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saturation mutagenesis experiments
with first-order taylor expansion

Alexander Sasse,1 Maria Chikina,2,* and Sara Mostafavi1,3,4,*
SUMMARY

To understand the decision process of genomic sequence-to-function models, explainable AI algorithms
determine the importance of each nucleotide in a given input sequence to the model’s predictions and
enable discovery of cis-regulatory motifs for gene regulation. The most commonly applied method is in
silico saturation mutagenesis (ISM) because its per-nucleotide importance scores can be intuitively un-
derstood as the computational counterpart to in vivo saturation mutagenesis experiments. While ISM
is highly interpretable, it is computationally challenging to perform for many sequences, and becomes
prohibitive as the length of the input sequences and size of the model grows. Here, we use the first-or-
der Taylor approximation to approximate ISM values from the model’s gradient, which reduces its
computation cost to a single forward pass for an input sequence. We show that the Taylor ISM (TISM)
approximation is robust across different model ablations, random initializations, training parameters,
and dataset sizes.

INTRODUCTION

Deep learning models have become the preferred tool to analyze the relationship between genomic sequence and genome-wide

experimental measurements such as chromatin accessibility,1,2 gene expression,3–5 3D chromatin conformation,6–8 and other molecular

data modalities.9–11 To understand the models’ decision processes, and extract the learnt genomic features, various explainable AI al-

gorithms have been developed.12–14 These methods estimate the importance of each nucleotide in an input sequence to the model’s

predictions.

The most commonly used algorithm to interpret genomic sequence-to-function models is in silico saturation mutagenesis (ISM).15

ISM is very straightforward to implement and biologically highly interpretable. It can be intuitively compared to performing in vivo

saturation mutagenesis experiments,16 as ISM computes the change in the model’s prediction as a function of a change in a

single nucleotide. More formally, given a trained sequence-to-function model, at every position l along an input sequence of

length L the reference base b0 is replaced by one of the other three alternative bases bv˛{A,C,G,T | bv s b0} one at a time, and

the model’s predictions on the alternative sequences recorded. Thus, to compute the ISM profile for a sequence of length L, three times

L forward passes are required. The differences between the predictions of these variant sequences and the prediction from the ‘‘refer-

ence’’ (initial) sequence is then used to define the impact or importance of the reference base and each alternative base along the

sequence.

It is hoped that when applied to increasingly accurate sequence-based deep learning models, ISM can aid in solving for a

comprehensive cis regulatory grammar and in some cases replace laborious and expensive in vivo saturation mutagenesis

experiments.4,9,17 However, as the state-of-the-art models continue to model larger input sequences (e.g., >100Kb), it is becoming

computationally prohibitive to apply ISM. Here, we study the effectiveness of a first-order Taylor approximation to compute ISM

values using the model’s gradient from a single forward pass for each sequence. We show that Taylor approximated ISM (TISM)

approximations speed up computations of ISM values by a factor L times three divided by the batch size. TISM derived attribution

maps highly resemble attribution maps from ISM, more than the models’ gradient as it is. We also derive that TISM represents the theo-

retical link between a recently proposed correction of the model’s gradient for investigation of genomic sequences and attribution

maps from ISM. Importantly, we show that TISM values are robust across different models, random initializations, training parameters,

and dataset sizes.
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RESULTS
Approximating ISM with the model’s gradient

To approximate the value of a complex function f at input s, Taylor’s approximation linearly decomposes the function value f(s) at s into the

value of the function at nearby position s0, given by f(s0), and the derivative of the function df
ds0

at s0 multiplied by the difference between the

position of interest s and s0.

f ðsÞ = f ðs0Þ + df

ds0
ðs � s0Þ+Oð2Þ (Equation 1)

