
Journal of

Clinical Medicine

Article

Machine Learning-Based Predictive Modeling of
Postpartum Depression

Dayeon Shin 1,† , Kyung Ju Lee 2,† , Temidayo Adeluwa 3,† and Junguk Hur 3,*
1 Department of Food and Nutrition, Inha University, Incheon 22212, Korea; dyshin@inha.ac.kr
2 Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02841, Korea;

drlkj52551@korea.ac.kr
3 Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA;

temidayo.adeluwa@und.edu
* Correspondence: junguk.hur@med.und.edu; Tel.: +1-701-777-6814
† These authors contributed equally to the work.

Received: 22 August 2020; Accepted: 7 September 2020; Published: 8 September 2020
����������
�������

Abstract: Postpartum depression is a serious health issue beyond the mental health problems
that affect mothers after childbirth. There are no predictive tools available to screen postpartum
depression that also allow early interventions. We aimed to develop predictive models for postpartum
depression using machine learning (ML) approaches. We performed a retrospective cohort study
using data from the Pregnancy Risk Assessment Monitoring System 2012–2013 with 28,755 records
(3339 postpartum depression and 25,416 normal cases). The imbalance between the two groups
was addressed by a balanced resampling using both random down-sampling and the synthetic
minority over-sampling technique. Nine different ML algorithms, including random forest (RF),
stochastic gradient boosting, support vector machines (SVM), recursive partitioning and regression
trees, naïve Bayes, k-nearest neighbor (kNN), logistic regression, and neural network, were employed
with 10-fold cross-validation to evaluate the models. The overall classification accuracies of the nine
models ranged from 0.650 (kNN) to 0.791 (RF). The RF method achieved the highest area under
the receiver-operating-characteristic curve (AUC) value of 0.884, followed by SVM, which achieved
the second-best performance with an AUC value of 0.864. Predictive modeling developed using
ML-approaches may thus be used as a prediction (screening) tool for postpartum depression in
future studies.

Keywords: postpartum depression; machine learning; predictive modeling; Pregnancy Risk
Assessment Monitoring System (PRAMS)

1. Introduction

Postpartum depression is a mood disorder that affects up to 15% and 13% of mothers after
childbirth in the United States and worldwide, respectively [1,2]. Postpartum depression is known
to be associated with adverse maternal, child, and infant outcomes, such as low breastfeeding
initiation, short duration and decreased levels of breastfeeding self-efficacy [3], poor maternal and
infant bonding [4,5], and impaired mental and motor development in the infant [6]. Previous research
has revealed that risk factors for postpartum depression include a history of mental illness, such as
past history of postpartum depression, other depression or psychiatric illnesses, and a family history
of affective disorder [7]; low social support [8]; poor marital relationship [9]; pregnancy-related
complications, including emergency cesarean sections [10]; unplanned/unwanted pregnancy [11];
stressful life events during pregnancy [12]; and preterm birth [13]. Although these independent
risk factors for postpartum depression are known, little is known about the predictive modeling
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of postpartum depression that includes maternal and paternal risk factors. One of the objectives
of the Healthy People 2020 initiative is to decrease the proportion of women delivering live births
who experience postpartum depressive symptoms, so it is imperative to develop a screening tool for
postpartum depression for prevention and intervention purposes.

Machine learning (ML) methods provide advantages for the prediction of various diseases.
Specifically, ML has been applied for predictive models of various health outcomes, such as metabolic
syndrome [14], cerebral infarction [15], heart failure [16], and Alzheimer’s disease [17]. In line with
such diseases, predictive models for postpartum depression in adolescent and adult mothers have
been developed that include information such as maternal race, pregnancy intention, socioeconomic
status, prior depression, mental health during pregnancy, stressors, and social support by overlaying
receiver operating characteristic (ROC) plots and through comparisons of the c-statistics [18] using
data from the Rhode Island Pregnancy Risk Assessment Monitoring System (PRAMS). However, to the
best of our knowledge, there are no predictive tools available to screen postpartum depression that
also allow early interventions based on diverse ML approaches. The overall study objective was to
develop and validate ML-based predictive models for postpartum depression using both maternal and
paternal characteristics from the PRAMS 2012–2013 data.

