganoderma lucidum cap were 3–5 cm (18–19 days 
after fruiting), 5–7 cm (21–22 days after fruiting), 7–10 cm (24–25 days 
after fruiting) respectively, and 20 days after fruiting body sprayed 
powder. The RGB images of four samples from the four periods taken by 
the mobile phone were shown in Fig. 1(a). There were 70, 150, 30, and 
30 samples of Ganoderma lucidum from each period. When each batch 
of samples met the designed harvesting conditions, they were picked 
and transported to the laboratory to acquire the spectral image and 
numbered. 

2.2. Hyperspectral imaging system and image acquisition 

Hyperspectral image data of Ganoderma lucidum, also called hy-
percubes, were collected by GaiaField Pro-V10E (Sichuan Shuanglihepu 
Technology Co. Ltd, China), which consists of an imaging spectrograph 
(ImSpector V10E, Specim, Finland) with a spectral range of 
402.6–1005.5 nm, the spectral resolution of 2.8 nm, a CCD with a 
maximum spatial resolution of 960× 1040, and GaiaField Pro-N17E 
(Sichuan Shuanglihepu Technology Co. Ltd, China), which consists of 
an imaging spectrograph (ImSpector N17E, Specim, Finland) with a 
spectral range of 887–1703 nm, the spectral resolution of 5 nm, an 
InGaAs camera with a maximum spatial resolution of 320× 400. The 
light source adopted a diffuse halogen light source (HSIA-LS-T-H, 
Sichuan Shuanglihepu Technology Co. Ltd, China), of which the spectral 
range was from 350 to 2500 nm. A software (SpecVIEW, Sichuan 
Shuanglihepu Technology Co. Ltd, China) was used to set acquisition 
parameters and collect hyperspectral images. The whole hyperspectral 
image acquisition system was shown in Fig. 1(b). The hyperspectral 
camera, halogen lamp, and sample were all located in an all-black 
environment. 

Fig. 1. Spectral collection environment and processing of samples. (a). RGB picture of samples from four periods, (b). Hyperspectral image acquisition system 
and ROI. 

Y. Liu et al.                                                                                                                                                                                                                                      



Food Chemistry: X 13 (2022) 100199

3

The angle between the halogen lamp and the horizontal plane was 
45◦, and the difference in optical power distribution was below 10%. 
The height between the hyperspectral camera lens and the sample was 
400.0 mm. The acquisition parameters of GaiaField Pro-V10E (VIS) were 
set as spatial resolution 960× 991, exposure time 3.7 ms. And the 
acquisition parameters of GaiaField Pro-N17E (NIR) were set as spatial 
resolution 320× 333, exposure time 30 ms. Each spectral cube was a 
Ganoderma lucidum sample, which has 176 bands and 256 bands, 
respectively. 

2.3. Measurement of polysaccharide 

After the spectral image acquisition was completed, the poly-
saccharides in Ganoderma lucidum fruiting bodies were extracted 
following the modified phenol–sulfuric acid method (Nielsen, 2010; Xu 
et al., 2005; Yu et al., 2016). Samples from the first (P1) were mixed and 
pulverized every 7 pieces, and the second period (P2) were mixed and 
pulverized every 5 pieces. The samples in P1 and P2 can be seen from the 
Fig. 1(a) that the sample is small and needs to be mixed to perform 
chemical experiments. And there were 100 sets of data on poly-
saccharide content. Glucose was dissolved in distilled water at concen-
trations of 1.25, 2.5, 5, and 10 mg/ml. Add 20 μl of sample and 20 μl of 
phenol solution (5%) to a 96-well round bottom plate, and then add 100 
μl of concentrated sulfuric acid to decompose polysaccharides. And re-
cord the absorbance at 490 nm. According to the standard curve, get the 
polysaccharide content of the sample. 

2.4. Hyperspectral image processing 

2.4.1. Spectrum correction 
To reduce the dark noise of the detectors, the raw hyperspectral 

images were corrected with the white and dark reflectance with the Eq. 
(1): 

Rλ,n =
Sλ,n − Dλ,n

Wλ,n − Dλ,n
(1) 

Rλ,n and Sλ,n were the relative reflectance and the brightness of the 
raw hyperspectral image at wavelength λ and pixel n respectively. D and 
W were the reflectance of the blackboard and the whiteboard, respec-
tively. D was obtained by covering the lens with a black lens cap, while 
W was obtained by using the white reference board of the hyperspectral 
image system. 

