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Abstract: Rifampin (RF) is metabolized in the liver into an active metabolite 25-desacetylrifampin
and excreted almost equally via biliary and renal routes. Various influx and efflux transporters
influence RF disposition during hepatic uptake and biliary excretion. Evidence has also shown that
Vitamin D deficiency (VDD) and Vitamin D receptor (VDR) polymorphisms are associated with
tuberculosis (TB). Hence, genetic polymorphisms of metabolizing enzymes, drug transporters and/or
their transcriptional regulators and VDR and its pathway regulators may affect the pharmacokinetics
of RF. In this narrative review, we aim to identify literature that has explored the influence of single
nucleotide polymorphisms (SNPs) of genes encoding drug transporters and their transcriptional
regulators (SLCO1B1, ABCB1, PXR and CAR), metabolizing enzymes (CES1, CES2 and AADAC) and
VDR and its pathway regulators (VDR, CYP27B1 and CYP24A1) on plasma RF concentrations in TB
patients on antitubercular therapy. Available reports to date have shown that there is a lack of any
association of ABCB1, PXR, CAR, CES1 and AADAC genetic variants with plasma concentrations
of RF. Further evidence is required from a more comprehensive exploration of the association of
SLCO1B1, CES2 and Vitamin D pathway gene variants with RF pharmacokinetics in distinct ethnic
groups and a larger population to reach conclusive information.
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1. Introduction

Rifampin (RF) was introduced as a part of the combinational chemotherapy regimen for
tuberculosis (TB) during the 1960s. This has revolutionized TB treatment by reducing the duration
of antitubercular therapy (ATT) and improving the cure rates [1,2]. The antimicrobial effect of RF
on Mycobacterium tuberculosis and the development of RF resistance is concentration-dependent [3,4].
RF exhibits antimycobacterial action by arresting the DNA-directed RNA synthesis of Mycobacterium
tuberculosis through interaction with the β subunit of RNA polymerase (RNAP) [5,6]. The primary
mechanism of RF resistance is due to the mutations in the rpoB gene that encode for the β-subunit of
RNA polymerase. The most common mutations in the rpoB gene are found in the rpoB 531, rpoB 526
and rpoB 516 codons of the RF resistance determining region (RRDR) [7,8]. Recent evidence has
shown that higher doses of RF from the currently recommended dosage regimens resulted in better
treatment outcomes in TB patients [9,10]. A recent comprehensive meta-analysis reported a wide
range of interstudy heterogeneity in RF pharmacokinetic parameter estimates. Many variables such as
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HIV, TB and diabetes status, drug combinations, duration of therapy and dosing frequency could not
explain the heterogeneity in the pharmacokinetics of RF. An increase in RF dose from the common
weight-based dosing category of 8–12 mg/kg to at least 25 mg/kg was required to achieve plasma
pharmacokinetic-pharmacodynamic (PK/PD) targets [11]. Single nucleotide polymorphisms (SNPs)
represent the most common type of genetic polymorphism in humans [12]. Multiple studies have
reported the association of various genetic polymorphisms with significant variances in plasma RF
levels in TB patients. This provides us with an exciting opportunity to review for assessing the potential
impact of SNPs as an important driver for plasma RF exposure variability in TB patients.

RF is metabolized in the liver into an active metabolite 25-desacetylrifampin and excreted almost
equally via biliary and renal routes [13]. B-esterase and Arylacetamide deacetylase (AADAC) enzymes
have been reported to catalyze the deacetylation of RF to 25-deacetylrifampin [14,15]. Membrane drug
transporters are recognized to be important determinants of absorption, distribution, metabolism and
excretion (ADME) of drugs and consequently influence their pharmacokinetic (PK), therapeutic efficacy
and safety profiles. Solute carrier (SLC) transporters and the adenosine triphosphate (ATP)-binding
cassette (ABC) transporters represent two superfamilies of membrane drug transporters. They are
primarily involved in the in and out transport of drugs across tissues and cells in the human body.
The SLC and ABC superfamily account for about 400 membrane transporters, out of which around
32 are clinically relevant [16,17]. Pregnane X receptor (PXR) and constitutive androstane receptor
(CAR) are nuclear hormone receptors that are involved in the transcriptional regulation of various
drug-metabolizing enzymes and transporters [18]. Multiple studies have revealed the potential role of
PXR and CAR in the transcriptional regulation of SLC and ABC proteins [19–21]. RF disposition is
influenced by sinusoidal influx transporter SLCO1B1 and efflux transporter ABCB1 during hepatic
uptake and biliary excretion, respectively [22–24].