2. Materials and Methods

2.1. Study Participants

We obtained the complete PRAMS 2012–2013 data from the Centers for Disease Control and
Prevention (CDC). PRAMS collects state-specific, population-based data on maternal characteristics
and experience before, during, and after pregnancy in the United States. A PRAMS sample of women
who recently delivered live births was selected from the state birth certificate registries, and these
women were asked to participate in the PRAMS survey [19]. Each participating state drew a stratified
systematic sample of 100 to 250 new mothers every month from selected eligible birth certificates [19].
Most states oversample low-weight births, and each participating state generally samples between
1300 and 3400 women per year [19]. Sampling fractions in PRAMS range from 1 in 1 (for very low
birth weight strata in small states) to approximately 1 in 211 (for normal birth weight and nonminority
strata in populous states) [19]. The PRAMS 2012–2013 data included a total of 72,540 participants,
and we selected 28,755 records for this study after removing missing or unknown information and
cleansing the data (Figure 1).
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Figure 1. The overall process of data preprocessing and imbalance handling. Data preprocessing
included (1) removal of features with more than 10,000 missing values; (2) removal of observations with
missing values; and (3) removal of non-informative features with colinear or little-to-none variance.
The resulting “cleansed” dataset was split to create three distinct datasets and synthetic minority
oversampling technique (SMOTE) was used to balance these datasets in (4), which were used for
classification model building and evaluation.
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2.2. Target Variable for Predictive Modeling: Postpartum Depression

The diagnosis of postpartum depression was based on a modified version of the Patient Health
Questionnaire-2 (PHQ-2). Women were asked two questions: “Since your new baby was born,
how often have you felt down, depressed, or hopeless?” and “Since your new baby was born, how often
have you had little interest or pleasure in doing things?” Women responding with “always” or
“often” to one or both of these questions were deemed to be “postpartum depressive”. This approach
was previously evaluated and achieved a sensitivity of 63% and specificity of 83% for identifying
postpartum depression cases [20].

2.3. Machine Learning Methods for Predictive Modeling

For our classification modeling of postpartum depression classification, we used the statistical
programming language, R (Version 4.0.0), and the Classification And Regression Training (caret)
package [21].

2.3.1. Resampling to Address Group Imbalance

The PRAMS data are imbalanced with the healthy class comprising most of the data (n = 25,416;
88%). This imbalance persisted even after cleansing the data set. In the ML-based classification
approach, imbalanced data may lead to a significantly poor classification accuracy [22]. To address
the imbalanced data issue, we randomly selected observations from the larger, healthy class, three
times such that each selection is unique (Figure 1). Thereafter, each unique selection was combined
with the smaller, postpartum depression group to generate three unique combined datasets (named
“Set 1”, “Set 2”, and “Set 3”). We treated each dataset independently and used the synthetic minority
oversampling technique (SMOTE) [23], which is a widely used oversampling method to balance the
data imbalance issue. We randomly selected twice the size of the depressed class (3339 × 2, or 6678
observations). Instead of replicating the existing members in the minority group, SMOTE creates
synthetic members based on nearest neighbors judged by Euclidean distances between the data points
in the feature space.

2.3.2. Feature Selection (Inputs for Predictive Modeling: Maternal and Paternal Factors)

Feature selection is the process of reducing the number of variables in a predictive model to reduce
the computational cost of modeling and to improve the performance. We systematically evaluated five
data-driven feature selection methods, including recursive feature elimination (RFE) [24], information
gain [25], Relief [26], stepwise generalized linear modeling (glmStepAIC) [27], and a bagging-based
selection-by-filter (SBF) method [21]. The overall classification performance of five RF models on Set 1
with selected features by five methods, as well as a reduction in features and computation time were
considered to select the most appropriate feature selection method for our current study.

2.3.3. Classification Modeling

Nine ML algorithms from the R caret package [21], including k-nearest neighbor (kNN), recursive
partitioning (RPART; a decision tree-based method), support vector machine (SVM), stochastic gradient
boosting (GBM), random forest (RF), neural network (NNET), naïve Bayes (NB), logistic regression
(LR), and AdaBoost, were used in the current study. To evaluate the classification models, a 10-fold
cross-validation strategy was used, where the original samples were randomly partitioned into 10
equal-sized subsamples and a single subsample was retained as validation data for testing the model
built using the other nine subsamples. We ran these algorithms on all three independent datasets
(Sets 1, 2, and 3).

