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Memory and learning declines are consequences of normal aging. Since those functions are associated with
the hippocampus, I analyzed the global gene expression data from post-mortem hippocampal tissue of 25
old (age $ 60 yrs) and 15 young (age # 45 yrs) cognitively intact human subjects. By employing a rigorous,
multi-method bioinformatic approach, I identified 36 genes that were the most significant in terms of
differential expression; and by employing mathematical modeling, I demonstrated that 7 of the 36 genes
were able to discriminate between the old and young subjects with high accuracy. Remarkably, 90% of the
known genes from those 36 most significant genes are associated with either inflammation or immune
system activation. This suggests that chronic inflammation and immune system over-activity may underlie
the aging process of the human brain, and that potential anti-inflammatory treatments targeting those genes
may slow down this process and alleviate its symptoms.

I
n the absence of any neurodegenerative disease, the aging process of the human brain is inevitably and
quintessentially characterized by memory and learning impairments. Unlike in the case of a neurodegenerative
disease, normal aging has not been associated with neuronal loss1–3. Rather, it has been observed that the

impairments induced by normal aging are associated with synaptic remodeling, and that they are more likely to
affect functions that are associated with the hippocampus, i.e. several areas of memory and learning1,2,4.

In order to study the process of human normal aging, this study focuses on the most vulnerable target of that
process, namely, the hippocampus. Given the long, gradual course of the normal aging process, I arbitrarily
defined the boundaries of the two groups as follows: 1) Old subjects (O) with age $ 60 years and 2) Young subjects
(Y) with age # 45 years. This 15-yr age gap, I theorized, would accentuate the contrast between the two groups in
connection with this otherwise continuous and overlapping process. I analyzed the global gene expression data
from post-mortem hippocampal tissue (harvested from the body of the hippocampus at the level of the lateral
geniculate nucleus) of 25 old and 15 young cognitively intact human subjects, posted at the Gene Expression
Omnibus (GSE11882)5. Demographical information pertaining to all 40 subjects is shown in Supplementary
Table 1.

Results
Having employed three different and independent methods of statistical significance, namely, ROC curve ana-
lysis, fold change, and P-value, I was able to identify 36 genes that were the most significant in terms of differential
expression. Fig. 1b depicts the results of K-Means clustering analysis based on the expression of the top 36 most
significant genes. All K-Means clustering analysis results (with respect to both the housekeeping genes and the 36
most significant genes) are shown in Supplementary Table 2. As can be seen in both Fig. 1b and Supplementary
Table 2, there is a clear separation of the two groups. Fig. 2 depicts the heat map that resulted by plotting the
expression of those 36 genes for all 40 subjects (15 young and 25 old). As can be seen by the relative intensities, all
of the 36 most significant genes are over-expressed (red color) in the case of the old subjects as compared with the
case of the young subjects (blue color). The direction of the differential expression of those 36 genes also appears
in Table 1. Moreover, Fig. 3 provides a 3D representation of the differential expression of those 36 genes between
the two groups in a surface-contour plot.

Mathematical modeling of aging. Given the aforementioned biovariability in connection with hippocampal
gene expression, I wanted to explore whether, via mathematical modeling, I could generate a function that could
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classify the 40 subjects with a high accuracy. Such a model would
be valuable in future studies of global gene expression analysis
of post-mortem hippocampal tissue investigating biological and
chronological aging. To that end, I randomly selected appro-
ximately 70% of the subjects [11/15 young subjects and 18/25 old
subjects] for the development of the function (henceforward referred
to as super variable), and I used the remaining subjects (4 young and
7 old) solely for the purpose of validating the super variable.
Employing a general methodology that I have previously intro-
duced6,7, I was able to generate a super variable (function) that,
based on the input of 7 genes from the 36 most significant genes,
was able to identify/classify accurately all but one of the old subjects
{subject # 33 [64 yrs (F)]} [sensitivity 5 (24/25) 5 0.96] and all of the
young subjects [specificity 5 (15/15) 5 1.00]. Those overall results of
the performance of the F1 super variable were obtained by combining
the results from the development and the validation phases.
According to the rank that appears in Table 1, the seven genes that
provide the input to the F1 super variable are: C4A (C4B), ADORA3,