Vitamin D regulates gene transcription by binding to Vitamin D Receptor (VDR). The 427 amino
acid VDR is encoded by the VDR gene [25]. Vitamin D is involved in the modulation of innate and
adaptive immune responses through the mediation of multiple genes. These genes regulated by
the transcription factor VDR encode for proteins that relate to acute response to infection, general
functions in infection and for autoimmune responses [26]. The degree of immune responses elicited is
associated with the circulating levels of Vitamin D [27]. Vitamin D deficiency (VDD) and VDR gene
polymorphisms are associated with an increased risk for the development of TB [28]. VDR has been
reported to induce the expression of SLCO1B1 [29]. Furthermore, RF can also result in the reduction
of Vitamin D levels by increasing its clearance through the agonist and inducing action on PXR and
CYP3A4, respectively [30,31]. Hence, the genetic polymorphisms of these metabolizing enzymes, drug
transporters and/or their transcriptional regulators and VDR gene and its pathway regulators may
influence the RF pharmacokinetics.

Relevant studies were searched in databases like PubMed, MEDLINE, EMBASE, Web of Science
and Google Scholar. The following Medical Subject Headings (MeSH) words were used as part
of our search strategy: antitubercular agents, antitubercular drugs, rifampin, rifampicin, genetic
polymorphism, genetic susceptibility, pharmacogenetics, pharmacogenomics, genetic association
study, genetic association analysis, tuberculosis, single nucleotide polymorphisms, pharmacokinetics,
population pharmacokinetics, SLCO1B1, ABCB1, PXR, CAR, carboxylesterase 1 (CES1), carboxylesterase
2 (CES2), AADAC and VDR. The scope of the review is limited to studies that recruited TB patients,
regardless of age and HIV status who were either already established on ATT or commencing
treatment. Association between at least one genetic variant and RF pharmacokinetic outcome was
assessed (Figure 1). Studies without any formal evaluation of genotype effects for RF exposures were
excluded. From the reference lists of the articles, we extracted additional literature relevant to the topic.
Only publications in the English language were considered for this review.
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Figure 1. Schematic diagram representing. (1) The genes whose SNPs were assessed with plasma RF 
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the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene (spans 15 exons) 
located on chromosome 12. OATP1B1 is one of the major membrane influx transporters that regulate 
the active hepatic uptake of substrates from the bloodstream into the hepatocyte [16,32]. RF is a strong 
substrate of the OATP1B1 transporter protein [33,34]. Around 190 genomic variants with minor allele 
frequency higher than 5% were identified with the SLCO1B1 gene. Among these variants, rs4149056 
and rs2306283 have been commonly identified and well-characterized [35]. 

The missense SNP rs4149056 located in exon 5 (also known as c.521T>C; with T allele defined as 
the wild-type allele and the C allele as a variant) causes a change of amino acid from valine to alanine 
at residue 174. This variant is reported to have reduced expression and activity of SLCO1B1 in vitro 
and in vivo. Hence, drugs that are substrates for OATP1B1 with c.521T>C may tend to have elevated 
plasma concentrations due to reduced uptake/transporter activity [36,37]. Allegra et al. have reported 
higher plasma RF concentrations in TB patients with SLCO1B1 rs4149056 polymorphism. 
Multivariate linear regression analysis revealed that SLCO1B1 rs4149056 genotype was found to be a 
positive predictive factor for increased plasma RF trough concentration (Ctrough, p = 0.048, β = 0.345, 
95% CI [6.458–1313.556]) and maximum concentration (Cmax, p = 0.019, β = 0.432, 95% CI [452.896–
4571.730] at second week of ATT [38]. The frequency of SLCO1B1 rs4149056 genotype was reported 
to be 28.3%, 5.7%, 14.9% and 14.8% in Amerindian, African descent, Mulatto and Caucasian descent 
ethnic groups, respectively [39]. Mwinyi et al. reported a frequency of 15% and 12.2% in German and 
Turkish populations, respectively, whereas 15% prevalence was reported among the UK population 
for SLCO1B1 rs4149056 genotype [40,41]. 

rs2306283 (c.388A>G) is a missense SNP located in the exon 4 of the SLCO1B1 gene that causes a 
change of amino acid from asparagine to aspartic acid at amino acid position 130. The functional 
consequences of this variant reported by different in vitro and in vivo studies have yielded conflicting 
results and may be substrate-specific [36,42]. Dompreh et al. had reported that the SLCO1B1 
rs2306283 polymorphism was associated with lower RF concentration in the pediatric TB population. 
Two patients (1.8%) with the SLCO1B1 *1b homozygous variant (AA genotype) had significantly 
lower RF Cmax (1.81 (0.81–2.80) μg/mL) and area under the time-concentration curve from 0 to 8 h 

Figure 1. Schematic diagram representing. (1) The genes whose SNPs were assessed with plasma RF
concentrations in the review and (2) RF biotransformation.