The area under curve (AUC) was used as the primary performance metrics in the current study.
AUC is a widely used metric for binary classification problems and describes the ability of the model to
separate the classes into healthy or depressed classes. Other metrics include (1) sensitivity, also known
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as the true positive rate or recall, which describes what proportion of the correctly classified depressed
cases out of all depressed cases. Essentially, sensitivity describes the probability that the model predicts
a case as “depressed”, given that the patient is actually depressed; (2) specificity, also known as the true
negative rate, is the proportion of the correctly classified healthy cases by the model out of all healthy
classes from the dataset; (3) accuracy takes into consideration both the sensitivity and specificity of the
model and describes what proportion of all cases or subjects were correctly classified by that model.
These three metrics are of clinical importance in this study. Precision focuses on the positive class,
in the postpartum depression class in this study, and it describes the proportion correctly predicted
cases out of all cases labelled as depressed by the model; and F1 score, which is a weighted average of
precision and recall (sensitivity). All these metrics range from 0 to 1 with 0 representing a poor metric
and 1 depicting a perfect metric. The closer the metrics are to 1, the better the models are.

2.4. Statistical Analyses

The frequency and distribution of maternal characteristics by the status of postpartum depression
were assessed by cross-tabulation with Chi-squared statistics. Logistic regression models were used to
assess the relationships between maternal characteristics as independent variables and postpartum
depression as the outcome. All analyses were performed using SAS version 9.4 survey procedures
(SAS Institute, Cary, NC, USA) after applying a weighted complex sampling design.

2.5. Ethical Approval

Ethical review from an institutional review board approval was not required because PRAMS was
a publicly available dataset that contained no personally identifiable information.

3. Results

3.1. Maternal Demographics and Lifestyle Factors

Maternal demographic factors are presented by the status of postpartum depression. The status
of postpartum depression significantly differed by maternal age, maternal race/ethnicities, education,
small-for-gestational-age based on the 10th percentile, pre-pregnancy exercise for more than three
days, depression before pregnancy, drinking three months before pregnancy, changing smoking in
the last three months of pregnancy and postpartum period, and marital status (all p-values < 0.05).
Women without postpartum depression were more likely to have greater education (42.6%). They were
more likely to be nonsmokers (86.5%), married (70%), and did not have depression before pregnancy
(92.2%). Women with postpartum depression were more likely to have less education (42.3%) and had
depression before pregnancy (23.7%) (Table 1).
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Table 1. Maternal demographic by the status of postpartum depression.

No Postpartum
Depression (n = 25,416)

Postpartum
Depression (n = 3339)

n Wt’d % n Wt’d % p-Value

Maternal Age (years)
≤19 1332 3.8 354 9.2 <0.0001
20–29 13,012 50.7 1867 56.7
30–39 10,341 42.6 1045 31.7
≥40 731 2.9 73 2.4

Maternal Race/Ethnicity
American Indian or Alaskan Native 897 1.0 156 1.9 <0.0001
Asian 1743 5.0 234 5.6
Black 2834 9.4 570 13.4
Hawaiian 396 0.4 36 0.3
White or other non-white 18,487 81.9 2170 75.9
Mixed race 1059 2.4 173 3.0

Maternal Education
0–12 years 8059 28.1 1559 42.3 <0.0001
13–15 years 7654 29.3 1057 32.6
≥16 years 9703 42.6 723 25.1

Marital Status
Married 16,843 70.0 1613 51.2 <0.0001
Other 8573 30.0 1726 48.8

Number of Previous Live Births
0 11,106 42.6 1410 43.1 0.3415
1 7946 33.0 992 31.2
≥2 6364 24.3 937 25.7

Small for Gestational Age Based on 10th Percentile
Yes 3829 8.7 628 12.4 <0.0001
No 21,587 91.3 2711 87.6

Pre-pregnancy Exercise 3+ Days
No 12,504 49.0 1892 55.3 <0.0001
Yes 12,912 51.0 1447 44.7

Depression Before Pregnancy
No 23,227 92.2 2474 76.3 <0.0001
Yes 2189 7.8 865 23.7