MS4A7, BCL6, CD44, C3AR1, and HLA-DRB1. All of those seven
genes are, in terms of biological function, either genes of inflam-
mation or genes of immune system activation. Supplementary Fig.
1 shows the F1 super variable function in relation to its 7 input gene
variables. Fig. 4 and Supplementary Table 3 show the overall results
of the F1 super variable, i.e. the F1 scores of all 40 subjects used in this
study, as well as their respective classification. Fig. 4 and Supple-
mentary Table 3 were created by combining the results from the
development phase (the F1 scores of all 29 subjects that were
randomly selected and used exclusively for the development of the
model) with the results from the validation phase (the F1 scores of all
11 subjects that were randomly selected and used exclusively for
testing purposes). The results of the F1 super variable in the develop-
ment phase are shown in Supplementary Fig. 2 and Supplementary
Table 4, whereas the results in the validation phase are shown in
Supplementary Fig. 3 and Supplementary Table 5.

It is interesting to note here that, assessing and comparing the
performance of the F1 super variable (Supplementary Table 3) with
that of the supervised K-Means clustering (Supplementary Table 2),
one can see that the former yielded one misclassification as opposed
to four yielded by the latter.

Finally, it should also be noted here that, owing to the constraints
of this study, namely, the paucity of healthy, normal human brain
tissue samples and respective available data, the F1 super variable
needs to be further validated with a larger, independent cohort.

Biovariability of aging. It has long been observed empirically that
aging is not a steady-state, uniformly continuous process; that it is
characterized by a relatively wide biovariability; and that biological
age may not necessarily coincide with chronological age. The results
of my study corroborate those observations. Looking at the expres-
sion of the 36 most significant hippocampal genes of all 40 subjects
[15 young (columns 1–15) and 25 old (columns 16–40)] in Fig. 2, one
notices that four old subjects {# 22, 27, 33, and 35 [80 yrs (M), 83 yrs
(M), 64 yrs (F), & 86 yrs (M), respectively]} displayed gene expres-
sion patterns that were distinctly closer to those of the young subjects
than the patterns of the rest of the old subjects. Conversely, the same
observation, albeit in the opposite direction, can be made for one of
the young subjects {# 2 [45 yrs (F)]}. The results of K-Means clus-
tering analysis supported numerically those observations (Supple-
mentary Table 2). Moreover, the aforementioned observations about
the biovariability of the aging process were also supported by the
results of hierarchical clustering analysis performed on the F1 scores
of all 40 subjects (Supplementary Fig. 4).

Figure 1 | Results of K-Means clustering analysis. K-Means clustering of the hippocampal tissue gene expression of 25 old subjects (O) and

15 young subjects (Y) with respect to the house-keeping genes (a), and with respect to the 36 most significant genes (b). In (a), in connection with the

house-keeping genes, the two groups are inseparable and indistinguishable; whereas in (b), in connection with the 36 most significant genes, the two

groups are separated and are clearly distinguishable. D1 is subject distance from the centroid of cluster 1, and D2 is subject distance from the centroid of

cluster 2.

Figure 2 | Heat map of the hippocampal gene expression of all 40
subjects. Heat map of the hippocampal tissue gene expression of 15 young

subjects (columns # 1–15) and 25 old subjects (columns # 16–40) with

respect to the 36 most significant genes (rows # 1–36). The intensity scale of

the standardized expression values ranges from 22.5 (blue: low

expression) to 12.5 (red: high expression), with 0 (white) representing the

reference intensity value. As can be seen, and based on the group mean

expression values, all 36 most significant genes are over-expressed in the

case of the old subjects as compared with the young subjects.

www.nature.com/scientificreports
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Table 1 | Top 36 most significantly differentially expressed genes

Rank Probe Set Gene Name
Diff.

Expr. (O)
ROC
AUC

Fold
Change P Value Key Known Function/Process

1 208451_s_at C4A (C4B)
LOC100509001

" 0.98400 1.22894 2.087E-10 inflammatory response, complement activation, innate
immune response

2 206171_at ADORA3 " 0.96800 1.22659 2.480E-09 inflammatory response, positive regulation of leukocyte
migration, histamine secretion by mast cell, signal
transduction

3 224358_s_at MS4A7 " 0.96000 1.23646 7.397E-09 unique expression pattern among hematopoietic cells
and nonlymphoid tissues, associated with mature
cellular function in the monocytic lineage, and it may be
a component of a receptor complex involved in signal
transduction

