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Background: Cognitive decline remains highly underdiagnosed despite efforts to find
novel cognitive biomarkers. Electroencephalography (EEG) features based on machine-
learning (ML) may offer a non-invasive, low-cost approach for identifying cognitive
decline. However, most studies use cumbersome multi-electrode systems. This study
aims to evaluate the ability to assess cognitive states using machine learning (ML)-
based EEG features extracted from a single-channel EEG with an auditory cognitive
assessment.

Methods: This study included data collected from senior participants in different
cognitive states (60) and healthy controls (22), performing an auditory cognitive
assessment while being recorded with a single-channel EEG. Mini-Mental State
Examination (MMSE) scores were used to designate groups, with cutoff scores of 24
and 27. EEG data processing included wavelet-packet decomposition and ML to extract
EEG features. Data analysis included Pearson correlations and generalized linear mixed-
models on several EEG variables: Delta and Theta frequency-bands and three ML-based
EEG features: VC9, ST4, and A0, previously extracted from a different dataset and
showed association with cognitive load.

Results: MMSE scores significantly correlated with reaction times and EEG features
A0 and ST4. The features also showed significant separation between study groups:
A0 separated between the MMSE < 24 and MMSE ≥ 28 groups, in addition to
separating between young participants and senior groups. ST4 differentiated between
the MMSE < 24 group and all other groups (MMSE 24–27, MMSE ≥ 28 and healthy
young groups), showing sensitivity to subtle changes in cognitive states. EEG features
Theta, Delta, A0, and VC9 showed increased activity with higher cognitive load levels,
present only in the healthy young group, indicating different activity patterns between
young and senior participants in different cognitive states. Consisted with previous
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reports, this association was most prominent for VC9 which significantly separated
between all level of cognitive load.

Discussion: This study successfully demonstrated the ability to assess cognitive states
with an easy-to-use single-channel EEG using an auditory cognitive assessment. The
short set-up time and novel ML features enable objective and easy assessment of
cognitive states. Future studies should explore the potential usefulness of this tool for
characterizing changes in EEG patterns of cognitive decline over time, for detection of
cognitive decline on a large scale in every clinic to potentially allow early intervention.

Trial Registration: NIH Clinical Trials Registry [https://clinicaltrials.gov/ct2/show/results/
NCT04386902], identifier [NCT04386902]; Israeli Ministry of Health registry
[https://my.health.gov.il/CliniTrials/Pages/MOH_2019-10-07_007352.aspx], identifier
[007352].

Keywords: EEG (electroencephalography), brain activity, cognitive decline, cognitive impairment, cognitive
assessment, mini-mental state examination (MMSE), machine learning (ML), wavelet packet

INTRODUCTION

Cognitive decline is characterized by impairments in various
cognitive functions such as memory, orientation, language, and
executive functions, expressed more than is anticipated for an
individual’s age and education level (Plassman et al., 2010).
Cognitive decline with memory deficit indications is associated
with a high-risk for developing dementia and Alzheimer’s disease
(AD) (Ritchie and Touchon, 2000). Dementia is recognized as
one of the most significant medical challenges of the future. So
much so, that it has already reached epidemic proportions, with
prevalence roughly doubling every 5 years in populations over the
age of 65 (van der Flier and Scheltens, 2005). This rate is expected
to increase unless therapeutic approaches are found to prevent
or stop disease progression (Hebert et al., 2013). Since AD is the
most prevalent form of dementia, responsible for about 60–70%
of cases (Qiu et al., 2009), it remains the focus of clinical trials.
To date, most clinical trials that include a disease-modifying
treatment fail to demonstrate clinical benefits in symptomatic AD
patients. This could be explained by the late intervention that
occurs after neuropathological processes have already resulted in
substantial brain damage (Galimberti and Scarpini, 2011). Hence,
the discovery of predictive biomarkers for preclinical or early
clinical stages, such as cognitive decline, is imperative (Jack et al.,
2011). Cognitive decline may be detected several years before
dementia onset with known validated tools (Hadjichrysanthou
et al., 2020). Interventions starting early in the disease process,
before substantial neurodegeneration has taken place, can change
the progression of the disease dramatically (Silverberg et al.,
2011). Yet, there is still no universally recommended screening
tool that satisfies all needs for early detection of cognitive decline
(Cordell et al., 2013).

The most commonly used screening tool for cognitive
assessment in the elderly population is the Mini-Mental State
Examination (MMSE) (Folstein et al., 1975). The MMSE
evaluates cognitive function, with a total possible score of
30 points. Patients who score below 24 would typically be

suspected of cognitive decline or early dementia (Tombaugh
and McIntyre, 1992). However, several studies have shown that
sociocultural variables, age, and education, as well as tester
bias, could affect individual scores (Brayne and Beardsall, 1990;
Crum et al., 1993; Shiroky et al., 2007). Furthermore, studies
report a short-term practice effect for subjects in AD trials and
diagnostic studies resulting from repeated exposure to the MMSE
(Chapman et al., 2016).

Objective cognitive assessment based on brain activity
measurements would be preferable to subjective clinical
evaluations using pen-and-paper assessment tools like the
MMSE. However, such objective methods are often cumbersome
and expensive. Electroencephalography (EEG) offers a non-
invasive and relatively inexpensive screening tool for cognitive
assessment (Cassani et al., 2018). Frontal asymmetry among
the activity in the left and right hemispheres, peak frequency
in resting-state EEG, and response time in sensory ERP are
found to correlate with MMSE scores (Doan et al., 2021). EEG
studies investigating cognitive decline highlight the role of Theta
power as a possible indicator for early detection of cognitive
decline (Missonnier et al., 2007; Deiber et al., 2015). For example,
it was found that frontal Theta activity differs substantially
in cognitively impaired subjects performing cognitive tasks,
compared to healthy seniors. A lack of increased Theta activity
was shown to serve as a predictor of cognitive decline progression
(Deiber et al., 2009). When performing tasks involving working
memory, frontal Theta activity increases with the expected
increase of the cognitive load levels (Jensen and Tesche, 2002).
Working memory manipulation is one of the ways to modify
cognitive load, as explained by the Cognitive Load Theory (CLT).
Since working memory capacity is limited, performing a higher
difficult task results in simultaneous processing of information
elements, which leads to higher cognitive load (Sweller, 2011).
Studies using EEG repeatedly show frontal Theta increase with
higher cognitive load and task difficulty (Antonenko et al., 2010).
Studies examining resting-state EEG found that Alpha-to-Theta
ratio decreased as the MMSE scores decreased (Choi et al., 2019).
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A recent study suggest that novel diagnostic classification based
on EEG signals could be even more useful than frontal Theta for
differentiating between clinical stages (Farina et al., 2020).

The development of machine learning (ML), alongside
advancement in signal processing, has largely contributed to
the extraction of useful information from the raw EEG signal
(Dauwels et al., 2010a). Novel techniques are capable of exploiting
the large amount of information on time-frequency processes in
a single recording (Pritchard et al., 1994; Babiloni et al., 2004).
Recent studies demonstrated novel measures of EEG signals
for identification of cognitive impairment with high accuracy,
using classifiers based on neural networks, wavelets, and principal
component analysis (PCA), indicating the relevance of such
methods for cognitive assessment (Cichocki et al., 2005; Melissant
et al., 2005; Lehmann et al., 2007; Ahmadlou et al., 2010;
Meghdadi et al., 2021).

However, most studies in this field have several constraints.
Most commonly, such studies use multichannel EEG systems to
characterize cognitive decline. The difficulty with multichannel
EEG is the long setup time, the requirement of specially trained
technicians, as well as the need for professional interpretation
of the results. This makes the systems costly and not portable,
thus not suitable for wide-range screening in community clinics.
Consequently, these systems are not included in the usual clinical
protocol for cognitive decline detection. This emphasizes the
need for additional cost-effective tools with easy setup and short
assessment times, to possibly allow earlier detection of cognitive
decline in the community.

A recent study (Khatun et al., 2019) examined differences in
responses to auditory stimuli between cognitively impaired and
healthy subjects and concluded that cognitive decline can be
characterized using data from a single EEG channel. Specifically,
using data from frontal electrodes, the authors extracted features
that were later used in classification models to identify subjects
with cognitive impairments. Additional studies (Choi et al., 2019;
Doan et al., 2021) found prefrontal EEG effective for screening
dementia and, specifically, frontal asymmetry as a potential EEG
variable for dementia detection. These results contribute to the
notion that a prefrontal single-channel EEG can be used as
an efficient and convenient way for assessing cognitive decline.
However, the risk of overfitting the data in such classification
studies should be addressed to ensure generalization capabilities,
especially with a small sample size. Studies that use the same
dataset for training as well as feature extraction (Kashefpoor
et al., 2016; Cassani et al., 2017; Khatun et al., 2019) extend the
risk of overfitting the data. For generalization of the data, the
features should be examined in different datasets and be made to
provide consistency in the results of new datasets. Furthermore,
measuring the correlations of the extracted features with standard
clinical measurements (like the MMSE score) or behavioral
results of cognitive tasks [like reaction times (RTs) and accuracy]
may be highly valuable for validation of novel EEG features.