2. SLCO1B1

The organic anion transporting polypeptide 1B1 (OATP1B1) is a 691 amino acid protein expressed
predominantly on the basolateral (sinusoidal) membrane of hepatocytes. It is encoded by the solute
carrier organic anion transporter family member 1B1 (SLCO1B1) gene (spans 15 exons) located on
chromosome 12. OATP1B1 is one of the major membrane influx transporters that regulate the active
hepatic uptake of substrates from the bloodstream into the hepatocyte [16,32]. RF is a strong substrate
of the OATP1B1 transporter protein [33,34]. Around 190 genomic variants with minor allele frequency
higher than 5% were identified with the SLCO1B1 gene. Among these variants, rs4149056 and rs2306283
have been commonly identified and well-characterized [35].

The missense SNP rs4149056 located in exon 5 (also known as c.521T>C; with T allele defined
as the wild-type allele and the C allele as a variant) causes a change of amino acid from valine to
alanine at residue 174. This variant is reported to have reduced expression and activity of SLCO1B1
in vitro and in vivo. Hence, drugs that are substrates for OATP1B1 with c.521T>C may tend to have
elevated plasma concentrations due to reduced uptake/transporter activity [36,37]. Allegra et al. have
reported higher plasma RF concentrations in TB patients with SLCO1B1 rs4149056 polymorphism.
Multivariate linear regression analysis revealed that SLCO1B1 rs4149056 genotype was found to
be a positive predictive factor for increased plasma RF trough concentration (Ctrough, p = 0.048,
β = 0.345, 95% CI [6.458–1313.556]) and maximum concentration (Cmax, p = 0.019, β = 0.432, 95% CI
[452.896–4571.730] at second week of ATT [38]. The frequency of SLCO1B1 rs4149056 genotype was
reported to be 28.3%, 5.7%, 14.9% and 14.8% in Amerindian, African descent, Mulatto and Caucasian
descent ethnic groups, respectively [39]. Mwinyi et al. reported a frequency of 15% and 12.2% in
German and Turkish populations, respectively, whereas 15% prevalence was reported among the UK
population for SLCO1B1 rs4149056 genotype [40,41].

rs2306283 (c.388A>G) is a missense SNP located in the exon 4 of the SLCO1B1 gene that causes
a change of amino acid from asparagine to aspartic acid at amino acid position 130. The functional
consequences of this variant reported by different in vitro and in vivo studies have yielded conflicting
results and may be substrate-specific [36,42]. Dompreh et al. had reported that the SLCO1B1 rs2306283
polymorphism was associated with lower RF concentration in the pediatric TB population. Two patients
(1.8%) with the SLCO1B1 *1b homozygous variant (AA genotype) had significantly lower RF Cmax (1.81
(0.81–2.80) µg/mL) and area under the time-concentration curve from 0 to 8 h (9.33 (2.35–16.31) µg*h/mL)
and higher apparent oral clearance (44.54 (15.38–73.69) L/h) and apparent volume of distribution



Antibiotics 2020, 9, 307 4 of 15

(109.23 (54.86–163.59) L) than did those with the wild type (GG genotype) in a pairwise analysis [43].
However, other studies have reported higher frequencies of the SLCO1B1 *1b homozygous variant
(AA genotype) in Chilean (18.6%), Macedonian (33.1%) and Albanian (30.8%) population [44,45].