4 215990_s_at BCL6 " 0.96000 1.13544 3.401E-08 regulation of inflammatory response, regulation of
immune response, B cell differentiation, positive
regulation of B cell proliferation, regulation of memory
T cell differentiation, negative regulation of T-helper 2
cell differentiation, negative regulation of type 2
immune response

5 228532_at C1orf162 " 0.95733 1.19777 1.617E-07 protein coding, unknown function/process
6 209443_at SERPINA5 " 0.95733 1.10590 4.544E-08 heparin binding, regulation of blood coagulation, serine

protease inhibitor, glycosaminoglycan binding,
platelet alpha granule, platelet dense tubular network

7 213566_at RNASE6 " 0.94933 1.23400 7.506E-08 RNA catabolic process, defense response, ribonuclease
activity

8 204489_s_at CD44 " 0.94933 1.21095 1.042E-08 inflammatory response, wound healing involved in
inflammatory response, positive regulation of
neutrophil apoptosis, macrophage fusion, neuron
projection development

9 232568_at MGC24103 " 0.94667 1.12816 4.835E-08 unknown function/process
10 209906_at C3AR1 " 0.94667 1.12143 4.492E-07 complement receptor mediated signaling pathway,

inflammatory response, positive regulation of
macrophage chemotaxis, positive regulation of
neutrophil chemotaxis, elevation of cytosolic calcium
ion concentration, signal transduction

11 204912_at IL10RA " 0.94667 1.11718 6.043E-07 interleukin-10 receptor activity, response to
lipopolysaccharide, signal transducer activity

12 209612_s_at ADH1B " 0.94400 1.20914 2.449E-08 metabolic process, ethanol oxidation, reactive oxygen
species regulation, noradrenaline & adrenaline &
serotonin degradation

13 240578_at LOC100507531 " 0.94400 1.13432 1.558E-07 unknown function/process
14 212689_s_at KDM3A " 0.94400 1.05485 3.431E-08 regulated by peripheral blood monocytes, regulation of

transcription, cell differentiation, hormone-mediated
signaling pathway, oxidation reduction

15 204787_at VSIG4 " 0.94133 1.24063 2.204E-07 complement activation, alternative pathway, negative
regulation of interleukin-2 production, negative
regulation of T cell proliferation, innate immune
response

16 208306_x_at HLA-DRB1 " 0.94133 1.12707 3.108E-07 antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II, immune
response, signal transduction, MHC class II receptor
activity

17 219666_at MS4A6A " 0.93867 1.19913 4.561E-07 unique expression pattern among hematopoietic cells
and nonlymphoid tissues

18 218084_x_at FXYD5 " 0.93600 1.08851 2.032E-07 up-regulation of chemokine production, ion transport,
actin binding, ion channel activity

19 210184_at ITGAX " 0.93600 1.05952 3.555E-07 immune response, IL-8 signaling, integrin signaling,
TREM1 signaling, leukocyte migration

20 221698_s_at CLEC7A " 0.93333 1.17697 1.946E-07 inflammatory response, T cell activation, innate immune
response, positive regulation of phagocytosis, MHC
protein binding

21 1560477_a_at SAMD11 " 0.93333 1.05869 2.586E-08 protein self-association, SAM domain binding, negative
regulation of transcription from RNA polymerase II
promoter

22 203561_at FCGR2A " 0.93067 1.22043 2.682E-06 IgG binding, receptor activity, protein binding
23 225353_s_at C1QC " 0.93067 1.20862 3.082E-07 immune response, complement activation (classical

pathway), negative regulation of granulocyte
differentiation, innate immune response, negative
regulation of macrophage differentiation

24 229635_at UKNOWN GENE " 0.92533 1.27241 5.179E-07 unknown function/process

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3254 | DOI: 10.1038/srep03254 3



Inflammation and immune system activation in aging. Remark-
ably, of the 30 known genes out of the 36 most significant genes, 27
were – in terms of function – either genes of inflammation or genes of
immune system activation (Table 1). This suggests that – to a large
extent, and insofar as it pertains to the hippocampal area of the brain
– the dual process of a chronic inflammation and the elicited chronic
immune-system response and activity can differentiate between old
and young brains with a high accuracy. This is further supported by
the fact that the aforementioned seven genes employed by the F1

super variable, all of which are genes of inflammation or genes of
immune system activation, can discriminate between old and young
brains with almost a perfect accuracy [sensitivity 5 (24/25) 5 0.96
and specificity 5 (15/15) 5 1.00].