Where O(2) represents the second order term that is truncated in the linear approximation. In the case of sequence-based deep learning

models the input to the function f is a real numbered one-hot encoded sequence tensor of size L times the number of channels (e.g., four

for DNA, i.e., A, C, G, T).Gradients for thesemodels are automatically computedwith numericalmethods that are implemented in the specific

deep learning libraries.18On the other hand, the gradient df
ds0

can also be approximated by finite differences from the sequence of interest s0 to

a sequence with a single nucleotide substitution b0 to b1 at position l, denoted by s0ðl;b0 /b1Þ .

f ðsÞz f ðs0Þ + df

ds0
Dsz f ðs0Þ+ f ðs0ðl;b0/b1ÞÞ � f ðs0Þ

s0ðl;b0/b1Þ � s0
Ds (Equation 2)

In the case where the finite distance ds to approximate the gradient is equal to the distance from the reference sequenceDs, the numerator

and denominator cancel each other out and we are left with the ISM value given by Equation 3.

= f ðs0Þ+ f ðs0ðl;b0/b1ÞÞ � f ðs0Þ
s0ðl;b0/b1Þ � s0

ðs0ðl;b0 /b1Þ � s0Þ
= f ðs0Þ + f ðs0ðl;b0 /b1ÞÞ � f ðs0Þ = f ðs0Þ+ ISMðs0; l;b1Þ (Equation 3)

Thus, Equation 3 shows that ISM values represent the effect from a linear approximation of the deep learning model f to a single base

change. In practice, ISM values are used in two ways: (1) as a per-nucleotide value that indicates howmuch the prediction changes if the refer-

ence base is replaced by the specific variant; (2) as attribution maps which indicate how important each nucleotide is for a model’s prediction.

To generate attribution maps from ISM values, practitioners subtract the mean at each position l from the ISM values to get attributions per

base-pair AISM(s0, l, bv).

AISMðs0; l;bvÞ = ISMðs0; l;bvÞ � 1

4

X4

j = 0

ISM
�
s0; l;bj

�
(Equation 4)

Regulatory motifs are usually identified from the values of these attributionmaps at the reference base. They represent how important the

present nucleotide is for the model’s predictions akin to common measures of per-nucleotide sequence conservation.

AISMðs0; l;b0Þ = ISMðs0; l;b0Þ � 1

4

X4

j = 0

ISM
�
s0; l;bj

�
= 0 � 1

4

X4

j = 0

ISM
�
s0; l;bj

�
(Equation 5)

While ISM is easy to implement, it is computationally costly, and so users often resort to using ‘‘gradient-times-input’’ to indicate how

important the given nucleotide is for a model’s prediction.4,9 Gradient-times-input is less computationally taxing because it uses a single

pass through the model to simultaneously approximate the importance of every nucleotide in the input sequence. Specifically, during model

training, the gradient with respect to the parameters is computed automatically in every forward pass to enable parameter updates with back-

propagation. Therefore, the gradient with respect to the input is available for ‘‘free’’ from just a single forward pass through the network. For

model interpretation, gradient-times-input simply uses the gradient at the reference base, indicating whether it is beneficial for the model to

either ‘‘change,’’ or keep the base at this position.

Here, we propose to instead use the gradient to approximate ISMusing a first-order Taylor approximation. Equating f(s) in Equations 1 and

3, shows that ISM can be approximated from the model’s gradient:

f ðs0Þ + ISMðs0; l;b1Þz f ðs0Þ + df

ds0
s0ðl;b0 /b1Þ � df

ds0
s0 = f ðs0Þ+ TISMðs0; l;b1Þ (Equation 6)

where TISM denotes the first-order Taylor approximation to ISM. Applying this to a one-hot encoded input in which the reference base b0 a

position l is replaced (set b0 from 1 to 0) by an alternative base b1 (set b1 from 0 to 1), we can see that ISM at l,b1 is equal to the gradient with

respect to the reference sequence s0 at base l,b1 minus the gradient at base l,b0.