Chigutsa et al. and Gengiah et al. reported a high prevalence of SLCO1B1 rs4149032 (g.38664C>T),
which is an intron 2 haplotype tagging SNP (tSNP). SLCO1B1 rs4149032 polymorphism was found to
be associated with lower RF exposures in the African population suggesting the need for increasing
the RF dose [46,47]. The functional consequences of SLCO1B1 rs4149032 on gene expression and on
transporter activity are not yet known. Chigutsa et al. reported an allele frequency of 70% for the
SLCO1B1 rs4149032 polymorphism in the South African pulmonary TB (PTB) patients. Patients who
were heterozygous and homozygous for the rs4149032 polymorphism in this population had reductions
in RF bioavailability by 18% and 28%, respectively. Simulations showed that SLCO1B1 rs41490932
carriers had a predicted reduction in Cmax of < 8 mg/L and an increase in the daily rifampin dose
by 150 mg in the PTB patients in these population would help in achieving plasma concentrations
similar to those of wild-type individuals [46]. Gengiah et al. reported an allele frequency of 76% for
the SLCO1B1 rs4149032 polymorphism in the TB-HIV coinfected patients in South Africa. The median
(IQR) RF concentrations at 2.5 h postdose were 3.4 (2.7–4.7) µg/mL, 3.7 (2.8–5.0) µg/mL and 5.3 (3.8–6.7)
µg/mL for homozygous variant, heterozygous variant and wild type carriers of SLCO1B1 rs4149032
polymorphism, respectively, which was well below the recommended target range of 8 to 24 µg/mL [47].
Mukonzo et al. reported an allelic frequency of 66% for the SLCO1B1 rs4149032 polymorphism in the
Ugandan population [48].

Lower RF exposures were reported with SLCO1B1 rs11045819 polymorphism in a study conducted
by Weiner et al. [49]. SLCO1B1 rs11045819 (c.463 C>A) polymorphism is a missense variant, present on
the exon 4 of the SLCO1B1 that cause a change of amino acid from proline to threonine at amino acid
position 155 [49]. SLCO1B1 rs11045819 polymorphism was found to reduce the systemic exposure of the
substrate for OATP1B1 transporter [50]. Weiner et al. reported the prevalence of SLCO1B1 rs11045819
polymorphism as 19% (n = 7) in African TB patients, 11% (n = 4) in TB patients of US and Spain and
25% (n = 4) among the healthy US population (controls). Patients with the SLCO1B1 rs11045819 variant
allele (CA) had 42% lower RF exposure (25.6 µg*h/mL), 34% lower peak concentration levels (5 µg/mL)
and 63% greater apparent oral clearance (22 L/h) compared to the wild type allele (CC) [49].

However, recent studies from the African population have not found any association with
SLCO1B1 polymorphisms and RF exposures among TB patients [48,51,52]. Similarly, studies conducted
by Ramesh et al. and Jeremiah et al. in the Indian and Tanzanian population, respectively, did
not report any association of SLCO1B1 polymorphisms with plasma RF exposures (Table 1) [53,54].
The association of SLCO1B1 rs4149056, rs2306283, rs4149032 and rs11045819 polymorphisms with RF
pharmacokinetics reported in certain studies were not replicated in other studies that can be attributed
due to multiple factors such as lower sample population, ethnic variations, variations in the criteria
and timings of sample collection, analytical variations and interindividual factors such as variations in
body weight and medication adherence. Therefore, additional studies are warranted to characterize the
functional consequences of SLCO1B1 rs4149056, rs2306283, rs4149032 and rs11045819 polymorphism
on RF pharmacokinetics in other ethnic groups.
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Table 1. Influence of SLCO1B1 genetic variants on plasma RF levels.

Sl No. Author, Year Population SNP ID
Criteria of

Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1
Mukonzo et al.,

2020 [48]
50 TB patients
from Uganda

rs4149056
After 21 days of
ATT initiation

Predose, 1, 2, 4,
6 and 12 h
postdose

No change

rs2306283 No change

rs4149032 No change

2
Naidoo et al.,

2019 [51]

172 recurrent TB
patients in

South Africa

rs2306283
1 and/or

2 months and at
6 months

during ATT

Predose, 2.5,
6 and 24 h
postdose

No change

rs4149032 No change

rs4149056 No change

rs4149015 No change

3 Calcagno et al.,
2019 [52]

221 PTB with
HIV patients

in Uganda
rs4149032 At 2nd, 4th and

8th week of ATT
1, 2 and 4 h

postdose No change

4
Dompreh et al.,

2018 [43]

113 pediatric TB
patients
in Ghana

rs2306283

After 4 weeks
of ATT

Predose, 1, 2,
4 and 8 h
postdose

Decreased

rs11045819 No change

rs4149056 No change

rs4149032 No change

5 Allegra et al.,
2017 [38]

24 TB patients
in Italy rs4149056

At 2nd week
and 4th week

of ATT

Plasma Cmax
(end of

3 infusions for
IV route and 2 h

postdose for
oral) and Ctrough

Increased

6
Sloan et al.,
2017 [55]

174 adult PTB
patients

in Malawi

rs11045819 Day 14 or 21
of ATT

Predose, 2 and
6 h postdose

No change

rs4149032 No change

7
Ramesh et al.,

2016 [53]