Drinking 3 Months Before Pregnancy
No 10,157 36.6 1452 41.0 0.0018
Yes 15,259 63.4 1887 59.0

Changing Smoking Last 3 Months of Pregnancy &
Postpartum Period

Nonsmoker 21,588 86.5 2377 75.4 <0.0001
Smoker who quit 229 0.7 46 1.1
Number of cigarettes reduced 110 0.4 43 1.6
Number of cigarettes same/more 2271 7.7 593 14.1
Nonsmoker resumed 1218 4.7 280 7.9

Maternal Pre-pregnancy BMI (kg/m2)
Underweight (≤18.5) 1044 3.5 200 5.4 <0.0001
Normal (18.5–25) 12,648 51.9 1440 45.4
Overweight (25–30) 6131 24.0 823 24.8
Obese (≥30) 5593 20.6 876 24.3

Wt’d %: Weighted percentage. p-value was calculated by Chi-square tests.

3.2. Association of Maternal Demographics and Lifestyle Factors with Postpartum Depression

Mothers aged ≤19 years had greater odds of experiencing postpartum depression compared with
mothers aged 20 to 29 years (OR 1.50, 95% CI 1.07–2.09). Mothers who had an education of 0–12 years
and 13–15 years had increased odds for postpartum depression compared with those with more than
16 years of education (OR 1.59, 95% CI 1.27–2.00; OR 1.45, 95% CI 1.19–1.77, respectively). Mothers who
delivered small-for-gestational-age infants had greater odds of having postpartum depression (OR 1.37,
95% CI 1.11–1.69). Prior pregnancy depression was associated with increased odds of postpartum
depression (OR 3.15, 95% CI 2.60–3.80). Mothers who drank alcohol three months before pregnancy
had lower odds of having postpartum depression (OR 0.84, 95% CI 0.72–0.99). In the meantime,
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mothers with the number of cigarettes reduced had higher odds of having postpartum depression
(OR 2.58, 95% CI 1.06–6.29, respectively). Mothers with other marital statuses compared with married
mothers had increased odds of postpartum depression (OR 1.52, 95% CI 1.27–1.83) (Table 2).

Table 2. Associations between maternal demographics and lifestyle factors and postpartum depression.

OR (95% CI)

Maternal Age (years)
≤19 1.50 * (1.07–2.09)
20–29 1.00
30–39 0.91 (0.77–1.07)
≥40 0.96 (0.62–1.50)

Maternal Race/Ethnicity
American Indian or Alaskan Native 1.53 (0.93–2.50)
Asian 1.26 (0.78–2.02)
Black 1.24 (0.82–1.87)
Hawaiian 1.03 (0.16–6.76)
White or other non-white 1.00
Mixed race 1.30 (0.87–1.93)

Maternal Education
0–12 years 1.59 * (1.27–2.00)
13–15 years 1.45 * (1.19–1.77)
≥16 years 1.00

Marital Status
Married 1.00
Other 1.52 * (1.27–1.83)

Number of Previous Live Births
0 1.00
1 0.95 (0.80–1.14)
≥2 1.05 (0.86–1.29)

Small for Gestational Age Based on 10th Percentile
Yes 1.37 * (1.11–1.69)
No 1.00

Pre-pregnancy Exercise 3+ Days
No 1.00
Yes 0.97 (0.84–1.13)

Depression Before Pregnancy
No 1.00
Yes 3.15 * (2.60–3.80)

Drinking 3 Months Before Pregnancy
No 1.00
Yes 0.84 * (0.72–0.99)

Changing Smoking Last 3 Months of Pregnancy & Postpartum Period
Nonsmoker 1.00
Smoker who quit 1.29 (0.62–2.66)
Number of cigarettes reduced 2.58 * (1.06–6.29)
Number of cigarettes same/more 1.12 (0.87–1.44)
Nonsmoker resumed 1.19 (0.86–1.63)

Maternal Pre-pregnancy BMI (kg/m2)
Underweight (≤18.5) 1.22 (0.86–1.74)
Normal (18.5–25) 1.00
Overweight (25–30) 1.16 (0.97–1.38)
Obese (≥30) 1.20 (0.99–1.45)

* p-value < 0.05. OR: odds ratios, 95% CI: 95% confidence intervals.