ISMðs0; l;b1Þzdf ðl;b1Þ

ds0
� df ðl;b0Þ

ds0
= TISMðs0; l;b1Þ (Equation 7)
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This relationship allows us to quickly approximate the per nucleotide ISM values from the gradient of the input sequence using only a sin-

gle forward pass through themodel. This is especially useful when applying ISM to long sequences, or for comparing regulatory motifs across

many sequences. Distal regulatory elements are common in genomics and estimating the correct effect size is key to determine their impact

on gene regulation.

While gradient times input estimates the importance of the reference base from the gradient at the reference base df ðl;b0 Þ
ds0

, attribution maps

derived from TISM correctly add the effect from the alternative bases to the attribution of the reference at position l.

ATISMðs0; l;b0Þ = TISMðs0; l;b0Þ � 1

4

X4

j = 0

TISM
�
s0; l;bj

�

= 0 � 1

4

X4

j = 0

TISM
�
s0; l;bj

�
=

df ðl;b0Þ

ds0
� 1

4

X4

j = 0

df ðl;bjÞ
ds0

(Equation 8)

We note here that Majdandzic et al. recently proposed the same correction for gradient-based attribution maps from a geometrical

approach.19 Briefly, the authors suggested minimizing the impact of of-simplex gradient noise by removing the random orthogonal gradient

component from the input gradient. Here, we showed that this correction represents an approximation of attribution maps that are derived

from ISM values. In addition, we show how these values can be biologically interpreted as ISM values and how the gradients of the model are

related to ISM values.
TISM effectively approximates ISM with massive speed ups

Weused amodified version of our previously publishedmodel AI-TAC (see STARMethods) and evaluated the concordance between ISM and

TISM on the per nucleotide effects in each input sequence. The model takes a DNA sequence of 251 bp around the ATAC peak (open chro-

matin region [OCR]) as input and predicts the normalized accessibility (i.e., the logarithm of the number of Tn5 cuts within 250 bp around the

ATAC peak, corrected for sequencing depth) of that peak across 81 different cell types in a multitask fashion. The model was trained on

286,000 OCRs and ISM and TISM values were computed for 9,158 OCR sequences for all 81 cell types (i.e., 741,798 attribution maps

each). In all evaluations below, we solely use regions from chromosome 19 which were entirely left out during model training and validation.

In our baseline model, we observed an average correlation value of 0.7 between TISM and ISM values (Figure 1A). Encouragingly, 87% of

TISM profiles computed from test regions had a correlation value of at least 0.6. Visual inspection confirmed the high concordance between

ISM and TISM profiles across different cell types and suggests that both methods detect the samemotifs and predict similar changes to their

effect across cell types (Figure 1B). Next, we confirmed our theoretical derivation and compared TISM to the gradient as a popular alternative

to ISM. TISM’s correlations to ISM are consistently higher than those of the gradient itself (Figure 1C). We also compared concordance be-

tween the mean effect per base from TISM and ISM versus the concordance of the mean effect from ISM to gradient-times-input (Figure S1).

While the correlation of the mean effect per base from TISM to ISM is also consistently higher, gradient times input’s correlation to ISM is

closer than the correlation of gradients across all four bases.

We examined the sequences with lower correlation between TISM and ISM and noted that for most part, these correspond to regions of

low average predicted chromatin accessibility and high coefficients of variations of predicted counts (Figures 1D and S2A). We did not

observe a relationship between model performance and ISM to TISM correlation (Figure S2B). When we measured the running times for

both methods, we confirmed the theoretical speed up of TISM over ISM (Tables 1 and 2). When we measured the speedup for different

numbers of sequences, TISMwas on average�160 times faster than ISM (Table 1). This is consistent with theoretical values from using a batch

size of 20 to compute the ISM values (3 times 1,000 bp divided by batch size of 20). TISM exerts its real value for long sequences, where its

speedup improves from25 times to 8,000 times for sequences of length 251 bp to sequences with length 20,000 bp (Table 2).We note that this

speedup is 2.5 times larger than expected with a batch size of 20.

