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Abstract

Background: Previous studies have shown that MDM2 SNP309 and p53 codon 72 have modifier effects on germline P53
mutations, but those studies relied on case-only studies with small sample sizes. The impact of MDM4 polymorphism on
tumor onset in germline mutation carriers has not previously been studied.

Methodology/Principal Findings: We analyzed 213 p53 germline mutation carriers including 168(78.9%) affected with
cancer and 174 who had genotypic data. We analyzed time to first cancer using Kaplan-Meier and Cox proportional hazards
methods, comparing risks according to polymorphism genotypes. For MDM2 SNP309, a significant difference of 9.0 years in
the average age of cancer diagnosis was observed between GG/GT and TT carriers (18.6 versus 27.6 years, P = 0.0087). The
hazards ratio was 1.58 (P = 0.03) comparing risks among individuals with GG/GT to risk among TT, but this effect was only
significant in females (HR = 1.60, P = 0.02). Compared to other genotypes, P53 codon 72 PP homozygotes had a 2.24 times
(P = 0.03) higher rate for time to develop cancer. We observed a multiplicative joint effect of MDM2 and p53 codon72
polymorphism on risk. The MDM4 polymorphism had no significant effects.

Conclusions/Significance: Our results suggest that the MDM2 SNP309 G allele is associated with cancer risk in p53 germline
mutation carriers and accelerates time to cancer onset with a pronounced effect in females. A multiplicative joint effect
exists between the MDM2 SNP309 G allele and the p53 codon 72 G allele in the risk of cancer development. Our results
further define cancer risk in carriers of germline p53 mutations.
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Introduction

p53 functions as a transcription factor and tumor suppressor,

responding to cellular stresses such as DNA damage and

oncogene activation. It modulates the transcription of genes that

regulate cell cycle arrest, apoptosis, and senescence [1].

Aberrant function of p53 proteins is a frequent mechanism by

which its inhibitory role in tumorigenesis is weakened, both in

sporadic cancers, which often develop mutations of p53, and in

individuals who inherit germline mutations. Mutations of p53

account for the majority of families with Li-Fraumeni syndrome

(LFS), an uncommon autosomal dominant cancer syndrome

[2,3]. Individuals with LFS are at an increased risk for a wide

spectrum of neoplasms including breast, lung, brain, and

adrenocortical cancers, and leukemias and sarcomas [4–6].

Unlike the dominant effect of germline p53 mutation on cancer

risk, germline p53 polymorphisms exert more subtle effects on

tumor onset or risk of cancer by modifying the function of p53.

In particular, the codon 72 R/P polymorphism affects binding

of p53 to p73 and has been associated with altered risk for many

different cancers [7–9].

MDM2 SNP309 (rs2279744; T/G) is located 309 base pairs

downstream from intron 1 in the promoter of MDM2. The single

nucleotide polymorphism (SNP) 309 T.G change has been found

to enhance the affinity of the transcriptional activator Sp1, leading

to increased levels of MDM2, and thereby weakening the p53

pathway of tumor suppression [10]. In germline p53 mutation

carriers, SNP309 was reported to accelerate tumor onset and to be

associated with the development of multiple primary tumors

throughout the lifetime [10–12]}. The presence of the G allele was

found to be highly related to earlier cancer diagnosis in LFS or Li-

Fraumeni2like syndrome. The numbers of affected carriers of a

germline p53 mutation in three earlier published studies were

small and analyses were restricted to include only individuals who

had already developed cancer. Therefore, prior studies have

limited generalizability for individuals at risk for cancer develop-

ment due to inherited p53 mutations who may not yet have

developed cancer.
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MDM4 (MDMX) is a negative regulator of p53 and cooperates

with MDM2 to inhibit p53 activity in cellular response to DNA

damage. The human MDM4 gene has been mapped to

chromosome 1q32, a target for amplification in malignant gliomas

[13]. While MDM4 inhibits p53 activity in early embryogenesis in

animal models, MDM4 has a weak effect on p53 activity in many

cell types [14]. Atwal et al(2009) reported that genetic variants in

MDM4 led to an increased risk of early onset of human breast and

ovarian cancers in unrelated individuals [15]. In another

independent case-control study, a polymorphic variant in human

MDM4 was only found to be associated with an accelerated age of

onset of estrogen receptor negative breast cancer [16]. The impact

of MDM4 on age of tumor onset in germline mutation carriers has

not previously been investigated.