In this study, we evaluated the ability of an easy-to-use
single-channel EEG system to potentially detect cognitive decline
in an elderly population. The EEG signal was decomposed
using mathematical models of harmonic analysis, and machine-
learning (ML) methods were used to extract EEG features. The

pre-extracted EEG features used in this study were validated
in previous studies performed on young healthy subjects
(Maimon et al., 2020, 2021, 2022; Bolton et al., 2021). A short
auditory cognitive assessment utilizing auditory stimuli was used.
The auditory cognitive assessment included a simple auditory
detection task with two difficulty levels (low and high), and a
resting-state task. Previous findings show that recording EEG
during active engagement in cognitive and auditory tasks offers
distinct features and may lead to better discrimination power
of brain states (Ghorbanian et al., 2013). Furthermore, using
auditory stimulation detection is linked directly to attentional
processes of the working memory system and can be used
to manipulate WM load, as shown by EEG studies (Berti
and Schröger, 2001; Lv et al., 2010). To continue this notion,
we used an auditory assessment battery with musical stimuli.
It was previously shown that musical stimuli elicit stronger
activity than using visual cues such as digits and characters
(Tervaniemi et al., 1999).

This pilot study aims to evaluate the ability of a frontal single-
channel EEG system to assess cognitive decline in an elderly
population, recognizing the importance of providing an accurate,
low-cost alternative for cognitive decline assessment. Several
hypotheses were formed in this study: (1) The EEG features
activity will correlate to the MMSE scores (in the senior groups);
(2) The EEG features that show correlation to the MMSE scores
will also differentiate between the lower MMSE groups and the
healthy young group; (3) Some of the EEG features will correlate
to cognitive load (elicited by the tasks); and (4) This pattern of
activity, which refers to the difficulty of the task, could be absent
in patients with low MMSE scores.

MATERIALS AND METHODS

Participants
Senior Participants
Ethical approval for this study was granted by the Ethics
Committee (EC) of Dorot Geriatric Medical Center on
July 01, 2019. Israeli Ministry of Health (MOH) registry
number MOH_2019-10-07_007352. NIH Clinical Trials Registry
number NCT04386902, URL: https://clinicaltrials.gov/ct2/show/
NCT04386902.

Sixty patients from the inpatient rehabilitation department at
Dorot Geriatric Medical Center were recruited for this study.
For the full demographic details, see Table 1. The overall mean
age was 77.55 (9.67) years old. There was a wide range of ages
for each group, with no significant age difference between the
groups. Participant groups consisted of 47% females and 53%
males. Among the patients, 82% were hospitalized for orthopedic
rehabilitation, and 18% due to various other causes. Among the
patients who had surgery, an average of 27 (16.3) days had passed
since the surgery. Potential subjects were identified by the clinical
staff during their admissions to the inpatient rehabilitation
department. All subjects were hospitalized at the center and were
chosen based on inclusion criteria specified in the study protocol.
The patients underwent a MMSE by an occupational therapist
upon hospital admission, and this score was used to screen
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TABLE 1 | Demographic information of the senior groups included in the analysis.

Groups MMSE ≥ 28 MMSE 24–27 MMSE < 24

Total MMSE scores 28–30 24–27 17–23

n 17 16 17

MMSE 28.88 (0.78) 25.64 (0.66) 20.46 (2.06)

Age 74.77 (8.05) 75.42 (7.36) 79.26 (8.57)

Age t-tests MMSE ≥ 28 vs. MMSE 24–27,
t = –0.43, p = 0.67

MMSE ≥ 28 vs. MMSE < 24,
t = –1.62, p = 0.115

MMSE 24–27 vs. MMSE < 24,
t = –1.73, p = 0.25

Male MMSE scores 28–30 24–27 17–23

n 5 7 11

MMSE 28.4 (0.55) 25.86 (0.69) 21.1 (1.92)

Age 74.4 (8.55) 73.86 (5.55) 78.27 (7.16)

Age t-tests MMSE ≥ 28 vs. MMSE 24–27,
t = 0.11, p = 0.91

MMSE ≥ 28 vs. MMSE < 24,
t = –0.81, p = 0.45

MMSE 24–27 vs. MMSE < 24,
t = –1.47, p = 0.16

Female MMSE scores 28–30 24–27 17–23

n 12 9 6

MMSE 29.08 (0.9) 25.56 (1.01) 20.17 (2.48)

Age 74.83 (4.99) 77.11 (7.75) 79.67 (10.48)

Age t-tests MMSE ≥ 28 vs. MMSE 24–27,
t = 0.77, p = 0.46

MMSE ≥ 28 vs. MMSE < 24,
t = –1.07, p = 0.325

MMSE 24–27 vs. MMSE < 24,
t = –0.51, p = 0.622

MMSE males vs. females t = –1.91, p = 0.08 t = 0.71, p = 0.49 t = 0.79, p = 0.45

Age males vs. females t = –0.1, p = 0.92 t = –0.98, p = 0.345 t = –0.29, p = 0.78

Averages are shown for total (all participants), and for males and females separately. t and p values of the comparisons between mean ages of the MMSE groups
are presented for total and for males and females separately. Additionally, t and p-values of the comparisons of age and MMSE between the genders are presented
in the last rows.

patients who had scores between 10 and 30. All subjects were
also evaluated for their abilities to hear, read, and understand
instructions for the discussion of Informed Consent Form (ICF),
as well as for the auditory task. Patients that spoke English,
Hebrew, and Russian were provided with the appropriate ICF and
auditory task in the language they could read and understand. All
participants provided ICF according to the guidelines outlined
in the Declaration of Helsinki. Patients that showed any verbal
or non-verbal form of objection were not included in the study.
Other exclusion criteria included MMSE score lower than 10;
the presence of several neurological comorbidities (intended
to exclude patients with other neurological conditions that
could affect the results); damage to the integrity of the scalp
and/or skull, and skin irritation in the facial and forehead area;
significant hearing impairments; and a history of drug abuse.

In total, 50 of the 60 recruited patients completed the auditory
task, and their EEG data was used. Ten patients signed the ICF
and were included in the overall patient count but were excluded
from data analysis due to their desire to stop the study, or because
of technical problems during the recording.

Healthy Young Participants
Twenty-two healthy students participated in this study for
course credit. The overall mean age was 24.09 (2.79) years old.
Participant group consisted of 60% females and 40% males.
Ethical approval for this study was granted by Tel-Aviv University
Ethical Committee 27.3.18.

Apparatus
EEG Device
Electroencephalography recordings were performed using the
Neurosteer R© single-channel EEG Recorder. A three-electrode

medical-grade patch was placed on each subject’s forehead,
using dry gel for optimal signal transduction. The non-invasive
monopolar electrodes were located at the prefrontal regions;
the difference between Fp1 and Fp2 in the International
10/20 electrode system produced the single-EEG-channel,
with a reference electrode in Fpz, was ± 25 mV (Input
noise < 30 nVrms); EEG electrode contact impedances
were maintained below 12 k�, as measured by a portable
impedance meter (EZM4A, Grass Instrument Co., West
Warwick, RI, United States). The data were digitized in
continuous recording mode at a 500-Hz sampling frequency. For
further details, see Supplementary Appendix A.

A trained operator monitored each subject during recordings
to minimize muscle artifacts and instructed each subject to avoid
facial muscle movement during recordings, as well as alerted
the subjects whenever they showed increased muscle or ocular
movement. It should be noted that the differential input and the
high common-mode rejection ratio (CMRR) assist in the removal
of motion artifacts as well as line noise (Hoseini et al., 2021).
The EEG power spectrum was obtained by fast Fourier transform
(FFT) of the EEG signals within a 4-s window.

Signal Processing
The time-frequency approach to analyzing EEG data has been
used in the past years to characterize brain behavior in
AD (Jeong, 2004; Bibina et al., 2018; Nimmy John et al.,
2019). Following this notion, we are using a novel time-
frequency approach to analyze the EEG signal in this study. Full
technical specifications regarding the signal analysis are provided
in Supplementary Appendix A. In brief, the Neurosteer R©

signal-processing algorithm interprets the EEG data using a
time/frequency wavelet-packet analysis, creating a presentation
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of 121 components composed of time-varying fundamental
frequencies and their harmonics.

To demonstrate this process, let g and h be a set of
biorthogonal quadrature filters created from the filters G and H,
respectively. These are convolution-decimation operators where,
in a simple Haar wavelet, g is a set of averages, and h is a
set of differences.