Additionally, we also compared the run times between TISM, ISM, and Yuzu20 on two untrained model architectures (Figure 2). Yuzu uses

compressed sensing to speed up computation of ISM values. Yuzu’s ISM values are not an approximation and therefore they are identical to

ISM values. However, Yuzu is not applicable to all network architectures, modules, or long sequences. While Yuzu is 10 times faster than ISM

on a shallowmodel (3 conv. layers, Figure 2 top; Table S1 and S2), it is only five times faster on a deepermodel (8 conv. layers, Figure 2 bottom;

Tables S3 and S4). Yuzu improves its speed up over ISM for larger sequences (Tables S1 and S3). However, we were not able to run sequences

longer than 2 kb on our GPU. Nevertheless, for all these tests, TISMmassively outperforms Yuzu, making it especially valuable for exceedingly

long, or large numbers of sequences. These gains also hold true for computations on the CPU (Figure S3).
TISM robustly approximates ISM values across models

To determine how robust TISM approximations are across models, we trained our baseline model from four random parameter initializations

and computed the Pearson correlation between TISM and ISM profiles from all four models (Figure 3A). On average, the correlation of ISM

profiles from two separate model runs is 0.58. TISM profiles behave similarly, with an average correlation of 0.52: However, TISM and ISM

profiles correlate on average with Pearson R = 0.7 when they are from the same model, showing that TISM is more concordant with

ISM than ISMs between different model trainings.
iScience 27, 110807, September 20, 2024 3
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Figure 1. Comparison between ISM and Taylor approximated ISM

(A) Histogram and cumulative percentage of Pearson’s correlation between ISM and TISM of 9158 chromatin regions across 81 cell types in the test set (Mean =

0.7, Median = 0.73).

(B) Attributions of reference base from ISM and TISM for ‘‘Atac.peak_251276’’ at chr19:36,006,362-36,006,612 across 8 cell types with differential chromatin

accessibility. Selected peak’s ISM and TISM correlate 0.75 across all 81 cell types. Blue squares indicate consistent motifs between TISM and ISM. Red

squares indicate motifs that are inconsistent (here only present in TISM) (C) Average Pearson correlation of OCRs across all cell types between ISM and the

Gradient (x axis) versus the average correlation between ISM and Taylor corrected gradient (TISM).

(D) Correlation between peaks’ mean log accessibility and the correlation between ISM and TISM is R = 0.29.

ll
OPEN ACCESS

iScience
Article
Next, we examined the concordance between ISM and TISM profiles with decreasing size of training data. To do so, we sub-sampled

OCRs to create a couple of different smaller training sets (1%, 5%, 10%, 20%, and 50%). For each training set size, we trained a model on

the randomly selected subset of data points and evaluated the correlation between TISM and ISM on the same 3,000 peaks across 81 cell

types (243,000 ISM profiles; Figure 3B). Surprisingly, we observe that the correlation between ISM and TISM is higher for models that were

trained on a subset of the data points, with the largest concordance between the two at 5% of the data points, or 14,300 training data points.

Simultaneously, the predictive performance of the model is decreasing as expected (Figure 3B bottom). From visual inspection, we observe

that models trained on smaller datasets are missing regulatory motifs that are present when trained on larger datasets (Figure S4A, blue

frames). Additionally, the TISMs from smaller datasets are also missing negative motifs that are not concordant with the ISM effects

(Figures 1B and S4, red frames). We hypothesize that these discordant motifs in models trained on larger datasets are the result of non-linear

effects that TISMs cannot account for by the first-order Taylor approximation, even within proximity of only single nucleotide change.