2.4.2. Region of interest 
Firstly, the background noise and the reflective part on the surface of 

the Ganoderma lucidum cap were removed by threshold and we got the 
cap of Ganoderma lucidum. Since the samples of the first three periods 
have white growth areas, we have two ways to select the region of in-
terest (ROI), as shown in Fig. 1(b). The first one is to select white (Redge) 
and yellow areas (Rcenter) as ROI respectively and the second one is to 
select the entire area (Rall) as ROI. Compared with NIR, it is easier to 
extract ROI according to the first scheme in VIS. We used the threshold, 
morphological operation, and finally, extracted the connected compo-
nents to get Rcenter, and performed logical XOR operation on Rcenter and 
Rall to get Redge. The hyperspectral reflectance of each Ganoderma luci-
dum sample was obtained by averaging all the pixels in the ROI. For the 
samples of the P1 and P2, the reflectivity of 7 and 5 samples was aver-
aged, respectively. 

2.4.3. Spectral pretreatment 
To eliminate the noises from scattering effects, different spectral 

pretreatment methods were used, including standard normal variate 
(SNV) and Savitzky-Golay filtering (SG). 

The SNV processing formula was shown in equations (2) and (3). 

XSNV =
X − X
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1
(Xk − X)2

m− 1

√ (2)  

X =

∑m
k=1Xk

m
(3) 

In the Eqs. (2) and (3), m was the total number of bands, k ∈ {1,2,3,
⋯,m}, X was the original spectrum, Xk was the kth band of X. 

SG was proposed by Savitzky and Golay (Savitzky & Golay, 1964) 
and has been widely used in data smoothing and denoising. The core 
idea of SG is the weighted filtering of the data in the window, and the 
weight is obtained by the least square fitting of the given high-order 
polynomial. Its advantage is that it can retain the information of the 
signal more effectively while being smoothing. Set the width of the 
window to n = 2m + 1, the order of the polynomial to k, and each point 
x = ( − m,⋯,0,⋯,m) in the window is fitted with the order of k − 1 
polynomial, as shown in equation (4). Equation (5) was a matrix rep-
resentation of equation (4). 
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(4)  

Y(2m+1)×1 = X(2m+1)×k⋅Ak×1 +E(2m+1)×1 (5) 

Find the least-squares solution of A and get the smoothed result ac-
cording to equation (6). 

YSG = X⋅
(
XT ⋅X

)
− 1⋅XT ⋅Y (6) 

Due to the low correlation, too large n is not appropriate, and k is 
generally less than 4. In this experiment, k = 3 and n = 5 were used for 
smoothing. 

2.4.4. Feature selection 
To reduce the dimension of features, in addition to standardizing and 

smoothing the spectral data, feature engineering was also carried out on 
the preprocessed results. The dimension of spectral features can be 
reduced by feature extraction and feature selection. The successive 
projections algorithm (SPA) was used for feature selection here. SPA is a 
forward selection method that uses simple operations in a vector space 
to minimize variable collinearity and is proposed as a novel variable 
selection strategy for multivariate calibration (Araújo et al., 2001). First, 
select a column randomly, calculate its projection to the remaining 
column vectors, and select the spectral wavelength of the maximum 
projection, and repeat these steps until the set number of features is 
reached. Then, for the extracted variables, multiple linear regression 
analysis (MLR) models are established to obtain the cross-validated root 
mean square error (RMSEcv) of the modeling set, and the model with the 
smallest RMSEcv is selected. The corresponding variables are the optimal 
features (Soares et al., 2013). 

2.5. Modeling and evaluation 

Partial least squares regression (PLSR) was used to establish the 
model of the visible and near-infrared spectrum and polysaccharide 
content. PLSR is a robust and reliable algorithm to establish a model and 
it has been used in many spectral-content regression studies (Gabrielli 
et al., 2021; Zhu et al., 2021) because of its ability to reduce the impact 
of multicollinearity of the data. Cross-validation maximizes the amount 
of data used for training the model because each sample will be used for 
training as well as validation. In this study, 5-fold cross-validation (CV) 
was adopted. Each evaluation value of the model will generate 5 results 
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in the validation set respectively, and their average will be used as the 
evaluation value of CV. All models were evaluated using the coefficient 
of determination (R2

cal, R2
val, R2

cv), root mean square error (RMSEcal, 
RMSEval, RMSEcv) and residual prediction deviation (RPDcal, RPDval, 
RPDcv). The relationship between the effect of the model and R2 was 
very high when R2 > 0.85 and good when 0.85 > R2 > 0.6 (Hu et al., 
2021). Generally, the larger R2 and RPD, the smaller RMSE corresponds 
to a better model. 