Discussion
The seven genes [C4A (C4B), ADORA3, MS4A7, BCL6, CD44,
C3AR1, and HLA-DRB1], which are the constituent input variables
of the model (F1 super variable), and all of which are – in terms of
function – inflammation or immune system activation genes
(Table 1), were all found to be over-expressed in the old subjects
compared with the young subjects (Table 1). C4A (C4B) has been
observed to be over-expressed in patients with Huntington disease8

Table 1 | Continued

Rank Probe Set Gene Name
Diff.

Expr. (O)
ROC
AUC

Fold
Change P Value Key Known Function/Process

25 209823_x_at HLA-DQB1 " 0.92533 1.16521 5.152E-06 immune response, antigen processing and presentation,
MHC class II receptor activity, peptide antigen binding

26 201887_at IL13RA1 " 0.92533 1.13028 3.689E-07 positive regulation of immunoglobulin production, cell
surface receptor linked signaling pathway, positive
regulation of B cell proliferation, cytokine receptor
activity

27 201137_s_at HLA-DPB1 " 0.92533 1.12720 1.286E-05 antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II, immune
response, antigen processing and presentation, MHC
class II receptor activity

28 202957_at HCLS1 " 0.92267 1.22983 2.653E-07 erythrocyte differentiation, positive regulation of cell
proliferation, response to hormone stimulus,
intracellular signaling pathway

29 227703_s_at SYTL4 " 0.92267 1.21486 2.891E-06 exocytosis, intracellular protein transport, negative
regulation of insulin secretion, transporter activity

30 1559663_at UNKNOWN
GENE

" 0.92267 1.17895 1.249E-07 unknown function/process

31 210423_s_at SLC11A1 " 0.92267 1.17552 1.958E-05 inflammatory response, immune response, negative
regulation of cytokine production, positive regulation
of cytokine production, T cell proliferation involved in
immune response, T cell cytokine production, positive
regulation of dendritic cell antigen processing and
presentation, positive regulation of T-helper 1 type
immune response, macrophage activation, positive
regulation of phagocytosis

32 1552508_at KCNE4 " 0.92267 1.17293 1.878E-05 potassium ion transport, voltage-gated potassium
channel activity, activation and proliferation of
leukocytes

33 237904_at UNKNOWN
GENE

" 0.92267 1.17094 8.457E-06 unknown function/process

34 209312_x_at HLA-DRB1
HLA-DRB4
HLA-DRB5

" 0.92267 1.13834 1.083E-06 immune response, antigen processing and presentation
of peptide or polysaccharide antigen via MHC class II,
MHC class II receptor activity

35 208253_at SIGLEC8 " 0.92000 1.10780 7.415E-07 unique expression in hemopoietic cells, lymphocyte
activation signaling, cell adhesion, signal transduction,
transmembrane receptor activity

36 226853_at BMP2K " 0.92000 1.10059 1.070E-06 protein phosphorylation, protein serine/threonine
kinase activity, ATP binding, regulation of bone
mineralization (regulated by COX2)

The final 36 most significantly differentially expressed genes between the old and the young subjects, ranked according to their ROC AUC value. The arrows indicate over-expression (") or under-expression
(#) of the old subjects (O) as compared with young subjects (Y).

Table 1 | Continued

Figure 3 | Surface-contour plot of the hippocampal gene expression of all
40 subjects. Hippocampal tissue gene expression of 15 young subjects

(columns # 1–15) (x-axis) and 25 old subjects (columns # 16–40) (x-axis)

with respect to the 36 most significant genes (rows # 1–36) (y-axis). The

intensity scale of the standardized expression values ranges from 24 (blue:

low expression) to 14 (red: high expression) (z-axis). As can be seen, and

based on the group mean expression values, all 36 most significant genes

are over-expressed in the case of the old subjects as compared with the

young subjects.