To investigate this further, we looked at the evolution of concordance between TISM and ISM during model training. We trained a model

for 400 epochs and assessed the concordance between ISM and TISM after 1, 2, 3, 5, 7, 11, 20, 60, 100, and 400 epochs (Figure 3C). As ex-

pected, the test set performance (mean Pearson correlation R of OCRs across cell types) is increasing until 11 epochs and then slightly de-

creases afterward while the training performance continues to increase. We note that the model is not overfitting as strongly as we would

expect normally. We assume that this is due to our architectural choices, the Pearson correlation loss across cell types and the random

sequence shifting in particular. At the beginning ofmodel training, we observe that the concordance between ISM and TISMprofiles is similar
4 iScience 27, 110807, September 20, 2024



Table 1. Comparisons between run times of ISM and TISM for sequences of 1,000 bp

Number of sequences t(s) ISM t(s) TISM

10 22.41 0.15

100 320.01 2.84

500 1,483.57 8.83

1,000 2,382.91 10.63

For all experiments, a batch size of 20 was used to perform forward passes through the models. Run times to generate ISM and TISM values for 10, 100, 500, and

1,000 sequences of length 1,000 bp.
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to our fully trained baseline model while its predictions are still random (meanTest = �0.02, meanTrain = 0.01). Interestingly, the concordance

between ISM and TISM increases after three epochs and reaches its optimum with a mean Pearson of 0.85 at epoch seven, when model

performance is slightly less than optimal (meanTest = 0.37). Once the model reaches its optimum performance in the test set at epoch 11

(meanTest = 0.41) the concordance has decreased back to an average 0.71. Additional overfitting (epoch 400: meanTest = 0.34, meanTrain =

0.45) does not affect the concordance between TISM and ISM (mean concordance 0.71). We hypothesize that the increase in correlation

before reaching the optimal model performance is the result of the model learning linear relationships which the first-order approximation

can well represent. However, afterward the model potentially starts learning non-linear effects that increase its performance but reduce the

concordance between ISM and TISM.

Lastly, we trained twelve different models, each with a single ablation to the baselinemodel. We used thesemodels to study the impact of

model architecture on the accuracy of TISMs approximations (Figure 3D, STAR Methods). Most training and architectural choices did not

affect the concordance between ISM and TISM (i.e., exponential activation, no dropout, L1 on sequence kernels, forward strand input

only). While removing batch norm, andmax pooling did not affect the performance of themodel, both choices slightly decreased the concor-

dance between TISMand ISM (meanNoBatchnorm = 0.68,meanMaxpool = 0.66). The shallowCNNCNN0performed slightly worse in performance

but has the same mean concordance as the baseline model (Mean = 0.7).

We observed the worst concordance between ISM and TISM from a model that used ReLU activations across the network (meanReLU =

0.61), while this choice did not result in worse predictions. On the other hand, using AdamW (mean = 0.82), MSE loss (mean = 0.76), and

no sequence shifting (mean = 0.74) during model training, resulted in worse performance but higher concordance between ISM and

TISM. Visual inspection of ISM and TISM profiles generated by a model trained with AdamW suggest that the updates with weight decay

led to smaller motif effects (Figures 1B and S4B, blue frames) and less varying gradients outside the well-defined motifs (Figures 1B and

S4B, red frames). Since non-linear effects are rare in the data, weight decay, in addition to reducing the size of the linear effects, removes

rare non-linear effects entirely, leading to more concordant TISM but less accurate predictions.
DISCUSSION

Here, we provide the theoretical link between ISM and gradient-based interpretation methods for sequence-to-function models, which we

call Taylor approximated ISM (TISM). We use TISM to generate 741,798 sequence attributionmaps of length 251 bp for 22 models and assess

the concordance between the computationally efficient approximation and the directly computed values across sequences. We find that

TISM is highly concordant with ISM (mean correlation�0.7, see Figures 1A and 1B). Themotifs that appear in these attributionmaps are highly

similar (Figures 1B and S4). We showed that TISM and ISM values from the same model have a higher correlation value than ISM values be-

tween different model initializations, suggesting that TISM’s approximations are within the uncertainty of over-parameterized deep neural

networks. In fact, the majority of TISM (89%, >0.58) values correlates well above ISM values from different model initializations, suggesting

that TISM is sufficient to understand the model’s learned regulatory grammar and predict effects of sequence variants across different loci.