In this study, we investigated whether MDM2 SNP309, MDM4,

and p53 codon 72 polymorphisms have any effect on risk for any

type of cancer in carriers of a p53 germline mutation. This is a

long-term systematic follow-up study in which germline p53

mutations and genetic polymorphisms were identified without

respect to the cancer status in the family. This follow-up study with

a larger sample size allowed us to characterize the cancer risks

among carriers of germline p53 mutations. We estimated hazard

ratios by Kaplan-Meier methods and Cox regression to adjust for

covariates and familial correlations by performing the robust

sandwich estimate of Lin and Wei [17].

Materials and Methods

Study Population
The protocol and consent form is annually reviewed by the IRB

at the University of Texas MD Anderson Cancer Center. No

patient names are revealed in any reports or publications from this

study. The present study population consisted of several cohorts of

families that were identified through probands with early onset

sarcoma or multiple cancers and that were found to carry p53

germline mutations. One cohort comprises 107 kindreds identified

through probands with soft-tissue sarcoma (STS) diagnosed before

age 16 years during the years from 1944 to 1975 at The University

of Texas M. D. Anderson Cancer Center (MDACC) who survived

at least 3 years after diagnosis and had samples available for testing

[2,18,19]. We identified 63 individuals in seven STS kindreds as

carriers of a p53 germline mutation. Another cohort included 71

families identified through probands who were diagnosed with

osteosarcoma (OST) before age 20 years during the period from

1944 to 1982 at MDACC who had samples available for testing. We

identified11 individuals in six OST kindreds who were carriers of a

p53 germline mutation. We also identified 2 carriers from two

kindreds of probands with multiple primary malignant tumors and

p53 germline mutations. The remaining 137 carriers were identified

from 59 LFS kindreds. Subjects were treated as a carrier of a p53

germline mutation if they were shown by genetic testing to carry the

mutation or if both a parent and offspring were demonstrated to

carry the mutation, and thus positive mutation status could be

inferred. We analyzed 213 carriers of a germline p53 mutation in

this study. Of the 213 individuals who could be inferred to have a

p53 mutation, samples were available for 132 individuals, but

MDM4 genotypes were missing for two of these individuals. A

detailed description of the p53 sequencing and genotyping

procedures is provided in the supplemental materials(Text S1;

Figure S1, Figure S2 and Figure S3; Table S1 and Table S2).

Statistical Analysis
We first tested for differences in age at cancer diagnosis among

the different genotype groups using a nonparametric Kruskal-

Wallis test. Among the carriers of a germline p53 mutation, we first

performed a log-rank test for risk differences based on sex and

mutation type, using the Kaplan-Meier product-limit method.

Missing genotype data (n = 43, 44, and 42 for MDM2, MDM4, and

p53 codon 72, respectively) were imputed using Linkage software

[20], and estimating population allele frequencies within each

ethnicity. For this analysis, we estimated the likelihood of each

genotype for individuals who had a p53 mutation and at least one

relative who had been genotyped for a MDM2, MDM4, or p53

codon 72 polymorphism. The probability of a particular genotype

was derived as the ratio of the likelihood for the family given that

the mutation carrier had each particular genotype divided by the

likelihood for the family. Genetic effects of MDM2, MDM4, and

p53 codon 72 polymorphisms were estimated by using a weighted

Cox proportional hazard model, unadjusted or adjusted for sex,

race, and birth year and weighted by the probability of each

genotype (for the inferred data). We took into account the familial

correlation in the model by calculating the robust variance. The

time to onset was from birth to first cancer diagnosis, for those who

had cancer, and the censoring time was from birth to last contact

(fixed to December 31, 2001), death, or study termination, for

those who had no cancer. All statistical analyses were conducted

by using SAS 9.1 (SAS Institute, Cary, NC). A P-value,0.05 was

considered statistically significant.