3.3. Prediction Modeling

The initial PRAMS 2012–2013 dataset included a total of 72,540 records. All of these records have
at least one missing value in them, necessitating the proper cleansing of the dataset. Our approach to
cleansing this dataset included removing features with at least 10,000 missing values, before selecting
for complete records. We also filtered out collinear features and employed several traditional cleansing
steps before model building as illustrated in Figure 1. The final “cleansed” dataset included 28,755
valid records with 25,416 healthy and 3339 depressed cases. We split this cleansed dataset into three
unique sets and used SMOTE to improve the ratio of normal to postpartum depression cases to 1.
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3.3.1. Feature Selection for Modeling

We evaluated five different data-driven feature selection methods using RF modeling on Set 1
and their resulting classification performance is summarized in Table S1. All five methods achieved
comparable and high AUC values (0.871–0.885). We selected Relief algorithm as our method of feature
selection, which achieved an AUC value of 0.885, showed a substantial reduction in the number of
features (from 126 to 99), and reduced in computational time.

The selected features by Relief included maternal age, race/ethnicity, education, marital status,
pre-pregnancy body mass index (BMI), smoking status, drinking status, previous history of depression,
physical activity, number of previous live births, gender of the infant, stress-related features,
multivitamin use, small-for-gestational-age, large-for-gestational-age, and the Kotelchuck index
for the responder (a clinical metric describing the adequacy of prenatal care). These factors were
previously reported to be linked to postpartum depression [9,18,28–31].

3.3.2. Performance Evaluation of Classification Models

Classification modeling was performed to predict the binary class of postpartum depression
(healthy subjects and depressive subjects) using features returned by a multivariate feature selection
method, Relief. A total of 99, 86, and 95 features were selected by Relief on Set 1, Set 2, and Set 3,
respectively, with 47 features common to all three sets.

The classification performance of the nine ML models on Set 1 is illustrated in a ROC curve
(Figure 2). Table 3 summarizes the performance average across all three datasets, while the individual
performance on each of the three sets is given in Tables S2–S4. Overall, the RF method achieved
the highest area under the ROC curve (AUC) value, 0.884, followed by SVM with an AUC of 0.864.
All classifiers achieved better classification accuracy than a random model (the gray diagonal line
indicating AUC = 0.500 in Figure 2).

The average AUC across three datasets ranged from 0.704 (NNET) to 0.884 (RF). These results
imply little variation across our models and that our models do not overfit the data—a characteristic of
good ML models.

Table 3. Average metrics of nine ML models across all independent datasets.

Model AUC Sensitivity Specificity Accuracy Precision F1

RF 0.884 0.732 0.865 0.791 0.839 0.776
SVM 0.864 0.791 0.788 0.789 0.789 0.789
GBM 0.859 0.695 0.868 0.781 0.839 0.760

AdaBoost 0.857 0.722 0.835 0.778 0.813 0.765
NB 0.793 0.578 0.853 0.675 0.709 0.647

RPART 0.789 0.658 0.807 0.731 0.772 0.708
kNN 0.776 0.925 0.455 0.641 0.593 0.715
LR 0.707 0.628 0.683 0.655 0.665 0.646

NNET 0.704 0.650 0.660 0.650 0.649 0.651

AUC: area under the curve.
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Set 1 in predicting postpartum depression. Ten-fold cross-validation was used to build and evaluate
the prediction models. Different colors represent the top four machine learning classifiers used in this
study. The false positive rate is equal to (1–specificity). The gray line is the reference corresponding to
the performance of a classifier that completely and randomly classifies the condition.

3.4. Important Features Ranked by Each ML Algorithm

Features contribute differently to each model; we used the varImp function of caret package to
calculate variable importance in each model. The top 20 most contributing features from the four
best-performing models (RF, SVM, GBM, and AdaBoost) were combined and ranked based on their
inclusion in these four models. In total, these models returned 50 top twenty features (Table S5),
nine of which were within the top 20 in at least three models, given in Table 4 with their rankings in
each model. The most frequent and important features include exposure to stress during pregnancy,
having depression before pregnancy, weeks spent breastfeeding the baby, income, maternal education,
maternal education, dental hygiene before pregnancy, and the gender of the baby.
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Table 4. The most contributing features belonging to at least three of the best four models.