3. Results 

3.1. Characteristics of samples 

As can be seen from Fig. 1(a), the appearance of Ganoderma lucidum 
samples in four periods was very different. With the growth of Gano-
derma lucidum, in addition to the gradual increase in the diameter and 
area of the cap, the color of the cap also changed significantly. The P1 
and the P2 samples had a white rim and a yellow center, while the 
former had a lighter center. The center of the third period (P3) samples 
were brown, with a yellow periphery and a very fine white margin. The 
caps of the samples in the fourth period (P4) were all dark brown, 
without white or yellow edges. The white edge is the growth area of 
Ganoderma lucidum, so the weight and cap area of Ganoderma lucidum 
will stop changing or change very little at a certain moment between the 
P3 and the P4. 

3.2. Polysaccharide content 

The maximum, minimum, and mean polysaccharide content of 
samples and standard deviation in four periods were shown in Fig. 2(a). 
The mean values of polysaccharide content in samples of four periods 
were 1.14% ± 0.12%, 0.77% ± 0.09%, 0.61% ± 0.11%, and 0.52% ±
0.07% respectively, which was small and gradually decreased. The 
declining trend of polysaccharides between the four periods is different, 
the fastest period from the P1 to the P2, and the slowest period from the 
P3 to the P4. It can be seen from Fig. 2(b) that the polysaccharide content 
of different samples in different periods may be the same, which was 
related to the characteristics of the Ganoderma lucidum samples. For the 
growth cycle of a sample, this situation is also possible: the total weight 
of the sample is different but the polysaccharide content per unit weight 
is the same. Then we can find a moment to maximize the total poly-
saccharide content of the sample. 

3.3. Spectral of the samples 

The spectral reflectance of four periods (P1, P2, P3, P4) samples in the 

ROIcenter, ROIedge and ROIall of VIS and NIR has been shown in Fig. 3. 
Wavelengths under 482 nm and over 920 nm, under 930 nm and 1640 
nm were found unreliable because of noise. Therefore, the wavelengths 
of 482 nm to 920 nm and 930 nm to 1640 nm were selected, with a total 
of 128 bands of VIS and 222 bands of NIR. Since the samples of P4 has no 
edge and center regions, the spectral reflectance of Redge,vis and Rcenter,vis 

of P4 were replaced by Rall,vis. Similarly, the spectral reflectance of 
Redge,nir and Rcenter,vis of P4 were replace by Rall,nir. 

As can be seen from Fig. 3(a), (c), and (e), the original reflectivity 
curves of VIS in the first three periods differed greatly, especially the 
peaks and troughs between 520 nm and 580 nm. The original reflectance 
curves of NIR (Fig. 3(b), (d) and (f)) had a similar trend and the value in 
Rcenter,nir was slightly larger. Since the reflectivity of Rall,nir was obtained 
by the reflectivity value of pixels in Rcenter,nir and Redge,nir on average, and 
the pixels in Rcenter,nir were much larger than those in Redge,nir, the 
reflectivity of Rall,nir was more affected by Rcenter,nir, and the curve was 
closer to it. The absorptions at 950–1000 nm and 1400–1500 nm may be 
related to the first harmonic of O–H in the water, and the absorption at 
1000–1100 nm may be related to the second harmonic of O–H in the 
polysaccharides and monosaccharides, while 1150–1300 nm may be 
related to the first harmonic of C–H combination (Xiaobo et al., 2010). 
Since there were more peaks and troughs in NIR, we expected that using 
NIR spectra to build polysaccharide regression models will have a better 
effect. 

3.4. Effect of pretreatment 

The spectral reflectance curve of Rall,nir after three different spectral 
pretreatments were shown in Fig. 4(b)–(d). It can be seen from Fig. 4(b) 
that the SG pretreatment made the spectral curve smoother, such as 
smoother peaks and valleys. And it also made the difference between 
samples of the same period smaller, which can be seen from the figure 
that the curve of the sample of the same period was more compact. 
Through SG smoothing, the random noise in the spectral signal can be 
eliminated, and the signal-to-noise ratio of the sample can be improved. 
SNV was used to eliminate the influence of scattering on the spectrum 
due to uneven particle distribution and different particle sizes. The 
result of SNV preprocessing was a new numerical sequence with a mean 
value of 0 and a variance of 1. 