Results

Of the 213 carriers with a p53 germline mutation analyzed, 168

(78.9%) were affected with cancer, and the mean period from birth

to cancer diagnosis or censoring was 27.9 years (SD = 18.2).

Figure 1 illustrates the distribution of cancer occurrences by age

and sex. Female mutation carriers were at higher risk than male

carriers (log-rank test, P = 0.0057); the mean age of cancer

diagnosis was 24 years in females and 26 years in males. No risk

difference was detected between the two types of germline

Figure 1. Kaplan-Meier estimated cumulative incidence for
cancer in carriers of a p53 germline mutation by sex.
Observations included 101 males and 112 females (log-rank test
P = 0.0057).
doi:10.1371/journal.pone.0010813.g001
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mutations, missense and truncating (log-rank test, P = 0.09)

(Figure 2). Stratification analysis showed that the codon 72

polymorphisms in cis had no effect on age of tumor onset in

carriers of dysfunctional missense mutations (P = 0.20) or truncat-

ing mutations (P = 0.78), and similarly in trans there was no

significant effect when stratified by p53 mutation type. Because

there were missing genotypes for some carriers and a compara-

tively small sample of individual genotypes, hazard ratios (Table

S3) estimated via the proportional Cox model restricted to only the

raw genotype data have limited power. Table S4 shows that allelic

distribution varied significantly among the different ethnicities for

each polymorphism. The best genetic model for each SNP was

determined by choosing the model with the lowest Akaike

information criterion (AIC) value from among the general,

dominant, recessive, and additive models (Table S5).

Comparing the age at diagnosis among those affected with

cancer (table 1), a significant average difference of 9.0 years was

observed for the carriers of a G allele for the MDM2 SNP309

polymorphism compared to TT carriers (18.6 versus 27.6 years,

P = 0.0087). When analyzing time to onset including affected and

unaffected individuals who were genotyped we did not observe a

significant difference among genotypes for the MDM2 SNP309

(P = 0.5557) (Figure S4). Stratification analysis showed that G

allele carriers had a worse survival than TT homozygotes among

females(Log-Rank test P = 0.1483, Wilcoxon test P = 0.0950)

(Figure S5), but those two genotype groups among males had

the same survival distributions over time (P.0.1 for both Log-

Rank test and Wilcoxon test)(Figure S6). When including the

imputed data, a trend towards significance was noted for the

univariable analysis of the MDM2 G allele (P = 0.0764 unadjusted

and P = 0.1067 adjusted analysis) (Table 2), but carriers of a G

allele had a 1.58 fold increased risk for cancer after adjusting for

sex, race, birth year, and effects from other polymorphisms in

multivariable analysis (P = 0.0313) (Table 3). Including an

interaction term between MDM2 SNP309 polymorphism and

sex revealed that the G allele was a risk allele among females

(P = 0.02) but not among males (P = 0.1936). To limit possible

effects of referral bias, further multivariable analysis was

performed among carriers of a p53 germline mutation after

excluding the probands and yielded similar results. Carriers of the

MDM2 G allele had a high risk among all relatives (P = 0.0117) or

female relatives (P = 0.0089), but no significant effect was noted

among male relatives (P = 0.1315) (Table S6).

For MDM4, we identified no significant difference in the

average ages of first cancer diagnosis between AA, AG, and GG

groups (P = 0.9680) (Table 1). The log-rank test result shows no

difference in risk of cancer among these three genotypes

(P = 0.6646) or between the AG/GG and AA groups

(P = 0.3770) (Figure S7). The MDM4 polymorphism did not have

a significant effect on risk of developing cancer because it was not

significant in unadjusted (P = 0.1054) or adjusted univariable

analysis (P = 0.1584) (Table 2) or multivariable analysis

(P = 0.0712) of raw plus inferred genotype data (Table 3). No

significant difference was found for MDM4 polymorphism when

probands were excluded from the analysis (P = 0.0752) (Table S6).

While no significant effects were observed in this study, studies in a

larger collection of families are needed to resolve whether MDM4

has any effect on risk for cancer among carriers of a p53 mutation.