www.nature.com/scientificreports
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and Alzheimer disease9, in mice with rheumatoid arthritis10, etc.
ADORA3 has been found to be over-expressed in the hippocampus
of patients with Parkinson disease11, in patients with astrocytomas12,
etc. MS4A7 has been observed to be over-expressed in mice with
rheumatoid arthritis10. BCL6 has been observed to be over-expressed
in patients with Huntington disease13, with ischemic stroke14, with
rheumatoid arthritis15, with B-cell lymphoma16, etc. CD44 has been
found to be over-expressed in patients with systemic lupus erythe-
matosus17, with immune thrombocytopenia18, with schwannomas19,
with Huntington disease8, and numerous other diseases and condi-
tions. Over-expression of C3AR1 has been observed in patients with
severe acute respiratory syndrome20, with asthma21, etc., while over-
expression of HLA-DRB1 has been observed in patients with multiple
sclerosis22, with rheumatoid arthritis23, with Duchenne muscular
dystrophy24, etc.

Previous studies using animal models have observed associations
between aging and inflammation in connection with the hippocam-
pus, the neocortex, and the cerebellum25,26. Using animal models or
human subjects with early-stage neurodegenerative diseases, such as
Alzheimer, other studies have observed a link between neuroinflam-
mation and deficits in synaptic plasticity, especially long-term poten-
tiation (LTP) in the hippocampus, which is associated with long-
term memory consolidation27–32,2. The fact that definitive causality
cannot be established here notwithstanding – in other words,
whether it is the normal aging process that induces inflammation/
immune-system-overactivity, or whether the vice versa occurs, or
whether another, hitherto unspecified, process engenders the normal
aging process, which in turn induces inflammation/immune-system-
overactivity, or whether that unspecified process engenders inflam-
mation/immune-system-overactivity, which in turn induces the
normal aging process – the results of my study support a direct
causal link between the normal aging process and the process of

inflammation/immune-system-overactivity. When considered col-
lectively, therefore, the results of my study and all of the above
observations from the other aforementioned studies point to a plaus-
ible theory on the normal aging process. At some point in time,
chronic, low-level inflammation establishes itself and elicits a corres-
ponding chronic immune response and activity. These two conjugate
processes ultimately are responsible for a gradual loss of synaptic
plasticity, particularly LTP in the hippocampus, accompanied with
a minimal neuronal loss33,34,1–3. It is this loss of synaptic plasticity – at
least in the hippocampus part of the brain – that is associated with the
phenotypical changes of normal aging.

The results of my study, in addition to providing evidence for this
dual process of chronic, low-level neuroinflammation/immune-sys-
tem-activation in connection with normal aging, suggest a means of a
potential treatment. Regardless of the exact causal sequence of the
events, administration of anti-inflammatory drugs/chemicals that
can normalize the expression of the aforementioned 27 genes of
inflammation/immune-system-activation may decelerate the onset
of the aging process, as well as the aging process itself, and mitigate its
symptoms by restoring synaptic plasticity throughout the hippocam-
pus and possibly throughout the rest of the brain. Supplementary
Table 6 lists all those 27 most significant genes as possible targets for
the development of such an anti-inflammatory treatment, along with
potential candidate drugs/chemicals that are known (via Ingenuity
Pathway Analysis) to interact with those genes.

It is worth noting here that various anti-inflammatory drugs have
been used in an effort to slow down the progression of neurodegen-
erative diseases, such as Alzheimer, with various degrees of suc-
cess35,36. The magnitude of the neuroinflammatory processes in the
case of Alzheimer disease or other neurodegenerative diseases, how-
ever, cannot be compared to that of the neuroinflammation in the
normal aging process; and by virtue of the same argument, the task of

Figure 4 | Overall results of the F1 super variable (function). The F1 uses 7 of the 36 most significant genes as its input variables. Using the

expression value of those 7 genes for a particular subject, the F1 yields the F1 score of that subject; and, based on the determined cut-off score of 53.450, the

F1 classifies that subject as young if the F1 score is , 53.450 or as old if the F1 score is $ 53.450. As can be seen by the overall performance, the F1 classified

correctly all subjects except one old one [sensitivity 5 (24/25) 5 0.96 and specificity 5 (15/15) 5 1.00]. The mean F1 score of the Y subjects was 45.028

(top of the blue bar) and their standard deviation (whiskers above or below the top of the blue bar) was 4.721. The mean F1 score of the O subjects was

64.212 (top of the red bar) and their standard deviation (whiskers above or below the top of the red bar) was 6.514. The significance level was set

at a 5 0.001 (two-tailed), and the probability of significance for the F1 was P 5 4.18 3 10212 (independent t-Test with T-value 5 9.927). The F1 is

parametrically distributed with respect to both groups. The F1 scores of all 40 subjects are shown in Supplementary Table 3.