3.5. Polysaccharide prediction 

PLSR models for polysaccharide content of Ganoderma lucidum 
fruiting body were built from HSI scans of both VIS and NIR, after 
appropriate treatment of the information of the hyperspectral cubes and 
feature selection. The results of these prediction models were shown in 

Fig. 2. The polysaccharide content of samples in four periods (a). The maximum, minimum, mean values, and standard deviation of Ganoderma lucidum poly-
saccharides in four periods, (b). The polysaccharide content of 100 samples in four periods. 
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Table 1. ROIcenter, ROIedge, and ROIall represented the center, edge, and 
entire cap of Ganoderma lucidum as the ROI respectively. NONE in 
Preprocessing stands for no preprocessing, and SG + SNV means SG first, 
then SNV pretreatment. The subscripts cal, val, and cv of coefficient of 
determination (R2), root mean square error (RMSE), and residual pre-
diction deviation (RPD) represent calibration set, validation set, and 
cross-validation, respectively. 

Since the results of cross-validation can better reflect the applica-
bility of the preprocessing method and machine learning algorithm than 
the results of the calibration set and validation set, we give priority to 
the high value of R2

cv, and consider R2
val and R2

cal comprehensively. All the 
results of the calibration and validation set were taken from the same 
fold from the 5-fold, so their data distribution was the same. All R2

cv were 
greater than 0.74, indicating that both the original spectrum and pre-

treated spectra spectrum have good robustness to the polysaccharide 
content. 

Modeling with the original spectra reflectance (no preprocessing, i. 
e., NONE) of ROIcenter, the R2

val of VIS and NIR are 0.86 and 0.786, 
respectively. After SG preprocessing, the effect of VIS is improved 
slightly, reaching 0.864, while the improvement of NIR is larger, 
reaching 0.866. The effect of SNV pretreatment on VIS is still very small, 
while NIR has increased from 0.786 to 0.828. We found that the original 
spectrum of VIS after the two pretreatments has a small increase or even 
a decrease, and it has an increase for NIR. After the two pretreatments 
are combined, as shown in Table 1, the effect of VIS has been reduced, 
and the effect of NIR has been greatly improved. The model established 
by Rcenter,nir combined with SG and SNV preprocessing methods has the 
best effect, with R2

val reaching 0.894. 

Fig. 3. Spectral reflectance in different ROI and spectral ranges. (a). Rcenter,vis, (b). Rcenter,nir, (c). Redge,vis, (d). Redge,nir , (e). Rall,vis, (f). Rall,nir .  
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Modeled with original spectra reflectance of ROIedge, the R2
val of VIS 

and NIR was 0.842 and 0.855, respectively, and the effect was reduced 
and improved compared to the model of ROIcenter, indicating that the 
original spectrum of ROIedge in NIR was more correlated with the poly-

saccharide content of the sample than the original spectrum of ROIcenter. 
After preprocessing, the R2

val of VIS and NIR dropped after SG and the R2
val 

after SNV was improved. Combining the two preprocessing, the pre-
diction effect also dropped. For this phenomenon, we assume that the 

Fig. 4. Three spectral pretreatment results of Rall,nir . (a). Original spectrum, (b). SG, (c). SNV, (d). SG and SNV.  

Table 1 
Polysaccharide prediction result.  

ROI VIS/NIR Preprocessing R2
cal  RMSEcal  RPDcal  R2

val  RMSEval  RPDval  R2cv  RMSEcv  RPDcv  

ROIcenter  VIS NONE  0.815 8.66E− 04  2.322  0.860 7.71E− 04  2.674  0.782 9.27E− 04  2.217 
SG  0.852 7.74E− 04  2.600  0.864 7.61E− 04  2.711  0.814 8.63E− 04  2.351 
SNV  0.817 8.61E− 04  2.335  0.836 8.35E− 04  2.471  0.778 9.38E− 04  2.175 
SG + SNV  0.839 8.07E− 04  2.492  0.843 8.17E− 04  2.524  0.825 8.40E− 04  2.425 

NIR NONE  0.819 8.56E− 04  2.350  0.786 9.54E− 04  2.162  0.769 9.69E− 04  2.086 
SG  0.865 7.38E− 04  2.724  0.866 7.55E− 04  2.732  0.763 9.65E− 04  2.150 
SNV  0.820 8.52E− 04  2.359  0.828 8.56E− 04  2.408  0.750 1.00E− 03  2.039 
SG + SNV  0.887 6.77E− 04  2.970  0.894 6.72E− 04  3.070  0.818 8.51E− 04  2.432  