Concordance between the two gets worse for model architectures that use ReLU and max-pooling layers which potentially make it more

challenging to accurately compute the model’s gradients. Counterintuitively, we also observe that models trained on fewer data points,

model architectures with worse predictive performance, or not fully trained models possess higher concordance between ISM and TISM.
Table 2. Comparisons between run times of ISM and TISM for 10 sequences of different lengths

Sequence length t(s) ISM t(s) TISM

251 3.29 0.13

1,000 22.41 0.15

5,000 238.41 0.23

20,000 6,126.65 0.75

For all experiments, a batch size of 20 was used to perform forward passes through the models. Run times of models that take as input sequences of length 251,

1,000, 5,000, and 20,000 bp to compute n = 10 ISM and TISM values.

iScience 27, 110807, September 20, 2024 5



Figure 2. Comparisons between run times of ISM, Yuzu, and TISM on GPU for sequences of different length and different numbers of sequences

Run times are reported for ISM, Yuzu-ISM, and TISM for (A) 10 sequences of length 500, 1,000, and 2,000bp, as well as (B) 10, 50, and 1000 sequences of length

1,000bp. The top row shows run times for a standard AI-tacmodel (3 conv. layers +2 fully connected layers) and the bottom row shows run time for a deeper AI-tac

model (8 conv. layers +3 fully connected layers).
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We hypothesize that this can be explained by these underperforming models having learned only simple motif grammar that misses inter-

action terms between bases. Further exploiting this observation, we hypothesize that one could use the discordance between TISM and

ISM to detect sequences that harbor strong base-pair interactions.

Issues with interpreting attribution maps result from a limited understanding of what these values functionally mean. ISM is biologically

interpretable but can become computationally challenging for large sets of long sequences that are processedby deep networks.While other

backpropagation-based methods can help with this, their values are often harder to interpret and therefore hard to compare across, posi-

tions, sequences, andmodels. The recently developed geometrical correction to themodel’s gradient byMajdandzic et al.19 shows empirical

and anecdotal evidence for improving motif identification but do not provide a theoretical link to ISM attribution maps or a biological expla-

nation of what these geometrically corrected motif values represent.

Here, we show how one can approximate ISM from the model’s gradient. Approximating ISM enables the analysis of both large sets of

sequences and long sequences. TISM’s strength especially comes through for long sequences (e.g., >20kb), and therefore it is extremely use-

ful to detect, extract, and compare regulatory motifs across sequences and tasks.4 While not as accurate as FastISM21 or Yuzu20 (because

these are not approximations), TISM, in contrast, is applicable to any network written in any code base, any number of sequences, and

only requires a few lines of code to turn the model’s gradient into TISM values.

Limitations of the study

Taylor’s approximation uses the gradient around an infinitesimally small region around the sequence of interest to determine the attributions

for each base. Other backpropagation-based methods, e.g., DeepLIFT12 or DeepSHAP22 approximate the behavior of the non-linear neural

network function in a larger region between the sequence of interest and a baseline sequence, i.e., a sequence with neutral signal. These

methods avoid saturation effects because they estimate the effect of every base independent of the effect from surrounding bases. Similar

gene knockouts, where single gene perturbations can be compensated by paralogs,many basesmay only reveal strong effects conditional on

other changes. On the other hand, these methods require the definition of new backpropagation rules for the deep learning libraries that are

used. Current implementations of the latter are limited to standard activation functions or require a high degree of expertise to work for com-

plex modules that use SoftMax normalizations, such as attention.
6 iScience 27, 110807, September 20, 2024



Figure 3. Comparison between ISM and Taylor approximated ISM across models

(A) Average correlation between ISM and TISM values across 3,000 regions and 20 cell types from four random model initializations. The AI-TAC model was

trained four times from different random parameter initialization.