www.nature.com/scientificreports
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halting neuronal cell loss during the course of a neurodegenerative
disease cannot be compared to that of restoring synaptic plasticity
during the course of the normal aging process. It would stand to
reason, therefore, that anti-inflammatory treatment strategies may
be more successful and efficacious than those employed against the
progression of neurodegenerative diseases. Finally, I should point out
that, based on increased evidence over the last twenty years or so,
neuroinflammation seems to be the common denominator of nor-
mal aging and neurodegenerative diseases, such as Alzheimer.
Understanding the causal circumstances under which a chronic,
low-level neuroinflammatory process can transition to a major neu-
roinflammation conducive to neuronal degeneration and death
would be of paramount importance. According to the latest evid-
ence37, even a single substitution mutation on a single inflammation
gene might suffice to trigger that transition in a small percentage of
the population.

Methods
Data acquisition. I downloaded the raw intensity microarray data (CEL files) of 25
old subjects (age $ 60 years) and 15 young subjects (age # 45 years) posted at the
Gene Expression Omnibus (accession number: GSE11882)5.

Data processing. I processed the original raw intensity data (CEL files) using the
Expression Console software by Affymetrix with the library for the HG-U133 Plus 2.0
microarray chip, and choosing the RMA algorithm (510 (k) FDA approved) with the
standard settings.

Statistical methods. I first assessed the quality of the data by examining the
expression of all housekeeping genes by all 40 subjects (25 old and 15 young). With
regard to the housekeeping genes, there was no statistically significant differential
expression between the two groups (Supplementary Table 7). As can be seen by the
results of K-Means clustering analysis in Fig. 1a, the two groups cannot be
discriminated based on the expression of the housekeeping genes. Having, thus,
established the quality of the data, I investigated for any differential expression among
all gene variables using three different and independent methods. 1) Using a
methodology that I have developed and introduced previously38–42, I performed ROC
curve analysis on all gene variables in order to assess their discriminating power with
respect to the two groups (old vs. young), and with respect to this method, I set
statistical significance at ROC AUC $ 0.920. 2) For a given gene variable, I defined
fold change (FC) as the mean expression value of the old subjects (O) over the mean
expression value of the young subjects (Y), and I set statistical significance at FC $

1.10 (if O . Y) or FC # 0.91 (if O , Y). 3) I performed independent t-Tests, Mann-
Whitney U tests, or Aspin-Welch unequal-variance tests (depending on how a
particular gene variable was distributed), and having accounted for all possible
comparisons (there are 54,675 probe sets in the Affymetrix HG-U133 Plus 2.0 chip), I
set the significance level at a 5 9.15 3 1027. The results according to those three
different and independent methods, and prior to the final selection, are shown in
Supplementary Table 8. In order to minimize the number of false negatives in the case
of the third method43,44, for the final selection of significant variables, I imposed the
condition that if a given gene variable met the significance criteria of all three
methods, or those of the first method and those of only one of the other two methods,
it would be deemed significant. Excluding multiplicities (different transcripts that
corresponded to the same genes), thirty six genes made up the final list of the most
significantly differentially expressed genes between the two groups, as assessed by the
aforementioned three different and independent methods of statistical significance
(Table 1).

In greater detail, to assess statistical significance, I used to assess statistical sig-
nificance, I used the following three different and independent methods. 1) ROC curve
analysis. I performed ROC curve analysis on all gene variables in order to assess their
discriminating power with respect to the two groups (old vs. young), and with respect
to this method, I set statistical significance at ROC AUC $ 0.920. 2) Fold Change. For
all gene variables, I defined fold change (FC) as the mean expression value of the old
subjects over the mean expression value of the young subjects, and I set statistical
significance at FC $ 1.10 (if O . Y) or FC # 0.91 (if O , Y). 3) P-value. I used the
independent t-Test for parametric gene variables (both normality and homogeneity
of variance conditions were met); the Aspin-Welch unequal-variance test (AW) for
gene variables that met the normality condition but not the homogeneity of variance
condition; and the Mann-Whitney U test (MW) for the non-parametric gene vari-
ables, i.e., for those variables that i) the normality condition was not met or ii) the
normality and the homogeneity of variance conditions were not met. Taking into
account that there are 54,675 probe sets (including those of the housekeeping genes)
in the Affymetrix HG-U133 Plus 2.0 chip, and using the Bonferroni correction, I set
the significance level for the entire study at a 5 9.15 3 1027. Therefore, in order for
any variable to be deemed significant according to the P-value method, the following
condition must be met: P , a. Regarding the Mann-Whitney U test (MW), since
none of the non-parametric variables had any sets of ties (a subject from one group
having the same expression value as a subject from the other group), I used the exact
probability for all MW tests.