ROIout  VIS NONE  0.787 9.27E− 04  2.168  0.842 8.19E− 04  2.516  0.760 9.80E− 04  2.081 
SG  0.819 8.55E− 04  2.353  0.830 8.50E− 04  2.427  0.784 9.32E− 04  2.180 
SNV  0.801 8.97E− 04  2.243  0.896 6.63E− 04  3.108  0.808 8.75E− 04  2.354  
SG + SNV  0.828 8.33E− 04  2.413  0.867 7.52E− 04  2.743  0.819 8.51E− 04  2.382 

NIR NONE  0.769 9.66E− 04  2.082  0.855 7.86E− 04  2.623  0.746 1.00E− 03  2.048 
SG  0.825 8.41E− 04  2.391  0.822 8.71E− 04  2.367  0.780 9.40E− 04  2.153 
SNV  0.799 9.01E− 04  2.233  0.867 7.52E− 04  2.740  0.756 9.80E− 04  2.102  
SG + SNV  0.822 8.49E− 04  2.369  0.831 8.49E− 04  2.429  0.800 9.01E− 04  2.244  

ROIall  VIS NONE  0.785 9.33E− 04  2.155  0.864 7.59E− 04  2.716  0.768 9.53E− 04  2.160 
SG  0.842 8.00E− 04  2.513  0.874 7.32E− 04  2.819  0.805 8.78E− 04  2.330 
SNV  0.817 8.60E− 04  2.338  0.893 6.74E− 04  3.060  0.779 9.16E− 04  2.290  
SG + SNV  0.841 8.02E− 04  2.508  0.900 6.54E− 04  3.155  0.819 8.37E− 04  2.468 

NIR NONE  0.796 9.07E− 04  2.216  0.783 9.61E− 04  2.146  0.762 9.73E− 04  2.092 
SG  0.818 8.59E− 04  2.341  0.815 8.88E− 04  2.323  0.756 9.78E− 04  2.100 
SNV  0.851 7.75E− 04  2.595  0.863 7.64E− 04  2.697  0.816 8.61E− 04  2.358  
SG + SNV  0.886 6.80E− 04  2.958  0.924 5.69E− 04  3.622  0.823 8.35E− 04  2.528  

Y. Liu et al.                                                                                                                                                                                                                                      



Food Chemistry: X 13 (2022) 100199

7

area of the ROIedge occupies a relatively small area, resulting in a small 
number of pixels in ROIedge, and the edge of ROIedge is susceptible to light. 
When preprocessing the data, in this case, using SNV for standardization 
is better than SG smoothing. And for the ROIcenter, the number of pixels is 
larger, and the edge of the area is not susceptible to light, the effect of 
SNV and SG preprocessing is related to the valid information retained by 
preprocessing. According to our assumption, since the spatial resolution 
of VIS is larger than that of NIR, the effect of the ROIedge of VIS will be 
better than that of NIR. After SNV pretreatment, the best effect of VIS 
reached 0.896. 

From the perspective of the two different regions of ROIcenter and 
ROIedge, the regression model established by corresponding preprocess-
ing is very good, which shows that the spectrum of ROIcenter and ROIedge 

can reflect the polysaccharide content of the entire sample. Considering 
the difficulty of extracting two regions separately in actual application, 
to reduce the amount of calculation and improve the detection effi-
ciency, it is the easiest to promote the application to use the entire cap of 
the Ganoderma lucidum sample to model and predict, and it is most 
reasonable to use the entire spectrum instead of part of the spectrum for 
modeling. Based on the original reflectance of the entire cap (ROIall), the 
R2

val of VIS and NIR reached 0.864 and 0.783, respectively, and multiple 
pretreatments have improved the effect. Among them, the combined 
effect of SG and SNV pretreatment reached the highest of VIS and NIR, 
R2

val are 0.9 and 0.924, respectively. Fig. 5(a) and (b) have shown the 
prediction results of these two models. 

3.6. Discussion 

To accurately predict the polysaccharide content of the Ganoderma 
lucidum fruiting body using hyperspectral images, two sets of image 
acquisition equipment were used in this study, using visible and near- 
infrared spectra respectively. Moreover, we tried to predict the poly-
saccharide content by combing visible and near-infrared spectra, but the 
effect was not as good as using them alone, so we did not introduce it in 
detail in this manuscript. 