Let ψ1 be the mother wavelet associated with the filters s ∈ H,
and d ∈ G. Then, the collection of wavelet packets ψn is given by:

ψ2n = Hψn; ψ2n (t) =
√

2
∑
j∈Z

s
(
j
)
ψn
(
2t − j

)
, (1)

ψ2n+1 = Gψn; ψ2n+1 (t) =
√

2
∑
j∈Z

d
(
j
)
ψn
(
2t − j

)
. (2)

The recursive form provides a natural arrangement in the
form of a binary tree. The functions ψn have a fixed scale. A library
of wavelet packets of any scale s, frequency f, and position p is
given by

ψsfp (t) = 2−s/2ψf
(
2−st − p

)
. (3)

The wavelet packets {ψsfp : p ∈ Z} include a large collection
of potential orthonormal bases. An optimal basis can be chosen
by the best-basis algorithm (Coifman and Wickerhauser, 1992).
Furthermore, an optimal mother wavelet together with an
optimal basis can also be found (Neretti and Intrator, 2002).
Following robust statistics methods to prune some of the
basis functions using Coifman and Donoho’s denoising method
(Coifman and Donoho, 1995), an output of 121 basis functions
is received, termed “Brain Activity Features” (BAFs). Based on
a given labeled-BAF dataset (collected by Neurosteer R©), various
models can be created for different discriminations of these labels.
In the (semi-) linear case, these models are of the form:

Vk (w, x) = 9

(∑
i

wixi

)
, (4)

where w is a vector of weights and 9 is a transfer function that can
either be linear, e.g., 9(y)=y, or sigmoidal for logistic regression
9(y)=1/(1+e−y ).

The BAFs are calculated over a 4-s window that is advanced
by 1-s. This means that the BAF has 2048 components as it is a
power of 2 and the sampling frequency is 500 Hz spanning the 4-
s window. In this 4 s window, the BAF is a time/frequency atom.
Thus, it allows for a signal that can vary the frequency over the 4-s
window, such as a chirp. Then the window is advanced by 1 s, just
like it is done in a spectrogram with 75% overlap, and calculated
again over the new 4-s window.

The data was tested for artifacts due to muscle and eye
movement of the prefrontal EEG signals (Fp1, Fp2). The standard
methods used to remove non-EEG artifacts were all based
on different variants of the Independent Components Analysis
(ICA) algorithm (Urigüen and Garcia-Zapirain, 2015). These
methods could not be performed here, as only a single-channel

EEG data was used. As an alternative, strong muscle artifacts
have higher amplitudes than regular EEG signals, mainly in the
high frequencies; thus, they are clearly observable in many of
the BAFs that are tuned to high frequency. This phenomenon
helps in the identification of artifacts in the signal. Minor muscle
activity is filtered out by the time/frequency nature of the BAFs
and thus caused no disturbance to the processed signal. Similarly,
eye movements are detected in specific BAFs and are taken into
account during signal processing and data analysis.

Construction of Higher-Level Classifiers
Several linear combinations were obtained using ML techniques
on labeled datasets previously collected by Neurosteer R© using
the described BAFs. Specifically, EEG features VC9 and A0 were
calculated using the linear discriminant analysis (LDA) technique
(Hastie et al., 2007). LDA technique is intended to find an optimal
linear transformation that maximizes the class separability. LDA
models on imaging data were found successful in predicting
development of cognitive decline up to 4 years prior to displaying
symptoms of decline (Rizk-Jackson et al., 2013). EEG feature
VC9 was found to separate between low and high difficulty levels
of an auditory detection task within healthy participants (ages
20–30). EEG feature A0 was found to separate between resting
state with music and auditory detection task within healthy
participants (ages 20–30).

EEG feature ST4 was calculated using PCA (Rokhlin et al.,
2009). Principle component analysis is a method used for feature
dimensionality reduction before classification. Studies show that
features extracted using PCA show significant correlation to
MMSE score and distinguish AD from healthy subjects (López
et al., 2009; Meghdadi et al., 2021), as well as show good
performance for the diagnosis of AD using imaging (Choi and
Jin, 2018). Here, the fourth principal component was found to
separate between low and high difficulty levels of auditory n-back
task for healthy participants (ages 30–70). Most importantly, all
three EEG features were derived from different datasets than the
data analyzed in the present study. Therefore, the same weight
matrices that were previously found were used to transform the
data obtained in the present study.

The frequency approach has been extensively researched in the
past decade, leading to a large body of evidence regarding the
association of frequency bands to cognitive functions (Herrmann
et al., 2016). In this study, we introduce a novel time-frequency
approach for signal analysis and compare it to relevant frequency
band results. The EEG features presented here are produced
by a secondary layer of ML on top of the BAFs. These
BAFs were created as an optimal orthogonal decomposition of
time/frequency components following the application of the Best
Basis Algorithm (Coifman and Wickerhauser, 1992) on the full
wavelet packet tree that was created from a large collection of
EEG recordings (see full details in the Supplementary Material).
Therefore, they are composed of time-varying fundamental
frequencies and their harmonics. As a result of this dynamic
nature, and due to the fact that the EEG features are created as
linear combinations of multiple BAFs, each feature potentially
includes a wide range of frequencies and dynamic varying
characteristics. If the time variant characteristic was not present,
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the spectral envelope of each feature would have represented
the full characteristic of each EEG feature. As the time varying
component of each BAF is in the millisecond range (sampled
at 500 Hz), it is not possible to characterize the dynamics
with a spectrogram representation which averages the signal
over 4-s windows. Thus, though characterizing the frequency
representations of the novel features may be of interest, it is
not applicable in this case, much like with EEG-produced ERPs
(Makeig et al., 2002; Fell et al., 2004; Popp et al., 2019). We do
observe, however, that EEG feature VC9 includes predominantly
fundamental frequencies that belong to the Delta and Theta
range (and their harmonics), while EEG features ST4 and A0
are broader combinations of frequencies spanning the whole
spectrum (up to 240 Hz).

Other studies conducted on young healthy participants (a
different study population than that previously mentioned)
showed that EEG feature VC9 activity increased with increasing
levels of cognitive load, as manipulated by numeric n-back task
(Maimon et al., 2020). Additionally, VC9 activity during the
performance of an arithmetic task decreased with external visual
interruptions (Bolton et al., 2021). VC9 activity was also found
to decrease with the repetition of a motor task in a surgery
simulator performed by medical interns and was correlated
with their individual performance (Maimon et al., 2021). These
studies found that VC9 showed higher sensitivity than Theta,
especially for lower-difficulty cognitive loads, which are more
suitable for clinical and elderly populations. Within the clinical
population, VC9 was found to correlate with auditory mismatch
negativity (MMN) ERP component of minimally responsive
patients (Maimon et al., 2022). EEG feature ST4 was found to
correlate to individual performance of the numeric n-back task.
That is, the difference between high and low load in RTs per
participant was correlated to the difference between high and low
load in ST4 activity (Maimon et al., 2020).

Procedure
EEG Recording and Auditory Battery
The recording room was quiet and illuminated. The research
assistant set up the sanitized system equipment (electrode patch,
sensor, EEG monitor, clicker) and provided general instructions
to the participants before starting the task. Then the electrode
was placed on the subject’s forehead, and the recording was
initiated. Each participant was seated during the assessment and
heard instructions through a loudspeaker connected to the EEG
monitor. The entire recording session typically lasted 20–30 min.
The cognitive assessment battery was pre-recorded and included

two tasks: a detection task as well as a series of true/false questions
answered by pressing a wireless clicker. Further explanations for
the task were kept at a minimum to avoid bias. A few minutes of
baseline activity were recorded per participant to ensure accurate
testing. Each auditory cognitive assessment lasted 18 min.

Detection Task
Figure 1 illustrates the detection task used in the study. In each
block, participants were presented with a sequence of melodies
(played by a violin, a trumpet, and a flute). Each participant
was given a clicker to respond to the stimuli. In the beginning
of each block, auditory instructions indicated an instrument,
to which the participant responded by clicking once. The click
response was only to “yes” trials when the indicated instrument
melody played. The task included two difficulty levels to test
increasing cognitive load. In level 1, each melody was played
for 3 s, and the same melody repeated throughout the entire
block. The participant was asked to click once as fast as possible
for each repetition of the melody. This level included three 90-
s trials (one for each instrument), with 5–6 instances of each
melody, and with 10–18 s of silence in between. In level 2, the
same melodies were played for 1.5 s, and all three instruments
appeared in the block. The participants were asked to click
only for a specific instrument within the block and to ignore
the rest of the melodies. Each trial consisted of 6-8 melodies,
with 8–14 s of silence in between, and 2–3 instances of the
target stimulus.

Statistical Analysis
Dependent Variables
Behavioral Measurements
The behavioral dependent variables included mean response
accuracy and mean Reaction times (RTs) per participant.

Electrophysiological (EEG) Variables
The electrophysiological dependent variables included the power
spectral density. Absolute power values were converted to
logarithm base 10 to produce values in dB. Out of the frequency
bands, the following were included: Delta (0.5–4 Hz) and Theta
(4–7 Hz). Pretests showed that the other frequency bands, namely
Alpha (8–15 Hz), Beta (16–31 Hz), and lower Gamma (32–
45 Hz), did not show any significant correlation or differences
on the current data.