For the p53 codon 72 polymorphism, only seven mutation

carriers had the PP genotype. A difference of 4.9 years in mean

age at cancer diagnosis was detected between PP and RP/RR

groups, but the difference was not significant in univariate analyses

(18.5 years versus 23.4, P = 0.5828) (Table 1). There was no

significant difference in survival curves among PP, PR, and RR

groups (P = 0.0955) when the joint distributions of time to

diagnosis among all genotypes were contrasted, but the time to

diagnosis differed significantly between PP and either PR or RR

genotypes (P = 0.0447) according to the log-rank test on genotyped

data (Figure S8). In the full sample, including inferred data, the

codon 72 P allele was a risk allele for cancer in the unadjusted

univariable analysis (P = 0.0052), adjusted univariable analysis

(P = 0.0327) (Table 2), and multivariable analysis after adjusting

for covariates and other SNPs (HR = 2.24, P = 0.0287) (Table 3).

Further analysis showed that the PP genotype had a significant

recessive effect on cancer development among males (P,0.0001),

but not among females (P = 0.4864). The hazard ratios increased

Figure 2. Kaplan-Meier estimated cumulative incidence for any
cancer in carriers of a p53 germline mutation by mutation type.
Among these 213 carriers(one missing type of mutation), 130 carried a
missense mutation and 82 a truncation mutation (deletion 1, nonsense
50, frame-shift 16, splice 15). Log-rank test P = 0.0900.
doi:10.1371/journal.pone.0010813.g002

Table 1. Mean age of tumor diagnosis in affected carriers of a
p53 germline mutation by p53 polymorphism.

Polymorphism Subcategory N (%)
Mean age,
years (SD) P-value*

MDM2 SNP309 GG 15(14.7) 23.5(16.9) 0.0119

GT 38(37.3) 16.7(13.9)

TT 49(48.0) 27.6(18.1)

GG+GT 53(52.0) 18.6(14.9) 0.0087

MDM4 AA 16(16.0) 22.2(16.6) 0.9680

AG 38(38.0) 21.7(15.3)

GG 46(46.0) 23.2(18.7)

p53 codon 72 PP 7(6.9) 18.5(11.2) 0.3463

RP 47(46.1) 25.0(16.6)

RR 48(47.0) 21.8(18.0)

RP+RR 95(93.1) 23.4(17.3) 0.5828

*Kruskal-Wallis test.
doi:10.1371/journal.pone.0010813.t001
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and P-values became smaller if multivariable analysis excluded

probands (P,0.0001), and the P-value was significant among both

males (P,0.0001) and females (P,0.0001) (Table S6).

Because both MDM2 SNP309 and p53 codon 72 polymorphism

can attenuate the inhibitory role of p53 in tumorigenesis [21], we

examined the joint effect of MDM2 and p53 codon72 polymor-

phism (Table 4). Compared with the reference group carrying no

risk genotype at either locus (i.e., MDM2 TT and p53 codon 72

PR/RR), those with a risk genotype on one of the loci, MDM2

(MDM2 GG/GT and p53 codon 72 PR/RR) were 1.54 times

more likely to have cancer (P = 0.0319), and the highest hazard

ratio of 3.25 was observed for those carriers with risk genotypes at

both loci (P = 0.0367); this hazard ratio is close to the product of

hazard ratios for the main effects of risk genotype at each locus

(1.5462.36 = 3.63), suggesting that the two SNPs together have a

multiplicative joint effect.

It is noteworthy that carrier birth year was a significant

covariate in both univariable (Table 2) and multivariable analysis

(Table 3). In carriers of a p53 germline mutation, each subsequent

date of birth increased the cancer risk by 3% (P,0.0001). This

trend was observed for both men and women (Table 3). The

findings suggest genetic anticipation in later birth cohorts or effects

from unmeasured environmental factors that have an increasing

effect on risk over time.

Table 3. Multivariable analysis of hazard ratios for MDM2, MDM4, and p53 codon 72 polymorphisms on age of tumor diagnosis
among carriers of a p53 germline mutation.