For the ROI, three different schemes were carried out in this study: 
extracting the edge and center of the Ganoderma lucidum cap separately 
and extracting the whole Ganoderma lucidum cap. Meanwhile, a variety 
of spectral preprocessing methods and feature selection algorithms were 
used to find the best combination. The result showed that using the 
whole Ganoderma lucidum cap as ROI for prediction was the best. It 
indicates that the growth area on the periphery and the center of the 
Ganoderma ludicum jointly determine the polysaccharide content of 
Ganoderma lucidum, which is not directly related to the color it pre-
sents. For model building, We tried support vector machine (SVM), 
random forest (RF), and other algorithms, and finally, partial least 
square regression (PLSR) was the best. With the whole Ganoderma 

lucidum cap as ROI, after pretreatment by SG and SNV, and spectral 
feature extraction by SPA, PLSR modeling has the best effect, R2

cal and 
R2

val are 0.886 and 0.924, respectively. 
Polysaccharide is the most important content of the Ganoderma 

lucidum. In addition, triterpene is also one of the main chemical com-
ponents of Ganoderma lucidum. This experiment also tried to predict the 
triterpene content of the Ganoderma lucidum fruiting body by hyper-
spectral images. Supplementary data 1. (a) has shown the maximum, 
minimum, and mean triterpene content of samples and standard devi-
ation in four periods. The mean values of triterpene content in samples 
of four periods were 2.46%±0.07%, 2.06%±0.37%, 2.46%±0.65%, and 
1.8%±0.14% respectively. The two samples from the third period (P3) 
were excluded and the spectra of the remaining 98 samples were used 
for modeling. Similar to the predicted polysaccharide, a variety of ROI 
selection schemes were adopted, different spectral preprocessing and 
feature extraction were used, and different regression algorithms were 
used, and the results of these prediction models were shown in supple-
mentary data 2. Unlike polysaccharides, triterpenes were best predicted 
using the center of the Ganoderma lucidum cap as the ROI. Using the 
spectral of NIR, SG preprocessing first, and then SNV preprocessing, the 
model using the PLSR algorithm works best with a R2

cal of 0.793 and a 
R2

val of 0.705. This is the best result but it is not robust due to the R2
cv of 

0.588. The effect is poor, indicating that it is difficult to detect the 
content of triterpene through the Ganoderma lucidum fruiting body by 
HSI. 

4. Conclusion 

There are two main difficulties in this study. The first is that the 
fruiting body of Ganoderma lucidum usually has very low poly-
saccharide content. This poses a very big challenge to the accuracy of 
chemical detection and hyperspectral prediction. The second difficulty 
is the distribution of Ganoderma lucidum polysaccharides. Poly-
saccharide content is higher on the back of the Ganoderma lucidum cap 
because the Ganoderma lucidum spore powder is sprayed from there, 
which means the potential more accurate prediction. However, 
considering the actual application scenarios, it is difficult to collect the 
spectrum on the back of the cap due to the cover of the Ganoderma 
lucidum culture medium, so we finally used the surface of the cap to 
make predictions. 

The polysaccharide in Ganoderma lucidum was predicted by 
combining machine learning and hyperspectral imaging. The best model 
used SG and SNV to preprocess the spectral data of NIR, SPA to extract 
features, and PLSR algorithm to model. The determination coefficient of 
calibration set (R2

cal) and validation set (R2
val) reached 0.886 and 0.924, 

respectively. The results of the VIS spectrum after the same pre-
processing are 0.841 and 0.9. These two models have good results in the 

Fig. 5. Prediction results of the top two models. (a). PLSR on ROIall in VIS with SG and SNV pretreatment, (b). PLSR on ROIall in NIR with SG and SNV pretreatment.  
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prediction of Ganoderma lucidum fruiting body polysaccharides. 
This study shows that it is feasible to use hyperspectral imaging 

equipment to collect the spectral cubes of Ganoderma lucidum from the 
top to predict its polysaccharide content, and highlights the great po-
tential for rapid and nondestructive determination of polysaccharides in 
Ganoderma lucidum. VIS and NIR spectrum data can accurately predict 
the polysaccharide content of the Ganoderma lucidum fruiting body 
after being preprocessed by SG and SNV, and the effect of NIR is better. 
This study also tried modeling based on the spectra of different regions 
of Ganoderma lucidum, including the center, edge, and overall regions. 
The result showed that the model built with the overall works better. 

We provided a feasible method for monitoring the polysaccharide 
content in the cultivation process of Ganoderma lucidum, obtaining 
growth information for growers, and determining the best harvesting 
time to improve its quality and economic value. It has the potential to be 
used in large-scale planting and high-throughput detection. 
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