The analysis also included activity of the three selected EEG
features: VC9, ST4, and A0, normalized to a scale of 0–100.
The EEG variables were calculated each second from a moving

FIGURE 1 | An example of six trials of detection level 1 (Top) and detection level 2 (Bottom). Both examples show a “trumpet block” in which the participant reacts
to the trumpet melody. Red icons represent trials in which the participant was required to respond with a click when hearing the melody, indicating a “yes” response.
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window of 4 s, and mean activity per condition was factored
into the analyses.

Overview
Statistical analyses were performed on data from 50 senior
participants and 22 healthy young participants (72 participants
in total). Groups were allocated as follows (see Figure 2). The
senior participants were divided into three groups according
to their MMSE scores: (1) Patients with a score of 17–23 in
the MMSE < 24 group (n = 17); (2) Patients with a score of
24–27 in the MMSE 24–27 group (n = 16); and (3) Patients
with a score of 28–30 in the MMSE ≥ 28 group (n = 17).
This was done in order to obtain relatively balanced group
sizes. We used MMSE score cutoffs of 24 and 27 in allocating
the groups, as we were mostly interested in detecting cognitive
decline as early as possible and found previous indications
that a higher cutoff score would achieve optimal evaluations
of diagnostic accuracy (Crum et al., 1993). Furthermore, it was
argued that educated individuals who score below 27 are at
greater risk of being diagnosed with dementia (O’Bryant et al.,
2008). The fourth group included in the analysis consisted of
the 22 young healthy participants (healthy young group). To
ensure that groups were well adjusted in terms of age and
sex, we compared the mean ages of each MMSE group in
total, and for males and females separately. Additionally, we
compared the age and MMSE scores of each MMSE group
between males and females. These comparisons were done with

FIGURE 2 | Study design and groups at each stage. The study included both
seniors and young healthy participants as controls. For the senior participants,
an MMSE score was obtained, and division into groups was based on the
individual MMSE score.

Welch Two Sample t-test. See Table 1 for the descriptive and
statistical results.

The analyses included correlation models between EEG
variables and MMSE score of senior participants, and mixed
linear models measuring the associations between the EEG
variables and MMSE score/group. Significance level for all
analyses was set to p < 0.05. Post-hoc effects with Tukey
corrections were made following significant main effect and
interactions. All analyses were conducted with RStudio version
1.4.1717 (RStudio Team, 2020).

Correlation Analyses Between EEG Variables and MMSE
Scores
As an initial validation of the cognitive assessment method and
based on previous studies (Silverberg et al., 2011), we expected
that the RTs in the cognitive detection task would be greater
for participants with lower MMSE scores. This was tested by
calculating the Pearson correlation coefficient between mean RTs
in detection levels 1 and 2, and the individual MMSE score of each
participant. Estimated correlation coefficient, corresponding 95%
Confidence Interval (CI), and p-values are presented in Table 2
and Figure 3.

Next, following our first hypothesis regarding the correlation
between EEG activity and MMSE scores, we calculated the
Pearson correlation between each of the EEG features and
individual MMSE scores. Each feature’s activity was averaged
across the three task conditions (i.e., detection level 1, detection
level 2, and resting state), as well as averaged for each of
the conditions separately. We then compared the Pearson
correlations between the different tasks. This was done using
Meng et al. (1992) z extension of the Fisher Z transform (Dunn
and Clark, 1969), which includes a test of the confidence interval
for comparing two correlations. We also compared significant
correlations between the different features. All comparisons were
done using the Corcor (Diedenhofen and Musch, 2015) library
for Rstudio. Estimated correlation coefficients, 95% CIs, p-values,
and their comparisons are summarized in Table 2 and visually
presented in Figure 4.

Finally, we calculated partial Pearson product-moment partial
correlations, controlling for age and built on the asymptotic
confidence interval of the correlation coefficient based on Fisher’s
Z transform, conducted with RVAideMemoire (Maxime, 2017)
library in Rstudio. Each partial correlation between EEG variables
and MMSE controlled for age was compared to the unadjusted
correlation using the bootstrap method (Efron and Tibshirani,
1993). The bias-corrected and accelerated (BCa) bootstrap
method was used to test if the difference between the overlapping
adjusted, and unadjusted correlations is equal to zero. We used
the pzcor function in zeroEQpart library with k = 1000 bootstrap
samples taken, and pzconf function to calculate the subtraction
of the partial correlation from the confidence intervals for the
unadjusted correlation (Table 3).

Associations Between EEG Variables and Groups
To create analyses detecting differences between groups, we
added a group of young participants in addition to the three
MMSE groups of the senior participants, all performing the

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2022 | Volume 14 | Article 773692

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-773692 May 24, 2022 Time: 15:23 # 8

Molcho et al. Single-Channel EEG Cognitive Assessment

TABLE 2 | Pearson r coefficients (first row of each cell), p-values (second row), and 95% CI (third row) of the correlations between individual MMSE scores and EEG
features (and reaction times) as a function of task (averaged across tasks, resting state, detection level 1, and detection level 2); and the difference between correlation
coefficients and CIs between tasks, as calculated by Meng et al. (1992) z extension of the Fisher Z transform (Dunn and Clark, 1969), including a test of the confidence
interval for comparing two correlations.

Averaged Resting state Detection
level 1

Detection
level 2

Resting state –
Detection level 1

Resting state –
Detection level 2

Detection level
1 – Detection

level 2

RTs r = –0.591,
p = 0.0003**,
(–0.78, –0.31)

r = –0.557,
p = 0.0009***,
(–0.76, –0.26)

r = –0.544,
p = 0.003**,

(–0.77, –0.21)

1r = –0.013,
p = 0.92,

(–0.37, 0.33)

Delta r = 0.064,
p = 0.656,

(–0.22, –0.34)

r = 0.031,
p = 0.8422,
(–0.27, 0.33)

r = 0.086,
p = 0.554,
(–0.2, 0.36)

r = 0.044,
p = 0.77,

(–0.24, 0.33)

1r = –0.054,
p = 0.67,

(–0.31, 0.19)

1r = –0.012,
p = 0.91,

(–0.23, 0.2)

1r = 0.041,
p = 0.55,

(–0.1, 0.18)

Theta r = 0.13, p = 0.367,
(–0.15, –0.39)

r = 0.096,
p = 0.541,

(–0.21, 0.38)

r = 0.11, p = 0.426,
(–0.17, 0.38)

r = 0.145,
p = 0.329,

(–0.15, 0.42)

1r = –0.02,
p = 0.88,

(–0.27, 0.24)

1r = –0.049,
p = 0.68,

(–0.29, 0.19)

1r = –0.031,
p = 0.65,

(–0.16, 0.1)

A0 r = –0.34,
p = 0.016*,

(–0.56, –0.07)

r = –0.245,
p = 0.113,

(–0.51, 0.06)

r = –0.38,
p = 0.006**,
(–0.6, –0.12)

r = –0.313,
p = 0.033*,
(–0.55, 0.03)

1r = 0.14,
p = 0.047*,
(0.001, 0.31)

1r = 0.068,
p = 0.295,

(–0.06, 0.21)

1r = –0.071,
p = 0.24,

(–0.2, 0.05)

ST4 r = 0.357,
p = 0.011*,
(0.09, 0.63)

r = 0.253,
p = 0.102,

(–0.05, 0.51)

r = 0.343,
p = 0.015*,
(0.07, 0.57)

r = 0.347,
p = 0.017*, (0.07,

0.58)

1r = –0.09,
p = 0.511,
(–0.39, 0.2)

1r = –0.094,
p = 0.357,

(–0.33, 0.12)

1r = –0.005,
p = 0.95,

(–0.18, 0.17)

VC9 r = 0.076,
p = 0.599,

(–0.21, 0.35)

r = 0.067,
p = 0.671,

(–0.23, 0.36)

r = 0.094,
p = 0.518,

(–0.19, 0.36)

r = 0.071,
p = 0.632,

(–0.22, 0.35)

1r = –0.027,
p = 0.79,

(–0.23, 0.18)

1r = –0.01,
p = 0.96,

(–0.21, 0.2)

1r = 0.02,
p = 0.69,

(–0.08, 0.13)

| A0, MMSE| - |
ST4, MMSE|

1r = –0.02,
p = 0.89,

(–0.32, 0.28)

1r = 0.09,
p = 0.95,

(–0.3, 0.28)

1r = 0.042,
p = 0.77,

(–0.28, 0.38)

1r = –0.034,
p = 0.8,

(–0.34, 0.27)

Significant effects are presented in bold (*p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 3 | Pearson correlation between individual mean reaction times (RTs) and individual MMSE scores, as a function of task level: detection 1 (purple) and
detection 2 (red).