Features Frequency RF Rank GBM Rank AdaBoost Rank SVM Rank Description

BF5WEEKS 4 2 2 5 3
Number of weeks

spent breastfeeding
the baby

BPG_DEPRS 4 3 3 4 7 Depression before
pregnancy

MAT_AGE_NAPHSIS 4 9 5 13 9 Maternal age grouped

STRS_T_G 4 1 1 1 1

Total number of
stresses during the 12

months before
childbirth grouped

INCOME7 3 6 15 NA 2

Total household
income during the 12

months before
childbirth

MAT_ED 3 7 8 NA 4 Maternal education

PRE_DEPR 3 NA 12 19 16 Pre-pregnancy check
for depression/anxiety

PREG_TRY 3 NA 6 6 17 Trying to get pregnant

STRS_BIL 3 12 7 NA 5
Stress—couldn’t pay

rent, mortgage, or
other bills

NA: This feature was not ranked in the top 20 features for that model; STRS: stress; labels are from the
PRAMS codebook.

4. Discussion

In the present study, significant risk factors for postpartum depression included maternal
age, education, marital status, small-for-gestational-age based on 10th percentile, depression before
pregnancy, and smoking behavior change from the last three months of pregnancy to postpartum period.
Mothers aged ≤ 19 years had increased odds of having postpartum depression, as did mothers with
education of 0–12 years and 13–15 years and small-for-gestational-age infants. Those with depression
before pregnancy, those who reduced cigarette smoking from the last three months of pregnancy
to postpartum period and those who were unmarried had increased odds of having postpartum
depression. In contrast to our finding, for adult mothers over the age of 25 had increased odds of
having postpartum depressive symptoms [18].

In this study, prenatal depression was associated with postpartum depressive symptoms; the high
prevalence of depression and suicidal ideation during adolescence and young adulthood may reflect
family societal pressure on women to achieve high academic standards and perform traditional
gender roles [32,33]. The preference for a male infant is one of the significant determinants for
postpartum depression in Indian [34] and Chinese women [35,36]. The increased risk for postpartum
depression among women with female infants could be explained by poor postnatal support from
family members, especially husbands and parents [37]. In our study, top features returned by our
machine learning-based models included exposure to stress during pregnancy, having depression
before pregnancy, weeks spent breastfeeding the baby, income, dental hygiene before pregnancy,
and the gender of the baby. Life stress and a history of depression and have been the most significant
predictors for postpartum depression [38]. In particular, exposure to stress changes the levels of
hormones in the hypothalamus-pituitary-adrenal (HPA) axis, especially cortisol level, and depressed
individuals demonstrate abnormal HPA axis function by releasing high levels of cortisol [39,40].
Also, women’s oral health may influence many pregnancy outcomes beyond postpartum depression.
Maternal periodontal disease has been linked to low birth weight and preterm birth [41,42].

Even though the present study did not explore the gender of the infant, this previous finding may
be relevant to our study, in that Asian mothers may have displayed a high prevalence of postpartum
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depression with a female infant. In our study, unmarried mothers had increased odds of having
postpartum depression (OR 1.26, 95% CI 1.12–1.43). This finding is consistent with a previous report,
where unmarried women had significant odds of having postpartum depressive symptoms in the
Rhode Island-specific PRAMS 2004–2008 [18]. This study suggests that marital status is associated
with experiencing postpartum depression, which is consistent with our study findings.

Regarding ML classifiers, our study found that RF achieved the best performances for predicting
postpartum depression, with a classification accuracy value of 0.791 and an AUC value of 0.884,
respectively. Similar to our study findings, one study using data from the Rhode Island PRAMS [18]
developed a forward selection-based predictive model for postpartum depression, which achieved
an AUC value of 0.79. The risk factors included pregnancy intention, race, stress, economic status,
and social support. Tortajada et al. developed another prediction model for postpartum depression
using multilayer perceptrons and pruning for pregnant Spanish women using data from seven Spanish
general hospitals from 2003–2004 [43]. Their approach of using multilayer perceptrons showed good
performance for prediction of postpartum depression, where the best model (the subject model with
no pruning) achieved a sensitivity of 0.84, a specificity of 0.81, and an AUC value of 0.82. Using 45
Iranian depressive patients and 45 normal subjects, Hosseinifard et al. [44] employed logistic regression
classifiers that achieved the highest classification accuracy of 83.3%. Combining multiple algorithms,
including linear discriminant analysis (LDA), logistic regression (LR), and kNN, the accuracy of
classification was improved by 6.7%, reaching an overall accuracy of 90%. Jimenez-Serrano et al. [45]
employed NB, logistic regression, SVM, and artificial neural network (ANN) methods, where NB
achieved the best balance between sensitivity and specificity. In their modeling, logistic regression
achieved the highest AUC value of 0.77. Compared with these previous modeling studies, our ML
models demonstrated comparable or better overall prediction performance. It is worthy of note that
the best performing algorithms in this study are known to have implicit feature selection processes
and will usually select their own best set of predictive features.