256 South Indian
adult PTB/EPTB

patients

rs11045819
After a

minimum of
2 weeks of ATT

2 h postdose

No change

rs4149032 No change

rs4149033 No change

8 Jeremiah et al.,
2014 [54]

PTB patients in
Tanzania rs4149032

1st occasion:
7 ± 2 days
after ATT

2nd occasion:
Around 56 days

after ATT

2, 4 and 6 h
postdose No change

9 Gengiah et al.,
2014 [47]

57 TB with HIV
patients in

South Africa
rs4149032

At 4th, 8th and
12th week of TB

treatment
2.5 h postdose Decreased

10
Chigutsa et al.,

2011 [46]
60 PTB patients
in South Africa

rs4149032
At least 1 month

after the start
of ATT

4 to 8 samples
per patient,
randomly

collected over a
7 h period

Decreased

rs4149056 No change

rs11045819 No change

11
Weiner et al.,

2010 [49]

72 TB Patients
(37 from Africa
and 35 from the

United States
and Spain)

rs4149015

Between the 9th
and 40th doses
in TB patients

Just before dose
and 1, 2, 6, 8 to
10, 11 to 13 and
23 to 25 h after

dose

No change

rs2306283 No change

rs11045819 Decreased

rs4149056 No change

rs59502379 No change

3. ABCB1

ABCB1 (or MDR1) gene is located on chromosome 7 and consists of 29 exons in a genomic region
spanning 251.3 kb. It is one of many ABC genes that encode for the 1280 amino acid ABCB1 transporter
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protein (P-glycoprotein). P-glycoprotein (Pgp) is a multidomain integral membrane protein that
utilizes the energy generated from the ATP hydrolysis to translocate solutes or ions from intracellular
to extracellular membranes (efflux pump) in eukaryotes [56–58]. RF is a substrate of the Pgp efflux
pump [59]. rs1128503, rs2032582 and rs1045642 are the most commonly found SNPs in the ABCB1
gene [60]. rs1128503 and rs1045642 are synonymous mutations, whereas rs2032582 is a missense
mutation [61]. None of the studies were able to infer any association between ABCB1 polymorphisms
and RF pharmacokinetics (Table 2). These studies have explored the association of only a limited
number of ABCB1 polymorphisms with the RF exposures. There are about 8643 single nucleotide
variants (SNV) reported for the ABCB1 gene. The functional consequences of rare ABCB1 variants
that may have a significant effect on drug pharmacokinetics have not been largely elucidated [58].
Hence, additional studies with other genetic variants are required to establish the impact of ABCB1
polymorphisms with the RF exposure.

Table 2. Influence of ABCB1 genetic variants on plasma RF levels.

Sl No. Author, Year Population SNP ID
Criteria of

Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1
Naidoo et al.,

2019 [51]