same tasks. Due to the relatively small sample size, we fitted
a general linear mixed model (GLMM) (Cnaan et al., 1997)
that incorporated both fixed- and random-effect terms in a

linear predictor expression from which the conditional mean
of the response can be evaluated, using the lmer function in
the lme4 package (Bates et al., 2015). This model was chosen
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FIGURE 4 | Pearson correlation between individual MMSE scores and (A) EEG frequency bands Delta and Theta, and (B) EEG features A0, ST4, and VC9, as a
function of task level: resting state (blue), detection level 1 (purple), and detection level 2 (red).

over the simple GLM due to the relatively small sample size,
as the GLMM takes into consideration the random slope per
each participant. Age was not inserted as a covariant since it
was part of the analysis: the young healthy group is inherently
different due to their ages. The model included the fixed within-
participant variable of task level (resting state vs. detection level 1
vs. detection level 2), and group as between-participants variable
(MMSE < 24 vs. MMSE 24–27 vs. MMSE ≥ 28 vs. healthy
young). Both variables were coded as linear variables. Task:
resting state = 0; detection level 1 = 1; and detection level 2 = 2.
Group: MMSE < 24 = 0; MMSE 24–27 = 1; MMSE ≥ 28 = 2;
healthy young = 3. The model included the samples per
participant per task (i.e., samples per second of activation) as a
random slope. The interaction between the two fixed variables
and participants’ random slopes were fit to the EEG variable data

in a step-wise-step-up procedure using Chi square tests: the initial
model included group and task level without the interaction
between them; the second model included both variables and
the interactions, and afterwards, the random factor was fitted
into the data to include task| participant as random slope (all
model comparisons parameters are summarized in Table 4).
Fixed effects were calculated according to the selected model
(i.e., included the interaction between the variables only for
selected models which included it), the fixed effects estimates,
standard errors, DFs, t and p-values of the best-fitting models
for each of the EEG variables are summarized in Table 5 and
presented in Figure 5. For models that showed a significant
main effect of either group or task, post hoc analyses were
conducted, comparing possible pairwise comparisons of the main
effects levels (i.e., comparing between groups and between task
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TABLE 3 | Partial Pearson r coefficients (first row of each cell), p-values (second row), and 95% CI (third row) of the correlations between individual MMSE scores and
EEG features (and reaction times), controlled for age as a function of task (averaged across tasks, resting state, detection level 1, and detection level 2), and the
difference between correlation coefficients and Cis, the partial correlations, and the unadjusted correlations, as calculated by the bias-corrected and accelerated (BCa)
bootstrap method.

Averaged Resting state Detection level 1 Detection level 2 Averaged Resting state Detection level 1 Detection level 2

Partial
correlation,

age

Partial
correlation,

age

Partial
correlation, age

Partial
correlation, age

Unadjusted –
partial

correlation,
age

Unadjusted –
partial

correlation,
age

Unadjusted –
partial

correlation, age

Unadjusted –
partial

correlation, age

RTs r = –0.531,
p = 0.002**,

(–0.75, –0.22)

r = –0.48,
p = 0.006**,

(–0.71, –0.15)

r = –0.522,
p = 0.006**,

(–0.76, –0.17)

1r = –0.06,
p = 0.129,

(–0.38, 0.07)

1r = –0.08,
p = 0.19,

(–0.48, 0.18)

1r = –0.02,
p = 0.38,

(–0.4, 0.06)

Delta r = 0.004,
p = 0.97,

(–0.28, 0.29)

r = –0.041,
p = 0.79,

(–0.34, 0.27)

r = 0.021,
p = 0.89,

(–0.26, 0.3)

r < 0.001
p = 0.99,

(–0.29, 0.29)

1r = 0.056,
p = 0.09,

(–0.082, 0.24)

1r = 0.073,
p = 0.092,

(–0.14, 0.32)

1r = 0.065,
p = 0.075,

(–0.06, –0.31)

1r = 0.044,
p = 0.27,

(–0.16, 0.25)

Theta r = 0.07,
p = 0.64,

(–0.22, 0.34)

r = 0.047,
p = 0.77,

(–0.26, 0.35)

r = 0.048,
p = 0.74,

(–0.24, 0.33)

r = 0.08,
p = 0.6,

(–0.22, 0.36)

1r = 0.061,
p = 0.07,

(–0.11, 0.26)

1r = –0.049,
p = 0.2,

(–0.28, 0.25)

1r = 0.067,
p = 0.1,

(–0.1, 0.32)

1r = 0.066,
p = 0.164,

(–0.15, 0.41)

A0 r = –0.333,
p = 0.0194*,
(–0.56, –0.06)

r = –0.245,
p = 0.113,

(–0.51, 0.06)

r = –0.372,
p = 0.008**,
(–0.59, –0.1)

r = –0.303,
p = 0.04*,

(–0.55, –0.02)

1r = –0.01,
p = 0.83,

(–0.18, 0.24)

1r = –0.01,
p = 0.84,

(–0.28, 0.23)

1r = –0.01,
p = 0.62,

(–0.16, 0.18)

1r = –0.009,
p = 0.78,

(–0.2, – 0.23)

ST4 r = 0.321,
p = 0.025*,
(0.04, 0.55)

r = 0.266,
p = 0.088,

(–0.04, 0.53)

r = 0.291,
p = 0.042*,
(0.01, 0.53)

r = 0.293
p = 0.048*,
(0.003, 0.54)

1r = 0.04,
p = 0.25,

(–0.14, 0.25)

1r = –0.013,
p = 0.71,

(–0.21, 0.41)

1r = 0.052,
p = 0.128,

(–0.09, 0.34)

1r = –0.054,
p = 0.135,

(–0.14, 0.32)

VC9 r = –0.004,
p = 0.97,

(–0.29, 0.28)

r = 0.007,
p = 0.63,

(–0.3, 0.31)

r = 0.002,
p = 0.98,

(–0.28, 0.28)

r = –0.01,
p = 0.94,

(–0.3, 0.28)

1r = 0.008,
p = 0.051,

(–0.055, 0.36)

1r = 0.06,
p = 0.129,

(–0.12, 0.28)

1r = 0.09,
p = 0.072,

(–0.12, 0.43)

1r = 0.082,
p = 0.15,

(–0.07, 0.39)

| A0, MMSE| -
| ST4, MMSE|

r = 0.012,
p = 0.93,

(–0.29, 0.32)

r = –0.031,
p = 0.82,

(–0.32, 0.26)

r = 0.08, p = 0.58,
(–0.24, 0.42)

r = 0.011,
p = 0.94,

(–0.29, 0.31)

Significant effects are presented in bold (*p < 0.05, **p < 0.01, p < 0.001).

levels), using Tukey HDS correction. This was done using the
PostHocTest function from the DescTools library in Rstudio. All
pairwise differences, 95% Cis, and p-values are summarized in
Table 6.

Finally, to explore whether the differences between task levels
vary between the groups (hypothesis 4), we conducted separate
GLMMs for each group, with task as a within-participants
variable (coded as a linear variable similar to the main analysis).
These included only the EEG features that exhibited significant
interaction between group and task (i.e., only for features
with selected model which included the interaction, and with
significant interaction effect in their main GLMM). Taking all
fixed effects together, we corrected the p-values using Benjamini
Hochberg correction. For features that exhibited a corrected
significant main effect of task using GLMM, we further compared
the task levels using post hoc analyses with Tukey correction. The
coefficients of the main effect of task using GLMMs are presented
in Table 7, and post-hoc comparisons of significant features are
presented in Table 8.

RESULTS

Demographic Results
T-test results between the mean ages of each MMSE group in
total, and for males and females separately as well as between

the age and MMSE scores of each MMSE group between males
and females were calculated. Means, standard deviations, t and
p-values of the comparisons are presented in Table 1. The mean
age of the participants did not differ between the three MMSE
groups for all participants and for males and females separately
(all ps > 0.05). Additionally, MMSE mean scores and mean age
of each MMSE group were similar in males and females (all
ps > 0.05).

Validation of the Behavioral Task
Correlations between individual MMSE scores and participants’
RTs in both levels of the detection task were significant, both for
each level separately, as well as the mean activation in the entire
cognitive detection task (p < 0.01 for all, see Figure 3).

Correlations Between MMSE Scores and
EEG Variables
Pearson r, 95% CIs and p-values of the correlations between
individual MMSE scores and each EEG variable (averaged and
separated for each task level) and their comparisons are presented
in Table 2 and Figure 4. The activity of ST4 increased with
higher MMSE scores both as averaged across tasks, and separately
during detection 2, and was highest during detection 1 (p = 0.011,
p = 0.017, and p = 0.015, respectively). ST4 activity under the
resting-state task did not correlate with MMSE (p = 0.102), and
the comparison between the correlations during the different
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TABLE 4 | Model type, number of parameters, AIC, BIC, loglik, deviance, Chi square, df and p-values of GLMM models selection for each of the EEG features.