All(n = 174)* Male(n = 83)** Female(n = 91)**

Variable Subcategory Hazard Ratio P-value Hazard Ratio P-value Hazard Ratio P-value

MDM2 GG/GT 1.58(1.04–2.26) 0.0313 1.47(0.82–2.60) 0.1936 1.60(1.08–2.36) 0.0200

TT 1.00 1.00 1.00

MDM4 AG/GG 1.93(0.95–3.93) 0.0712 1.74(0.93–3.25) 0.0842 2.39(0.97–5.88) 0.0589

AA 1.00 1.00 1.00

p53 codon 72 PP 2.24(1.09–4.60) 0.0287 4.27(2.56–7.11) ,0.0001 1.33(0.59–3.01) 0.4864

PR/RR 1.00 1.00 1.00

Sex Female 1.39(0.94–2.04) 0.0970 - - - -

Male 1.00 - -

Race Black 2.28(1.25–4.15) 0.0071 2.17(1.14–4.13) 0.0190 2.17(1.14–4.13) 0.0190

Others 0.99(0.62–1.56) 0.9523 0.99(0.64–1.53) 0.9447 0.99(0.64–1.53) 0.9447

White 1.00 1.00 1.00

Birth year 1.04(1.03–1.06) ,0.0001 1.04(1.03–1.06) ,0.0001 1.04(1.03–1.06) ,0.0001

*Adjusted for gender, race and birth year.
**Adjusted for race and birth year.
doi:10.1371/journal.pone.0010813.t003

Table 2. Univariable analysis of MDM2, MDM4, and p53 codon72 polymorphisms on age of tumor diagnosis using raw plus
imputed genotype data among carriers of a p53 germline mutation*.

Unadjusted Adjusted**

Variable Subcategory Hazard Ratio P-value Hazard Ratio P-value

MDM2 (G dominant, n = 175) GG/GT = 1,TT = 0 1.45(0.96–2.19) 0.0764 1.40(0.93–2.10) 0.1067

MDM4 (G dominant,n = 174) AG/GG = 1,AA = 0 1.43 (0.93–2.22) 0.1054 1.73(0.81–3.72) 0.1584

p53 codon 72(P rec, n = 174) PP = 1,PR/RR = 0 2.22(1.27–3.89) 0.0052 2.03(1.06–3.89) 0.0327

Mutation type(n = 175) Missense = 1,Truncating = 0 0.76(0.46–1.27) 0.2989

Missense-Cis72(n = 71) P = 1,R = 0 1.41(0.83–2.41) 0.2026

Missense-Trans72(n = 71) P = 1,R = 0 1.35(0.71–2.57) 0.3546

Truncating- Cis72(n = 47) P = 1,R = 0 0.89(0.39–2.04) 0.7810

Truncating- Trans72(n = 47) P = 1,R = 0 0.72(0.44–1.19) 0.2040

Sex(n = 213) Female = 1 1.56(1.15–2.11) 0.0039

Race(n = 213) Black 1.16(0.65–2.05) 0.2081

Other 1.50(0.95–2.35)

Birth year(n = 213) 1.04(1.03–1.05) ,0.0001

*Cox regression model.
**Adjusted for sex, race, and birth year in Cox regression model.
doi:10.1371/journal.pone.0010813.t002
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Discussion

In this study, we evaluated whether specific genetic polymor-

phisms have any impact on risk of cancer in carriers of a p53

germline mutation. Among p53 carriers, cancer risk was

significantly higher in females than in males, but no difference

in cancer risk was found between missense and truncating

mutation groups. Our results demonstrate that MDM2 SNP309

and p53 codon 72 polymorphisms have strong genetic effects in

carriers of a p53 germline mutation. Cancer diagnosed in affected

carriers with MDM2 GG/GT was on average 9 years earlier than

that in affected carriers carrying the TT genotype. Although

MDM2 SNP309 was not a significant cancer risk factor via the log-

rank test or in univariable analysis, it was linked to a 1.58 times

greater likelihood of developing cancer than TT homozygosity

after adjusting for other confounders. A significant SNP309 effect

was observed in women but not in men. Patients with p53 72P

developed cancer 5 years earlier than individuals with RP/RR

genotypes, but the difference was not significant. In Cox regression

analysis, the p53 codon 72 PP genotype carried a significantly

higher risk of developing cancers. Our results indicate that a

multiplicative joint effect exists between the MDM2 and the p53

codon 72 polymorphism. However, no significant effects were

observed between MDM4 and cancer risk in germline mutation

carriers.