172 recurrent TB
patients in

South Africa

rs10276036

1 and/or
2 months and at

6 months
during ATT

Predose, 2.5,
6 and 24 h
postdose

No change

rs1128503 No change

rs2032582 No change

rs1045642 No change

rs2235033 No change

rs2235013 No change

2 Calcagno et al.,
2019 [52]

221 PTB with
HIV patients

in Uganda
rs1045642 At 2nd, 4th and

8th week of ATT
1, 2 and 4 h

postdose No change

3 Allegra et al.,
2017 [38]

24 TB patients
in Italy rs1045642

At 2nd week
and 4th week

of ATT

Plasma Cmax
(end of

3 infusions for
IV route and 2 h

postdose for
oral) and Ctrough

No change

4
Chigutsa et al.,

2011 [46]
60 PTB patients
in South Africa

rs1045642

At least 1 month
after the start

of ATT

4 to 8 samples
per patient,
randomly

collected over a
7 h period

No change
rs2032582

rs1128503

rs3842

4. PXR and CAR

PXR and the CAR are members of the group I of the subfamily 1 of nuclear receptors (NRs) that
are involved in regulating the transcription of a wide range of drug-metabolizing enzymes and drug
transporters genes [62,63]. RF is a substrate for SLCO1B1 and ABCB1 protein and the transcription
of genes encoding these proteins are regulated by the PXR and CAR. Few studies have explored the
possibility of association of the SNPs of these genes with the plasma RF levels. The PXR (or NR1I2) gene
located on chromosome 3 and consisting of 9 exons encodes for the PXR [64]. rs2472677 and rs1523130
variants are present in the intron 1 and 5′UTR regions of the PXR gene, respectively. These regions
represent the transcription factor binding sites of PXR regulatory regions [65,66]. The CAR (or NR1I3)
gene located on chromosome 1 and consisting of 9 exons encodes for the CAR [67,68]. The rs2307424
variant is due to a synonymous substitution (c.540 C>T) in the CAR gene [69]. None of these SNPs in
PXR and CAR affected RF exposures (Tables 3 and 4).
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Table 3. Influence of PXR genetic variants on plasma RF levels.

Sl No. Author, Year Population SNP ID Criteria of Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1
Naidoo et al.,

2019 [51]

172 recurrent TB
patients in

South Africa

rs2472677 1 and/or 2 months
and at 6 months

during ATT

Predose, 2.5,
6 and 24 h
postdose

No change

rs1523130 No change

2 Calcagno et al.,
2019 [52]

221 PTB with
HIV patients

in Uganda
rs2472677 At 2nd, 4th and 8th

week of ATT
1, 2 and 4 h

postdose No change

3 Allegra et al.,
2017 [38]

24 TB patients
in Italy rs2472677 At 2nd week and

4th week of ATT

Plasma Cmax
(end of

3 infusions for
IV route and 2 h

postdose for
oral) and Ctrough

No change

4
Chigutsa et al.,

2011 [46]
60 PTB patients
in South Africa

rs2472677
At least 1 month

after the start of ATT

4 to 8 samples
per patient,
randomly

collected over a
7 h period

No change

rs1523130 No change

Table 4. Influence of CAR genetic variants on plasma RF levels.

Sl No. Author, Year Population SNP ID Criteria of Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1 Chigutsa et al.,
2011 [46]

60 PTB
patients in

South Africa
rs2307424 At least 1 month

after the start of ATT

4 to 8 samples per
patient, randomly

collected over a
7 h period

No change

5. CES1 and CES2

RF is primarily metabolized to 25-desacetylrifampin by B-esterase [70]. B-esterases family
comprises CES, acetylcholinesterase and butyrylcholinesterase enzymes [14]. Among these enzymes,
CES exhibits broad substrate specificity and is involved in the metabolism of a wide range of endobiotic
and xenobiotic compounds by hydrolyzing ester, thioester, amide and carbamate linkages. Human CES1
and human CES2 encoded by CES1 and CES2 gene, respectively, represent the two major isoenzymes
of CES that are expressed in the liver [71]. Over the past decade, several CES1 and CES2 functional
genetic variants associated with significant variations to various drug therapy responses have been
reported. Hence, assessing the genetic polymorphisms of these genes with the pharmacokinetics of the
substrate drugs becomes relevant [72]. The CES1 and CES2 genes are located on chromosome 16 and
consist of 14 and 12 exons, respectively [73].

Sloan et al. reported that the rs12149368 variant present on the exon 1 (5’UTR) region of
the CES1 gene does not affect the plasma RF concentration (Table 5) [55]. Song et al. evaluated
10 SNPs: c.-2548C>T and c.-2263A>G variants in the promoter region, c.269-965A>G, c.474-152T>C,
c.615 + 120G>A, c.1612 + 136G>A and c.1613-87G>A variants of the intron regions and c.1872*69A>G,
c.1872*302_304delGAA, c.1872*445C>T variants of the 3′UTR regions of the CES2 gene with the
RF levels. Increased plasma RF concentrations in TB patients were associated with the CES2
c.-22263A>G (g.738A>G) variant. The allelic frequencies for this variant were reported to be 0.33 in TB
patients and 0.31 in controls and plasma RF concentrations were 8.9 ± 2.9 mg/L, 10.5 ± 3.1 mg/L and
13.9 ± 7.4 mg/L in homozygotes carrying major allele, heterozygotes and homozygotes carrying minor
allele, respectively. Results of luciferase reporter analysis revealed that the change from A to G in CES2
c.-22263A>G variant was associated with a consistent decrease in luciferase activity, which may result
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in decreased RF metabolism and increased plasma RF concentration. [74]. However, Dompreh et al.
did not find any changes in the RF exposures with the CES2 rs3759994 variant (Table 5) [43].

Table 5. Influence of CES1 and CES2 genetic variants on plasma RF levels.