Interaction Slope npar AIC BIC logLik Deviance Chi square Df p-value

Delta Group + Task 1 | Participant 5 216883 216925 –108436 216873

Group × Task 1 | Participant 6 216827 216877 –108407 216815 58.2555 1 <0.001

Group + Task Task | Participant 7 215416 215475 –107701 215402 1412.7973 1 <0.001

Group × Task Task | Participant 8 215412 215480 –107698 215396 6.0024 1 0.01429

Theta Group + Task 1 | Participant 5 201278 201320 –100634 201268

Group × Task 1 | Participant 6 201152 201203 –100570 201140 127.714 1 <0.001

Group + Task Task | Participant 7 199602 199661 –99794 199588 1552.228 1 <0.001

Group × Task Task | Participant 8 199593 199661 –99789 199577 11.052 1 <0.001

A0 Group + Task 1 | Participant 5 230037 230080 –115014 230027

Group × Task 1 | Participant 6 229961 230012 –114975 229949 77.8969 1 <0.001

Group + Task Task | Participant 7 227810 227869 –113898 227796 2153.9456 1 <0.001

Group × Task Task | Participant 8 227807 227875 –113896 227791 4.1658 1 0.04125

ST4 Group + Task 1 | Participant 5 253529 253572 –126760 253519

Group × Task 1 | Participant 6 253514 253565 –126751 253502 17.125 1 <0.001

Group + Task Task | Participant 7 252581 252640 –126284 252567 934.999 1 <0.001

Group × Task Task | Participant 8 252581 252648 –126282 252565 2.449 1 0.1176

VC9 Group + Task 1 | Participant 5 237457 237499 –118723 237447

Group × Task 1 | Participant 6 237365 237415 –118676 237353 94.156 1 <0.001

Group + Task Task | Participant 7 235879 235938 –117932 235865 1487.748 1 <0.001

Group × Task Task | Participant 8 235872 235939 –117928 235856 9.196 1 0.002425

RTs Group + Task 1 | Participant 5 18829 18854 –9409.3 18819

Group × Task 1 | Participant 6 18830 18860 –9409.2 18818 0.3208 1 0.5711216

Group + Task Task | Participant 7 18818 18853 –9402.2 18804 13.9718 1 0.0001856

Group × Task Task | Participant 8 18820 18860 –9401.9 18804 0.5056 1 0.4770534

The selected model is presented in bold.

TABLE 5 | Estimate, standard errors, df, t-values and p-values of the best fitted GLMMs conducted.

Fixed Effect Estimate Standard error Df t value Pr( > | t|)

Delta Intercept 4.2818 0.7518 69.6859 5.695 <0.001

Group 0.1402 0.4174 69.8016 0.336 0.737901

Task 1.2123 0.313 72.1092 3.873 0.000234***

Group × Task −0.4384 0.1753 70.2362 −2.5 0.014739*

Theta Intercept −7.157 0.6306 70.3807 −11.349 <0.001

Group 0.5531 0.3501 70.5204 1.58 0.118664

Task 1.3308 0.2551 72.1439 5.216 <0.001***

Group × Task −0.4934 0.1429 70.3468 −3.452 <0.001***

A0 Intercept 67.9201 1.5947 71.413 42.591 <0.001

Group 7.259 0.8853 71.6028 8.199 <0.001***

Task 0.9746 0.4701 70.3273 2.073 0.0418*

Group × Task −0.5468 0.2639 69.2178 −2.072 0.042*

ST4 Intercept 48.5049 0.8781 69.7236 55.237 <0.001

Group −1.5885 0.4846 69.6139 −3.278 0.00163**

Task 0.5254 0.3223 64.354 1.63 0.10795

VC9 Intercept 51.7001 1.1213 69.8791 46.107 <0.001

Group 1.8839 0.6225 70.0068 3.026 0.00346**

Task 2.3034 0.4276 71.5824 5.387 <0.001***

Group × Task −0.749 0.2395 69.8376 −3.127 0.00257**

RTs Intercept 1866.45 265.55 93.85 7.029 <0.001

Group 634.34 103.84 77.27 6.109 <0.001***

Task −11.86 157.68 33.08 −0.075 0.94

Significant effects are presented in bold (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 5 | The distributions of groups (MMSE < 24, MMSE 24-27, MMSE ≥ 28, and healthy young) for activity of EEG features (A) Delta and Theta; (B) A0, ST4
and VC9; and (C) reaction times (RTs), as a function of task: resting-state (blue), detection level 1 (purple), and detection level 2 (red).

tasks did not yield significant differences. The activity of A0
increased with lower MMSE scores both as averaged across
tasks and separately during detection 2, and was highest during
detection 1 (p = 0.016, p = 0.033 and p = 0.006, respectively).
A0 activity under the resting state task did not correlate with
MMSE and was significantly lower than the correlation during
detection level 1 (p = 0.113 and p = 0.047, respectively). There was
no difference between the correlations of ST4 and MMSE and A0
and MMSE. No other features were found to be correlated with
individual MMSE scores.

The partial Pearson correlations between the EEG features and
MMSE scores controlled for age demonstrated fully comparable
results to the unadjusted correlations: A0 and ST4 showed

significant partial correlations with MMSE both for the averaged
activity and separately during detection level 1 and detection
level 2. All partial correlations controlling for age were not
significantly different from the unadjusted correlation, and
partial correlations between MMSE and A0 were no different
from the partial correlations between MMSE and ST4 (see
Table 3).

Associations Between EEG Variables and
Groups
For EEG features Delta, Theta, A0, and VC9, the best fitted model
included the fixed effects of group, task, and the interaction
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TABLE 6 | Difference, 95% CI, and p-values of the post hoc comparisons for significant main effects of group and task.

Effect Contrast 5% CI 95% CI p-value

Delta Task D1-RS −1.2980921 2.103904 0.842

D2-RS −0.7001874 2.736718 0.343

D2-D1 −1.0595261 2.290245 0.661

Theta Task D1-RS −0.6079469 2.226128 0.370

D2-RS −0.185484 2.677673 0.102

D2-D1 −0.9582807 1.832289 0.740

A0 Group MMSE 24–27-MMSE < 24 −7.528808 1.1597942 0.232

MMSE ≥ 28-MMSE < 24 −10.835796 −2.470839 <0.001***

Healthy Young-MMSE < 24 −23.459068 −15.6007404 <0.001***

MMSE ≥ 28-MMSE 24–27 −7.750391 0.8127688 0.157

Healthy Young-MMSE 24–27 −20.379889 −12.3109055 <0.001***

Healthy Young-MMSE ≥ 28 −16.736289 −9.016884 <0.001***

Task D1-RS −3.251085 3.169276 1.000

D2-RS −2.729867 3.756377 0.926

D2-D1 −2.606741 3.71506 0.910

ST4 Group MMSE 24–27-MMSE < 24 0.1691464 6.382411 0.03438*

MMSE ≥ 28-MMSE < 24 2.033485 8.01531 <0.001***

Healthy Young-MMSE < 24 2.7283392 8.347871 <0.001***

MMSE ≥ 28-MMSE 24–27 −1.3131616 4.810399 0.452

Healthy Young-MMSE 24–27 −0.6227604 5.147413 0.180

Healthy Young-MMSE ≥ 28 −2.2463862 3.273801 0.963

VC9 Group MMSE 24–27-MMSE < 24 −2.483054 4.1764543 0.9123

MMSE ≥ 28-MMSE < 24 −1.794501 4.616945 0.6648

Healthy Young-MMSE < 24 −6.327589 −0.3044569 0.0246*

MMSE ≥ 28-MMSE 24–27 −2.717159 3.8462025 0.9704

Healthy Young-MMSE 24–27 −7.25502 −1.0704265 0.0033**

Healthy Young-MMSE ≥ 28 −7.685571 −1.7689184 <0.001***

Task D1-RS −0.9079706 4.013011 0.2978

D2-RS 0.0875287 5.059007 0.0406*

D2-D1 −1.4019719 3.443467 0.5808

RTs Group MMSE 24–27-MMSE < 24 −1872.9582 177.336 0.14217

MMSE ≥ 28-MMSE < 24 −2534.7131 −574.4962 <0.001***

Healthy Young-MMSE < 24 1099.0414 3003.1676 <0.001***

MMSE ≥ 28-MMSE 24–27 −325.5364 1739.1236 0.28639

Healthy Young-MMSE 24–27 197.5515 2209.0354 0.01207*

Significant effects are presented in bold (*p < 0.05, **p < 0.01, ***p < 0.001).

between them; and the random slope included task/participant.
For ST4 and reaction times, the best fitted model included fixed
effects of group and task without their interaction, and the
random slope task| participant (see Table 4 for model selection
and Chi test results).