Bond et al. (2004) analyzed 88 affected mutation carriers and

found that the median age of tumor onset for those who carried

GG/GT (18 years) was 9.0 years earlier than that for those

carrying TT (27 years) (P = 0.031) [10]. The present study is a

continuing follow-up cohort including some cancer cases studied

by Bond. However, our study is more accurate because it has more

samples and includes all p53 carriers, not just those who had

cancer. Bougeard et al. (2006) showed that, among 61 French

carriers of a germline p53 mutation (41 affected with cancer), the

mean age of tumor onset in those with MDM2 SNP309 GG/GT

(19.6 years) was significantly younger than in those with MDM2

TT (29.9 years) (P,0.05) [11]. Marcel et al. (2009) demonstrated

that, in a group of 32 cancer-affected Brazilian patients with LFS

or Li-Fraumeni2like syndrome and a germline p53 mutation, the

presence of a G allele was associated with a 12.5-year earlier

diagnosis (GG/GT 26.3 years versus TT 38.8; P = 0.06) [12]. So

far all previous studies consistently show that MDM2 SNP309 can

accelerate tumor formation in carriers of a germline p53 mutation.

In the present study, comparison of mean age of tumor diagnosis

between affected carriers with different MDM2 SNP309 genotypes

revealed a significant difference, but the genotype did not

significantly affect the hazard for cancer development among all

carriers. When we adjusted for confounders, the MDM2 SNP309

effect became significant overall and we observed a 58% higher

cancer risk in the G allele carriers compared with TT

homozygotes. We also observed a higher risk from the MDM2

SNP309 genotypes in females, compared to males. The more

pronounced effect in females that we observed may relate to

biological regulation of MDM2 by estrogen. MDM2 SNP309 is

located in a region of the MDM2 promoter regulated by hormonal

signaling pathways. The G allele was demonstrated to enhance the

affinity of a co-transcriptional activator of multiple hormone

receptors, for example ER or Sp1. Bond et al. (2006) showed that

this polymorphism accelerated tumor formation in a gender-

specific fashion, and depended upon estrogen signaling [22]. This

finding suggested a genotype-dependent role for clinical manip-

ulation of hormone level in cancer prevention and treatment.

Interestingly, Bond et al. had a similar finding in 162 patients with

diffuse large B-cell lymphoma, where the G allele contributed to

earlier tumor onset only among females, but not among males

[22].

Bougeard et al. showed that the presence of the p53 72 R allele

accelerated tumor onset by 12.6 years in carriers of a germline p53

mutation (P,0.05) [11]. Marcel et al. reported that the R allele

reduced age at cancer diagnosis by almost 8 years in individuals

with LFS or Li-Fraumeni2like syndrome, although the difference

was not significant (P = 0.22) [12]. Our findings that the PP

genotype increased risk after adjusting for cohort effects were in

conflict with those of the previous two studies, but were consistent

with the report of Martin et al. that the P72 allele was a risk factor

for breast cancer in 84 carriers with BRCA1 mutation [8]..

Dumont et al. reported that the p53 72R variant was 5- to 10-times

more likely to induce programmed cell death than the 72P variant,

and the authors suggested that the low apoptotic potential of the

72P variant might account for increased predisposition to cancer

development in carriers of the 72P variant [23].

In conclusion, our study confirms that the MDM2 SNP309 G

allele is associated with cancer risk in carriers of a p53 germline

mutation and that it accelerates tumor formation with a

pronounced effect in females. Our results also suggest that p53

codon 72 PP homozygosity is a risk factor for cancer. We found a

joint multiplicative effect of MDM2 SNP309 G allele and p53

codon 72 PP homozygosity. Our results provide insights that SNPs

further modify the risk for cancer development in individuals with

p53 mutations. In addition, given the high prevalence of p53

mutations in sporadic cancers, our findings may generalize to a

broader set of cancers.

Supporting Information

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pone.0010813.s001 (0.04 MB

DOC)

Figure S1 Sequencing representation of a wild-type and a

mutation and/or polymorphism.