(B) Pearson correlation between TISM and ISM for 3,000 test set regions across 81 cell types for six models trained on different percentages of the training set.

Bottom shows the Pearson correlation between predicted and measured log-counts of OCRs in the test set across 81 cell types. The data are represented by the

median, and boxes extend from the lower to upper quartile values (Q1-Q3).

(C) Pearson correlation between TISM and ISM for 3,000 test set regions across 81 cell types after training for different epochs. Pearson correlations between

predicted and measured log-counts of OCRs across 81 cell types is shown for test and the training set sequences. Boxes represent data as described in (B).

(D) Pearson correlation between TISM and ISM for different ablations of the baseline model on top, and Pearson correlation between predicted and measured

log-counts of the twelve models for 9158 chromatin regions across 81 cell types. Boxes represent data as described in (B).
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ISM represents a well understood concept with clear experimental interpretations. It can be applied to any model architecture without

specialized packages. Similarly, TISM uses the standard functions to compute the gradients which any deep learning libraries are equipped

with to train the models’ parameters. In this work, we only assess the concurrence between ISM and TISM, and note that the study by Maj-

dandzic et al.19 provides a solid benchmark of the learnt motifs. We demonstrated that attributions computed from centered TISM values

result in the same gradient corrections as those proposed by Majdandzic et al.,19 and therefore we point the reader to their motif bench-

marking results instead of replicating those here. Lastly, while we tested a dozen model ablations, and observed only minor discrepancies

between ISM and TISM for models that use ReLU activations and max pooling, these analyses are not exhaustive; other modules or combi-

nations of modules and data may have a stronger impact on their concordance.

RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the Lead Contact, Sara Mostafavi (saramos@cs.washington.edu).

Materials availability

This study did not generate any reagents.
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Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� All original code has been deposited at Zenodo and is publicly available at https://github.com/LXsasse/TISM as of the date of publication. DOIs are listed

in the key resources table.
� Processed ATAC-seq data and called peaks can be found at: https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv or https://

www.dropbox.com/s/r8drj2wxc07bt4j/ImmGenATAC1219.peak_matched.txt?dl=0, https://www.dropbox.com/s/7mmd4v760eux755/mouse_peak_
heights.csv?dl=0.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and processed ATAC-seq data Yoshida et al. 201923

https://doi.org/10.1016/j.cell.2018.12.036

GSE100738

Filtered ATAC-peak locations Maslova et al. 202024 https://www.dropbox.com/s/r8drj2wxc07bt4j/

ImmGenATAC1219.peak_matched.txt?dl=0

Normalized ATAC-peak counts Maslova et al. 202024 https://www.dropbox.com/s/7mmd4v760eux755/

mouse_peak_heights.csv?dl=0

Software and algorithms

Python version 3.8 Python Software Foundation https://www.python.org

Pytorch 2.3 The PyTorch Foundation https://pytorch.org/

TISM Github https://github.com/LXsasse/TISM

https://doi.org/10.5281/zenodo.13290074

AI-TAC Github https://github.com/smaslova/AI-TAC

DRG Github https://github.com/LXsasse/DRG
METHOD DETAILS

Baseline model training

To determine how well TISM reproduces the results computed by ISM under different conditions, we trained various versions of our previous

AI-TACmodel24 on the same ATAC-seq data for 286,000 open chromatin regions (OCRs, regions that were determined to be open in at least

one cell type) across 81 mouse immune cells.23 All models use a 251bp one-hot encoded sequence around the center of the ATAC-seq peaks

and predict log2(x+2) transformed Tn5 cuts within the peak region.We train onOCR sequences from16 out of 19 chromosomes and useOCRs

on chromosome 8 and 11 for validation, and those on chromosome 19 as an independent test set. We use early stopping and select our final

model based on the highest mean Pearson’s correlation coefficient between model’s prediction of accessibility and the ground truth across

cell types for OCRs (computed on the validation set).