Our study demonstrates several strengths. First, PRAMS collects state-specific, population-based
data on maternal attitudes and experiences before, during, and shortly after pregnancy in a standardized
data collection methodology [46] and covers 83% of all U.S. births [47]. Furthermore, a number of
significant features were selected in a data-driven approach to building the ML-based prediction models.

Despite these strengths, there are also a few limitations. Postpartum depression was based on
mothers’ self-reports, rather than a medical diagnosis; therefore, there may be information bias. There
was a lot of missing data on sociodemographic and lifestyle variables in this study (n = 28,755 vs.
72,540), and it is possible that the results in the non-response or missing population could differ from
those of the response population. PHQ-2 was used to diagnose postpartum depression. PHQ-2 is a
screening tool that measures the presence of symptoms consistent with major depression but does
not indicate the etiologies of postpartum depression although knowing the etiologies of postpartum
depression is significant for a comprehensive diagnostic process of postpartum depression [48]. PHQ-2
includes two items from the PHQ-9 regarding the frequency of depressed mood and anhedonia over
the past two weeks as a first-step approach, and it is not intended to reveal the severity of depression
nor used as the final diagnosis of depression. Patients who screen positive from the PHQ-2 should
be further evaluated with the PHQ-9 to determine whether they are diagnosed with a depressive
disorder [49].

We used the SMOTE oversampling approach to address the strong imbalance between the healthy
and depression group. To ensure that we do not overfit the models, we used a cross-validation
approach to model building. We also randomly divided the available dataset into three distinct
datasets and treated each one independent of the other. Nevertheless, further evaluation of the models
using an independent cohort would be needed. While our current approach employs traditional
machine learning methods, an application of advanced artificial neural network architecture integrating
electronic health records needs to be explored in the future [50]. We will employ ensemble methods,
combining the outcomes of multiple ML methods into one, to improve the prediction of our models.
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We will also further reduce the number of features to the most relevant ones while keeping the
high prediction performance and will evaluate simple-to-use nomograms based on our models for
clinical use.

Additionally, we observed that some well-known features suggested by the literature were
excluded from our final models. These features have been reported by previous literature [9,18,28–31]
to be highly-correlated with depression but automatically removed in our study because they had a lot
of missing values in the original data. For example, women whose babies were dead at the time of
responding to the survey were seven times more likely to develop postpartum depression (Table S6).
Unfortunately, the feature corresponding to this response was removed due to our data-cleansing
approach. Future directions in this study will involve making extensive use of these sparse features
that have a high correlation with the development of postpartum depression. Lastly, even though we
used maternal inputs for predictive modeling since postpartum depression varies across racial and
ethnic groups, we could not consider cultural variations in the experiences and expression of emotional
distress that may lead to the under detection of misidentification of postpartum depression [51].

5. Conclusions

We used nine ML algorithms to build predictive models for postpartum depression. RF, AdaBoost,
GBM, and SVM, in general, achieved the highest performance in predicting postpartum depression.
ML-based predictive modeling using features including maternal age, race/ethnicity, education, number
of previous live births, small-for-gestational-age based on the 10th percentile, various stress-related
factors, pre-pregnancy exercise for more than three days, depression before pregnancy, drinking for
three months before pregnancy, smoking behavior change from the last three months of pregnancy to
postpartum period, maternal pre-pregnancy BMI, and other related features. This tool may thus be
used as a prediction (screening) tool for postpartum depression in future studies.
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features in the four best performing models, Table S6: survey question: infant living at the time of the PRAMS report.
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