CES1

Sl No. Author, Year Population SNP ID/ Nucleotide
Change

Criteria of Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1 Sloan et al.,
2017 [55]

174 Adult
PTB patients

in Malawi
rs12149368 Day 14 or 21 of ATT Predose, 2 and 6 h

postdose No change

CES2

1 Dompreh et al.,
2018 [43]

113 Pediatric
TB patients
in Ghana

rs3759994 After 4 weeks
of ATT

Predose, 1, 2,
4 and 8 h postdose No change

2
Song et al., 2013

[74]

35 TB
patients in

South Korea

c.-2548C>T

- 2 h postdose

No change

c.-2263A>G Increased

c.269-965A>G No change

c.474-152T>C No change

c.615+120G>A No change

c.1612+136G>A No change

c.1613-87G>A No change

c.1872*69A>G No change

c.1872*302_304delGAA No change

c.1872*445C>T No change

6. AADAC

AADAC is an enzyme expressed primarily in the human liver and intestine that causes the
hydrolysis of many drugs [75]. Nakajima et al. reported that human AADAC was the enzyme
responsible for the deacetylation of RF to 25-deacetylrifampin [15]. The AADAC rs1803155 and
rs61733693 variants which are missense mutations did not affect any changes in the plasma RF
concentrations (Table 6) [55].

Table 6. Influence of AADAC genetic variants on plasma RF levels.

Sl No. Author, Year Population SNPs
Investigated

Criteria of Sample
Collection

Time of Sample
Collection

RF
Concentration

in Plasma

1
Sloan et al.,
2017 [55]

174 Adult
PTB patients

in Malawi

rs1803155
Day 14 or 21 of ATT Predose, 2 and 6

h postdose
No change

rs61733693

7. Vitamin D Pathway Gene Polymorphisms

The Caudal-type homeobox protein 2 (Cdx2) gene variant found in the regulatory region,
FokI variant in exon 2 and BsmI, TaqI and ApaI variants in the 3′end of the VDR gene were found to
be associated with TB [76]. BsmI (rs1544410), FokI (rs10735810), TaqI (rs731236) and ApaI (rs7975232)
represent the most commonly occurring SNPs of VDR gene [77]. At the fourth week of ATT, univariate
regression analysis revealed that FokI TC/CC genotype had a negative predictor role on the plasma RF
Ctrough (p = 0.694, β = −0.085, 95% CI [-1314.809-891.285]), possibly due to stronger transcription of
the RF influx protein [38]. The FokI variant codes for a shorter 424 amino acid VDR protein isoform
which shows a comparatively higher transcriptional activity by displaying enhanced interaction
with transcription factor IIB [78]. Recently, Shaik et al. reported the frequencies of FokI TT, TC and
CC genotypes to be 30.2%, 34.4% and 27.7%, respectively, in the Saudi Arabian population [79].
Reports from the Brazilian population revealed the frequencies of FokI TT, TC and CC genotypes to be
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44.6%, 41.4% and 14%, respectively [80]. Calcagno et al. reported that the VDR regulatory region Cdx2
variant was not associated with any significant changes in the plasma RF concentration [52].