Incorporating the three aforementioned independent methods of statistical sig-
nificance assessment, and in order to minimize the number of false negatives in the
case of the third method43,44, I set the overall significance criterion as follows: in order
for any variable to be included in the final list of the most significant variables, it
would have to meet the significance criteria of the first method (ROC AUC $ 0.920)
and those of at least one of the other two methods [FC $ 1.10 (or FC # 0.91) and/or P
, 9.15 3 1027].

Mathematical modeling. Utilizing the final 36 most significant genes, I wanted to
explore the possibility of developing – via mathematical modeling – a function that
could identify as correctly as possible the age status (O or Y) of an unknown subject
based on the expression of any combination of those 36 most significant genes. To
that end, I randomly selected approximately 70% of the subjects [11/15 young
subjects and 18/25 old subjects] that could be used only for the development phase of
such function. In other words, a function could be developed only by the exclusive use
of those 29 subjects. The remaining 11 subjects (4 young and 7 old ones) were
designated unknown (test) subjects and were used solely for the purpose of validating
any promising function generated in the development phase. This split into two fixed
sets, whereby one is used only for training and the other only for validation, represents
the simplest implementation of K-fold cross validation45,46. A function was deemed
promising in the development phase only if it exhibited a sensitivity $ 0.90 and a
specificity $ 0.90 in connection with the 29 subjects of the development phase.
Pertaining to the validation phase, and in connection with the 11 unknown subjects, a
promising function would have to exhibit the same minimum classification accuracy
(a sensitivity $ 0.90 and a specificity $ 0.90) in order to be accepted. I was able to
generate one such function (F1 – henceforward also referred to as super variable) that
fulfilled all of the aforementioned criteria. Supplementary Fig. 1 shows the equation of
F1 as a function of 7 genes.

The cut-off score of the F1 was determined by taking into account the results of the
following two analyses: 1) calculation of the optimal point on the ROC curve based on
the 29 F1 scores of the 29 subjects used in the development phase [optimal point is
defined as the point with the highest sensitivity and the lowest false positive rate (1-
specificity)] and 2) calculation of the 99.99% confidence intervals for the mean F1

scores of the two groups (O and Y) of those 29 subjects and their respective standard
deviations. The 99.99% confidence intervals were calculated based on a bootstrap
sample size of 100,000. Taking into account the aforementioned ROC optimal point,
as well as the relative overlap of MO and MY [MO 5 LLO – SDO and MY 5 ULY 1

SDY] (LLO: the 99.99% confidence lower limit for the mean of the O group; SDO:
standard deviation of the O group; ULY: the 99.99% confidence upper limit for the
mean of the Y group; SDY: standard deviation of the Y group), the cut-off score of the
F1 super variable was determined to be 53.450. If a subject’s F1 score is , 53.450, then
that subject is classified as Y (young); otherwise, if the F1 score is $ 53.450, then that
subject is classified as O (old). It should be pointed out here that, based on the
equation of the F1 (Supplementary Fig. 1), a given F1 score is just a numerical value
and does not signify age or number of years.

In addition to the main validation method explained above, and in order to further
assess the performance of the F1 super variable, I employed two other and different
cross validation methods: 1) a 10-fold cross validation and 2) a leave-one-out cross
validation47. Both of those methods yielded a misclassification rate of 0.05 and a
mean-squared error of 0.05 in connection with the F1 super variable. The results of
those methods, along with the confusion matrices generated by them, are shown in
Supplementary Table 9. As can be seen in Supplementary Table 9, each one of those
two and different validation methods resulted in a correct classification of all of the
young subjects and in a correct classification of all but two of the old subjects.

Computer software. All analyses in this study were carried out with custom software
written in MATLAB R2012b. All computer programs in connection with the model
were also created using MATLAB R2012b.
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