The distribution of participants’ EEG features activity under
the three tasks is presented in Figure 5. All the model fixed effects
estimates, standard errors, DFs, and t and p-values are presented
in Table 5. The main linear effect of group was significant for EEG
features ST4, A0, and VC9 (p < 0.001, p < 0.001, and p = 0.003,
respectively), and for RTs (p< 0.001). Post hoc comparisons using
Tukey corrections revealed that for EEG feature A0, significant
differences were found between young healthy participants and
all the senior groups, as well as the difference between the senior
group with MMSE ≥ 28 and the senior group with MMSE < 24
(all ps < 0.001). EEG feature ST4 differentiated between the
senior group with MMSE < 24 and the senior group with MMSE

between 24 and 27, the senior group with MMSE ≥ 28 and the
healthy young participants (p = 0.034, p < 0.001, and p < 0.001,
for the comparisons between senior group with MMSE < 24
and MMSE 24–27, MMSE ≥ 28 and healthy young participants,
respectively). EEG feature VC9 showed significant comparisons
between the young healthy group and all senior groups (p = 0.024,
p = 0.003, and p < 0.001 for the comparisons between healthy
young group and senior group MMSE < 24, MMSE 24–27, and
MMSE ≥ 28, respectively). Finally, RT results showed significant
comparisons between the healthy young participants and the
senior groups with MMSE < 24, and MMSE between 24 and 27
(p < 0.001 and p = 0.012, respectively), as well as between senior
group with MMSE ≥ 28 and the senior group with MMSE < 24
(p < 0.001). For all significant pairwise comparisons results, see
Table 6.

The main effect of task was significant for Delta, Theta, A0,
and VC9 (p < 0.001, p < 0.001, p = 0.042, and p < 0.00,
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TABLE 7 | Estimate, Standard errors, df, t-values and p-values, and BH-corrected p-values of the separate GLMM conducted on each group, with task level as a
within-participants variable.

Group Fixed effect Estimate Standard error Df t value Pr( > |t|) Corrected p (BH)

Delta Healthy Young Task 1.5319 0.3662 22.4384 4.184 0.000372 0.002**

MMSE ≥ 28 Task 0.1834 0.3498 16.6905 0.524 0.606995 0.883

MMSE 24-27 Task 0.3956 0.4937 13.7184 0.801 0.436613 0.776

MMSE < 24 Task 0.1172 0.3813 16.3312 0.307 0.762437 0.938

Theta Healthy Young Task 1.6119 0.3033 22.3316 5.314 2.36E-05 <0.001***

MMSE ≥ 28 Task 0.218 0.3384 16.8459 0.644 0.528 0.845

MMSE 24-27 Task 0.6692 0.2779 13.9808 2.408 0.0304 0.097

MMSE < 24 Task 0.1831 0.6343 15.2962 0.289 0.777 0.888

A0 Healthy Young Task 1.4866 0.5409 21.9732 2.748 0.0117 0.047*

MMSE ≥ 28 Task −0.1387 0.6072 17.1 −0.228 0.822 0.822

MMSE 24-27 Task −1.0817 0.5074 13.8666 −2.132 0.0514 0.137

MMSE < 24 Task 0.1831 0.6343 15.2962 0.289 0.777 0.888

VC9 Healthy Young Task 2.7553 0.5294 22.157 5.205 3.15E-05 <0.001***

MMSE ≥ 28 Task 0.6391 0.5697 16.953 1.122 0.278 0.556

MMSE 24-27 Task 1.1453 0.5479 13.5326 2.09 0.056 0.128

MMSE < 24 Task 0.2415 0.4599 16.2038 0.525 0.607 0.809

Significant effects are presented in bold (*p < 0.05, **p < 0.01, ***p < 0.001).

respectively). However, post hoc comparisons of task main effect
levels revealed that the difference between detection level 2 and
resting state was significant only for VC9 (p = 0.041).

Finally, the interaction between group and task level was
significant for Delta, Theta, A0 and VC9 (p = 0.015, p < 0.001,
p = 0.042, and p = 0.003, respectively). To unfold this interaction
for each variable separately, we conducted GLMMs per each
group with task as a within-participants variable. Results revealed
that for all the variables (after BH correction) the main linear
effect of task was significant only for the healthy young
participants group (p = 0.002, p < 0.001, p = 0.047, and
p < 0.001 for Delta, Theta, A0 and VC9, respectively). See
Table 7 for the separate GLMMs per each group. Post-hoc
pairwise comparisons with Bonferroni correction revealed that in
the young healthy group, the difference between detection level

TABLE 8 | Estimate, SE, t and p-values of the post hoc comparisons for significant
main effects of task in the sub GLMM conducted on healthy young participants.

Contrast Estimate SE t ratio p-value
(Bonferroni)

Delta
Healthy Young

D1-D2 −1.41 0.684 −2.062 0.1362

D1-RS 1.61 0.761 2.117 0.1206

D2-RS 3.02 0.799 3.78 0.0015**

Theta
Healthy Young

D1-D2 −1.03 0.583 −1.767 0.2534

D1-RS 2.19 0.648 3.383 0.0047**

D2-RS 3.22 0.681 4.732 0.0001***

A0
Healthy Young

D1-D2 −2.465 0.825 −2.988 0.014*

D1-RS 0.698 0.917 0.762 1

D2-RS 3.163 0.964 3.283 0.0062**

VC9
Healthy Young

D1-D2 −2.51 0.894 −2.809 0.0225*

D1-RS 2.75 0.994 2.766 0.0252*

D2-RS 5.26 1.044 5.036 <0.0001***

Significant effects are presented in bold (*p < 0.05, **p < 0.01, ***p < 0.001).

2 and resting state was significant for all features (p = 0.002,
p < 0.001, p = 0.006, and p < 0.001 for Delta, Theta, A0
and VC9, respectively). The difference between detection level
1 and resting state was significant only for Theta and VC9
(p = 0.004, and p = 0.025, respectively). The difference between
the detection levels 1 and 2 was significant for A0 and VC9
(p = 0.014, and p = 0.025, respectively). See Table 8 for all
pairwise comparisons.

DISCUSSION

Cognitive decline remains highly underdiagnosed (Lang et al.,
2017). Improving the detection rate in the community to allow
early intervention is therefore imperative. The aim of this study
was to evaluate the ability of a single-channel EEG system with
an interactive assessment tool to detect cognitive decline with
correlation to known assessment methods. We demonstrate that
objective EEG features extracted from a wearable EEG system
with an easy setup, together with a short evaluation, may provide
an assessment method for cognitive state.

Fifty seniors and twenty-two healthy young control
participants completed a short auditory cognitive assessment
battery. Classical EEG frequency bands as well as pre-defined
ML features were used in the analysis of the data. ML applied
to EEG signals is increasingly being examined for detection
of cognitive deterioration. The biomarkers that are extracted
using ML approaches show accurate separation between
healthy and cognitively impaired populations (Cichocki et al.,
2005; Melissant et al., 2005; Amezquita-Sanchez et al., 2019;
Schapkin et al., 2020; Doan et al., 2021; Meghdadi et al., 2021).
Our approach utilizes wavelet-packet analysis (Coifman and
Wickerhauser, 1992; Neretti and Intrator, 2002; Intrator, 2018;
Intrator, 2019) as pre-processing to ML. The EEG features
used here were calculated using a different dataset to avoid the
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risks associated with classification studies, such as overfitting
(Mateos-Pérez et al., 2018). This is unlike other studies that use
classifiers trained and tested via cross validation on the same
dataset (Deiber et al., 2015; Kashefpoor et al., 2016; Khatun et al.,
2019). Specifically, the pre-extracted EEG features used here, VC9
and ST4, were previously validated further in studies performed
on healthy young subjects. Results showed a correlation of VC9
to working memory load (Maimon et al., 2020, 2021; Bolton
et al., 2021) and a correlation of ST4 to individual performance
(Maimon et al., 2020).

The wearable single-channel EEG system was previously used
in several studies to assess cognition (Maimon et al., 2020,
2021, 2022; Bolton et al., 2021). A novel cognitive assessment
based on auditory stimuli with three cognitive load levels
(high, low, and rest) was used to probe different cognitive
states. Individual response performance (RT) was correlated
to the MMSE score in both difficulty levels of the cognitive
task, which further validates the cognitive assessment tool. The
auditory stimuli included a simple detection task involving
musical stimuli. We chose this particular detection task because
it is one of the most commonly used tasks to measure
differences in EEG activity between cognitive decline groups
(Paitel et al., 2021), and it requires relatively low cognitive
load levels, which is well suited for cognitive decline states
(Debener et al., 2005). We used this cognitive assessment on
senior participants in different cognitive states (from healthy
seniors to cognitive decline patients, as determined by MMSE
score independently obtained by clinicians), and on healthy
young participants.