CYP27B1 and CYP24A1are two enzymes that are involved in the biotransformation of Vitamin
D and play critical roles in governing the 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) concentration.
CYP27B1 gene encodes for the 1α-hydroxylase enzyme that is involved in the activation of
25-hydroxyvitamin D3 (25-OH-D3) to 1,25-(OH)2D3 [81]. CYP24A1 is involved in catalyzing the
C-23 and C-24 hydroxylation pathways of 25-OH-D3 and 1,25-(OH)2D3 [82]. Hence, genetic variants
of these genes may alter the Vitamin D levels and may thereby render TB susceptibility as well as
alter RF concentrations in plasma. Allegra et al. reported that the CYP24A1 rs927650 and CYP27B1
rs4646536 variants increased plasma RF concentrations which may probably be explained by the
increased activation of Vitamin D, resulting in reduced RF elimination (Table 7) [38]. Multivariate linear
regression analysis revealed that CYP27B1 rs4646536 variant (+ 2838C>T; CC/CT genotype) located at
intron 6 was a positive factor for RF Cmax concentration ((p = 0.024, β= 0.416, 95% CI [469.172–5857.279])
at second week of ATT. Univariate linear regression analysis revealed that for the CYP24A1 rs927650
(22776C>T) variant located at intron 11, the homologous mutant profile (TT) is a positive predictor
factor of RF Ctrough ((p = 0.924, β = −0.021, 95% CI [-1148.256-1055.303]) at fourth week of ATT [38].
The distribution of CYP27B1 rs4646536 TT, TC and CC genotypes were reported to be 45.7%, 40.4% and
13.9%, respectively, in healthy controls of Germany which were in near similar lines with a previously
conducted study among 7435 healthy controls of UK [83,84]. The clear functional status of CYP27B1
rs4646536 is unknown. Intronic variants could influence gene expression by affecting the binding of
transcription factors and mRNA splicing [85,86]. Hence, an allele variation of rs4646536 from C to T
can cause abnormal expression of CYP27B1, resulting in the alteration of Vitamin D levels. CYP27B1
rs4646536 was associated with Vitamin D levels and Vitamin-D-related diseases [84]. The frequencies of
CYP24A1 rs927650 TT, CT and CC genotypes were reported to be 26.1%, 49.7% and 24.2%, respectively,
in the healthy controls of Germany and 21.3%, 50.8% and 27.9%, respectively, among type 1 diabetes
German patients [83,87]. 1α,25(OH)2D3 exhibit genomic actions that are mediated through the
ligand-binding to the VDR, which forms a heterodimer with retinoid x receptor alpha (RXRα) and
subsequently binds to Vitamin D response elements (VDRE) to either enhance or repress transcription
of various genes [88]. The CYP24A1 gene has a significant role in 1,25(OH)2D3 signaling as the
promoter region of the CYP24A1 gene contains VDRE [89]. Polymorphisms in a VDRE of the CYP24A1
gene could reduce the receptor protein binding, transactivation and expression of the CYP24A1 gene
in vivo [90]. A suggestive relationship between the CYP24A1 SNP rs927650 and concentrations of
25(OH)D was reported by Hibler et al. [91]. Further research investigating the influence of CYP27B1
and CYP24A1 variants on Vitamin D levels and consequently on RF exposures are required to establish
conclusive evidence.
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Table 7. Influence of VDR, CYP24A1 and CYP27B1 genetic variants on plasma RF levels.

Sl No. Author, Year Population Gene SNP ID Pharmacokinetic
Sampling

Sample
Timing

RF
Concentration

in Plasma

1 Calcagno et al.,
2019 [52]

221 PTB with
HIV patients

in Uganda
VDR rs11568820 (Cdx2)

At 2nd, 4th
and 8th week

of ATT

1, 2 and 4 h
postdose No change

2
Allegra et al.,

2017 [38]
24 TB patients

in Italy

VDR

rs731236 (TaqI)

At 2nd week
and 4th week

of ATT

Plasma Cmax
(end of

3 infusions for
IV route and
2 h postdose
for oral) and

Ctrough

No change

rs10735810 (FokI) Decreased

rs1544410 (BsmI) No change

rs11568820 (Cdx2) No change

rs7975232
(ApaI) No change

CYP24A1
rs927650 Increased

rs2248359 No change

rs2585428 No change

CYP27B11
rs4646536 Increased

rs10877012 No change

8. Conclusions

Pharmacokinetic heterogeneity in RF levels represents an austere and ubiquitous problem in TB
patient care. This can lead to therapeutic inefficacy, resistance, adverse drug events and increased
healthcare expenditures. Genetic variants of SLCO1B1, ABCB1 and VDR have attracted scientific
attention for their influence on the pharmacokinetics of a wide range of drugs. While there is a vast
number of studies that have explored the influence of SNPs with Isoniazid levels in plasma, only a
limited number of studies have explored the influence of genetic variants on the RF pharmacokinetics.
Evidence available to date reported a lack of any association of ABCB1, PXR, CAR, CES1 and AADAC
genetic variants with the RF concentrations in plasma. Some literature has shown an association of
certain genetic variants of SLCO1B1, CES2 and Vitamin D pathway genes with significant variations
of RF concentration in plasma. A comprehensive exploration of the role of genetic variants of these
genes can be initiated to provide a consensus agreement on their influence on RF pharmacokinetics in
different populations.

Genotyping offers to be a potential tool of precision medicine for predicting individual
drug-metabolizing and drug transport capabilities before initiation of RF treatment. Further studies
assessing RF exposure and correlating it with the genetic polymorphisms are required in different
ethnic populations. Besides, such research should be based on a representative and appropriate sample
size to validate and implement a cost-effective genotyping-based RF dosage optimization in clinical
settings and national policy levels.
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