All themodels use 298 kernels of length 19bp, with a GELU activation function, and SoftMax weightedmean pooling of size 2. The models

apply 4 residual convolutional blocks with batch normalization, kernel size of 7, 298 kernels, and subsequent SoftMax weightedmean pooling

of size 2. The resulting representation is flattened and condensed to a size 512 tensor with a linear layer, followedby two fully connected layers

with GELU activation, before themodel heads predict the log transformed counts for the 81 cell types in amulti-task fashion. All models use a

dropout of 0.1 in all the fully connected layers. We use a mixture of MSE and mean correlation of OCRs across 81 cell types as a loss function

and update themodels’ parameters with SDGwith 0.9 timesmomentumand a learning rate of 1e-5. The learning rate is exponentially warmed

up in 7 epochs, and fine tuning is performed for five iterations on the best performing parameters with gradually reduced learning rates. All

models use the forward and the reverse strand of the sequence and perform kernel specificmax-pooling along the aligned forward and back-

ward activations from both sequences, only forwarding the highest activation of a kernel from the two strands at a given position. In addition

to the sequence centered at the ATAC-peak, we also perform data augmentation by including shifted versions of each sequence,9 where we

randomly shift the genomic location of a given sequence by a number between -10 to 10 base pairs.
Model variants

AI-TAC is a standard CNNmodel trained with correlation loss function. Because the attribution methods we use here are agnostic to the spe-

cific model architectures, the results presented should generalize more broadly to other models and training datasets. However, we also

repeated these experiments with various modifications to the model’s architecture to examine the generalizability of our results. Specifically,

to test how concordant TISM values are to ISM values across different modeling choices/architectures, we trained different models and used

ablation to investigate the effect of various modeling choices. First, we trained four versions of the above ‘‘baseline’’ model with different

random initializations. Second, we trained themodel on five different percentages of the training set to assess how training set size influences

TISM’s concordance to ISM. Third, we stopped training after 1, 2, 3, 5, 7, 11, 20, 60, 100, and 400 epochs and assessed how the concordance

changes during training. Lastly, we performed ablation analysis of the baselinemodel as follows: 1)We trained solely using theMSE loss, 2) we

used ReLU activation throughout the model, 3) we used an exponential activation function after the first convolution,25 4) we used max-pool-

ing instead of the weighted mean pooling, 5) we trained without the reverse complement sequence, 6) we trained without residual
10 iScience 27, 110807, September 20, 2024
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connections, 7) we trainedwithout dropout, 8) we trainedwithout batch norm in the residual convolutional layers, 9) we used L1-regularization

of the 298 kernels in the first layer, 10) we trained with AdamW instead of SGD, 11) we trained without randomly shifted sequences, and 12) we

trained a shallowCNN that only uses one convolutional layer, 70 bpwideweightedmean pooling, which is flattened and then directly given to

the linear prediction head.
QUANTIFICATION AND STATISTICAL ANALYSIS

Assessing run times

To empirically determine the speedup of TISM over ISM, we trained three additional model architectures that used sequences of length

1,000bp, 5,000bp, and 20,000bp as input. For these models, we used the same number of convolutional layers but adjusted the size of

the SoftMax weighted mean pooling to account for the larger sequence windows. We then determined the time to compute ISM and

TISM values for models with four different input lengths and for one model for four different numbers of sequences. Specifically, to compute

ISM values, wemeasured the total time to generate a set of one-hot encoded variant sequence tensors that contain a single base-pair change

to the original sequence,make predictions with themodel using a batch size of 20, and finally generate the ISM tensor from these predictions.

For TISMs, the measured time includes the forward pass through the model, backpropagation through the model to the input sequence to

obtain the gradient, and finally subtraction of the gradient at the reference base from each position to get TISM values. All themeasurements

were performed on a single NVIDIA RTX A4000 GPU with 16GB Memory.
iScience 27, 110807, September 20, 2024 11
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