Found at: doi:10.1371/journal.pone.0010813.s002 (0.76 MB TIF)

Figure S2 Representative programs of all three possible

genotypes for SNPs TP53 P72R.

Found at: doi:10.1371/journal.pone.0010813.s003 (0.54 MB TIF)

Figure S3 Representative programs of all three possible

genotypes for MDM2 SNP309.

Found at: doi:10.1371/journal.pone.0010813.s004 (0.53 MB TIF)

Figure S4 Proportion of subjects who were cancer free by

MDM2 SNP309 polymorphism at different ages. Log-rank test

among GG, GT, and TT, P = 0.5557, and between GG+GT and

TT, P = 0.3654.

Found at: doi:10.1371/journal.pone.0010813.s005 (0.60 MB TIF)

Table 4. Risk of cancer associated with joint effect of MDM2
and p53 codon 72 polymorphisms.

MDM2 p53 Codon 72 Hazard Ratio* P.ChiSq

TT PR/RR 1.00

PP 2.36(0.85–6.56) 0.0994

GT/GG PR/RR 1.54(1.04–2.29) 0.0319

PP 3.25(1.08–9.84) 0.0367

*Adjusted for sex, race, birth year, and MDM4.
doi:10.1371/journal.pone.0010813.t004
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Figure S5 Proportion of female subjects who were cancer free by

MDM2 SNP309 polymorphism at different ages. Log-rank test

among GG,GT and TT, P = 0.1864, Wilcoxon test P = 0.2414;

Log-rank test between GG+GT and TT, P = 0.1483, Wilcoxon

test P = 0.0950.

Found at: doi:10.1371/journal.pone.0010813.s006 (0.60 MB TIF)

Figure S6 Proportion of male subjects who were cancer free by

MDM2 SNP309 polymorphism at different ages. Log-rank test

among GG,GT and TT, P = 0.9906, Wilcoxon test P = 0.5885;

Log-rank test between GG+GT and TT, P = 0.9881, Wilcoxon

test P = 0.9001.

Found at: doi:10.1371/journal.pone.0010813.s007 (0.55 MB TIF)

Figure S7 Proportion of subjects who were cancer free by

MDM4 polymorphism at different ages. Log-rank test among AA,

AG, and GG, P = 0.6646, and between AA and AG+GG,

P = 0.3770.

Found at: doi:10.1371/journal.pone.0010813.s008 (0.58 MB TIF)

Figure S8 Proportion of subjects who were cancer free by p53

codon 72 polymorphism at different ages. Log-rank test among

PP, PR, and RR, P = 0.0955, and between PP and PR+RR,

P = 0.0447.

Found at: doi:10.1371/journal.pone.0010813.s009 (0.60 MB TIF)

Table S1 Detection of germline p53 mutations.

Found at: doi:10.1371/journal.pone.0010813.s010 (0.06 MB

DOC)

Table S2 Primer sequences for genotyping assays.

Found at: doi:10.1371/journal.pone.0010813.s011 (0.03 MB

DOC)

Table S3 Univarible and multivariable analyses of MDM2,

MDM4, and p53 codon 72 polymorphisms on age of tumor

diagnosis using raw genotype data from carriers of a p53 germline

mutation.

Found at: doi:10.1371/journal.pone.0010813.s012 (0.04 MB

DOC)

Table S4 Distribution of allele frequencies by ethnicity.

Found at: doi:10.1371/journal.pone.0010813.s013 (0.03 MB

DOC)

Table S5 Genetic model selection using AIC in univariable

analysis of MDM2, MDM4, and p53 codon 72 polymorphisms on

age of tumor diagnosis using raw plus imputed genotype data

among carriers of a p53 germline mutation.

Found at: doi:10.1371/journal.pone.0010813.s014 (0.05 MB

DOC)

Table S6 Multivariable analysis of hazard ratio for MDM2,

MDM4, and p53 codon 72 polymorphisms on age of tumor

diagnosis among carriers of a p53 germline mutation, probands

excluded (n = 126).

Found at: doi:10.1371/journal.pone.0010813.s015 (0.04 MB

DOC)
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