Verifying our first hypothesis, activity of EEG features A0
and ST4 and RTs significantly correlated with individual MMSE
scores for both levels of the auditory detection task. These
correlations persisted when controlling for age, thus eliminating
a possible confounding effect. Additionally, the correlations
between MMSE scores and EEG features ST4 and A0 activity
were significant for both difficulty levels of the cognitive task (i.e.,
detection levels 1 and 2). Comparison of the correlations showed
that the low difficulty level of a detection task elicited the highest
correlation to MMSE scores, specifically for A0. These correlation
analyses indicate a significant initial association between the
novel EEG features and cognitive states as previously determined
by clinical screening tools.

To continue exploring this association, further analysis
compared the senior groups with the addition of a control group
of healthy young participants. Results demonstrated the ability
of the EEG features A0 and ST4, as well as RTs, to significantly
differentiate between groups of seniors with high vs. low MMSE
scores. High MMSE scores are associated with healthy cognition,
while low MMSE scores tend to indicate a cognitive impairment.
In allocating the groups, we used the common cutoff score of
24 to divide between low-functioning (MMSE < 24) and high-
functioning seniors. However, we divided the high-functioning
group further using a cutoff score of 27 to get a notion of
possible separability between cognitive states in high-functioning
seniors. Results showed that EEG features ST4 and A0 separated
between the group of seniors with high-MMSE scores and
the low-MMSE group, with the common cutoff score of 24,

comparable to previous reports in the field (Lehmann et al., 2007;
Kashefpoor et al., 2016; Khatun et al., 2019). Additionally, ST4
showed differences between the low MMSE group (MMSE < 24)
and the young healthy group, which is expected, but it
also showed a significant difference to the group of seniors
with MMSE 24–27 scores. Finally, although RTs exhibited
some significant differences between the groups (i.e., between
the healthy young participants and the senior groups with
MMSE 24–27 and MMSE < 24, and between the group with
MMSE ≥ 28 and MMSE < 24), EEG features ST4 and A0
show additional more subtle differences between the groups
that were not detectable using behavioral performance alone
(e.g., the difference in ST4 activity between MMSE < 24
and MMSE 24–27).

These results suggest a detection of more delicate differences
between seniors with MMSE scores under 24 and seniors that are
considered healthy to date, but are at a greater risk for developing
cognitive decline (with MMSE scores below 27 but above 24). The
results may further indicate a different cognitive functionality
between seniors that are already considered to have experienced
a certain decline (MMSE < 24) and seniors that score lower
in the initial screening test but are not considered as suffering
from cognitive decline (MMSE 24–27). This result contributes
to the debate in the literature over cognitive functionality of
patients with scores below 27 (Shiroky et al., 2007; O’Bryant
et al., 2008). Finally, EEG features A0 and VC9 showed significant
differences between the young healthy group and all of the
senior groups. While a separation between healthy controls
and low-MMSE score groups is expected, these results also
suggest different cognitive patterns between healthy young
participants and seniors considered healthy (based on their
MMSE scores), consistent with reports from previous studies
(Vlahou et al., 2014).

Confirming our third hypothesis that EEG activity will
correlate with cognitive load levels, results further demonstrated
that the task variable modulated EEG features A0, VC9 and
Theta activity, and was correlative to cognitive load level. Activity
of these features increased with higher cognitive load only
within healthy young group and not in the senior groups,
who did not exhibit such activity patterns, corroborating our
fourth hypothesis. Although all features exhibited a significant
difference between the two cognitive load extremes, only VC9
feature showed significant effects for all of the comparisons
between the different levels of cognitive load. This is in line
with previous reports of frontal Theta showing an increase
during cognitively demanding tasks (Jensen and Tesche, 2002;
Scheeringa et al., 2009). This difference was not present in
the senior population, supporting the notion that Theta may
be indicative of cognitive state and serve as a predictor of
cognitive decline, consistent with previous findings (Deiber et al.,
2015; Missonnier et al., 2007). Results of VC9 activity are also
consistent with previous work, supporting the association of VC9
with working memory load in the healthy population (Maimon
et al., 2020, 2021; Bolton et al., 2021). All together, these results
provide an initial indication of the ability of the proposed tool
to assess cognitive states and detect cognitive decline in the
elderly population.
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Taking these new results together with previous reports, EEG
feature VC9 shows clear association to frontal brain functions
involving cognitive load, closely related to frontal Theta (Maimon
et al., 2020, 2021, 2022; Bolton et al., 2021). Further, EEG feature
ST4, previously shown to correlate with individual performance
of healthy young participants undergoing highly demanding
cognitive load task (n-back task with 3 levels; Maimon et al.,
2020), was found in the present study to correlate to MMSE
score of seniors in different states of cognition, showing specific
sensitivity for lower MMSE scores. As such, this feature may
be related to general cognitive abilities, and specifically most
sensitive to declining cognitive state. Finally, EEG feature A0
exhibited a correlation to MMSE score within senior participants,
as well as ability to differentiate between groups of cognitive
decline and healthy participants, with higher sensitivity to the
higher levels of cognitive state (i.e., the healthy young participants
and senior participants with no cognitive decline). In addition,
it also correlated with cognitive load within the healthy young
participants. Therefore, we concur that A0 might be related to
brain functions involving cognitive load and abilities within the
cognitively healthy population and can detect gentle changes of
brain activity in the slightly impaired population.

The ability to differentiate between cognitive states with
the EEG features shown here relies solely on a single EEG
channel together with a short auditory assessment, unlike most
studies attempting to assess cognitive states with multichannel
EEG systems (Dauwels et al., 2010b; Moretti et al., 2011). It
has been argued that the long setup time of multichannel
EEG systems may cause fatigue, stress, or even change
mental states, affecting EEG patterns and, subsequently, study
outcomes (Cassani et al., 2017). This suggests that cognitive
state evaluation using a wearable single-channel EEG with a
quick setup time may not only make the assessment more
affordable and accessible, but also potentially reduce the
effects of pretest time on the results. Using a single EEG
channel was previously shown to be effective in detection
of cognitive decline (Khatun et al., 2019); however, here we
demonstrate results obtained using features that were extracted
from an independent dataset to avoid overfitting the data.
The assessment method offered here may potentially enable
detection of cognitive decline in earlier stages, before major
dementia symptoms arise.

While this pilot study shows promising initial results,
more work is needed. Specifically, additional studies should
include a longer testing period to quantify the variability
within subjects and to potentially increase the predictive power.
Due to the small sample size, generalization of the results is
limited. Thus, larger cohorts of patients that are quantified
by extensive screening methods would offer an opportunity
to get more sensitive separation between earlier stages of
cognitive decline using the suggested tool, and potentially reduce
the subjective nature of the MMSE. Furthermore, thorough
diagnostic batteries such as the Petersen criteria (Petersen, 2004),
Clinical Dementia Rating (Morris, 1993), and NINCDS-ADRDA
(Albert et al., 2011) would assist in determining the patient’s
clinical stage (i.e., MCI/dementia) and may provide further
diagnostic predictions in addition to screening. Moreover, a

longitudinal study could assess cognitive state in asymptomatic
senior patients and follow participants’ cognition over an
extended period of time, validating the predictive power of the
EEG features. Education levels of the senior participants were
not collected in the present study, presenting a key limitation.
Education level was previously shown to effect individual MMSE
scores (Crum et al., 1993) and including such data could
improve the models if taken as a covariate in the statistical
methods (Choi et al., 2019). Further studies with the novel
EEG features should include education level data and explore
their correspondences to MMSE scores. Finally, our approach
utilizes wavelet-packet analysis as pre-processing to ML, creating
components composed of time-varying fundamental frequencies
and their harmonics. As a result, analyzing the features only in
terms of frequency range takes away two important properties
of these components: their fine-temporal nature and their
reliance on harmonics of the fundamental frequency. The best
analogy to this can be found in the visual cortex; simple cells
in the visual cortex respond to bars at a certain orientation
while complex cells respond to a collection of moving bars
at different orientations and velocity, which are formed from
collections of simple cells (Hubel and Wiesel, 1962), rendering
the complex cells crucial to representation of 3D structure
(Edelman and Intrator, 2000). Our approach is similar, where
the complex time/frequency components of this dynamic nature
are instrumental in the interpretation of the EEG signal.
Future research should explore the usefulness of this approach
in cognitive assessment. Furthermore, exploring the potential
usefulness of the novel EEG features presented here in controlled
studies characterizing EEG psychogeography in seniors may
contribute to understanding the association of these features to
basic brain function.

CONCLUSION

This pilot study successfully demonstrated the ability to assess
cognitive states using a wearable single-channel EEG and
machine-learning EEG features that correlate to well-validated
clinical measurements for detection of cognitive decline. Using
such a low-cost approach to allow objective assessment may
provide consistency in assessment across patients and between
medical facilities clear of tester bias. Furthermore, due to a
short setup time and the short cognitive evaluation, this tool
has the potential to be used on a large scale in clinics in the
community to detect deterioration before clinical symptoms
emerge. Future studies should explore potential usefulness of
this tool in characterizing changes in EEG patterns of cognitive
decline over time, for early detection of cognitive decline to
potentially allow earlier intervention.
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