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Abstract: Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential
protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone
proteins directly interact and modify the function of HSPs, and these interactions impact the outcome
of protein triage, impacting everything from structural proteins to cell signaling mediators. The
chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in
the face of stress. However, coding mutations, expression changes, and post-translational modifica-
tions of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly,
these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chap-
erones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing
to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop
precise treatments for numerous diseases caused by defects in protein quality control. This review
focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a con-
centration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss
therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.

Keywords: heat shock proteins; co-chaperones; protein quality control; protein folding; protein
degradation; cardioprotection; neuroprotection; cancer

1. Introduction
1.1. Protein Quality Control

Heat shock proteins, such as HSP70 and HSP90, protect cellular homeostasis and
play a vital role in responding to multiple forms of cell stress (Figure 1). As molecular
chaperones of the protein quality control (PQC) machinery, HSPs exert their protective
function in various ways: (1) facilitating the folding of nascent proteins into their native
state; (2) enabling the formation of multiprotein complexes; (3) refolding stress-damaged,
misfolded proteins; and (4) promoting the degradation of misfolded or aggregated proteins
by linking the PQC machinery to the ubiquitin-proteasome system or the autophagy-
lysosome system [1,2]. However, a network of proteins called co-chaperones modifies HSP
function. Via protein–protein interactions, co-chaperones alter the refolding activity of
HSPs and expand an HSP’s client protein portfolio via facilitating additional interactions
between chaperones and their substrates [2,3]. Disruptions of the chaperone/co-chaperone
machinery often result in the accumulation of misfolded or aggregated proteins that lead to
proteotoxicity. Coding mutations in numerous co-chaperones are associated with multiple
human diseases [4–7]. HSPs and their co-chaperones have been extensively studied in
different disease settings, including but not limited to cardiovascular diseases, cancer, and
neurodegenerative diseases. Numerous studies on co-chaperones over the past twenty
years detail how these proteins alter chaperone function. However, we are only beginning
to understand how the co-chaperone network coordinates with heat shock proteins and the
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cellular degradative machinery to regulate protein quality control. In this review, we take a
disease-centric approach and describe the results of studies on several co-chaperones, how
they modify chaperone function, possible mechanisms of disease biology, and therapeutic
considerations.
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Figure 1. Chaperone-mediated protein quality control. Chaperones, including HSP70 and HSP90,
maintain cellular homeostasis through multiple pathways: assisting with de novo protein folding;
multiprotein complex formation; protein shuttling throughout the cell; degradation of terminally
misfolded proteins (via the ubiquitin-proteasome system (UPS) and chaperone-mediated autophagy
(CMA); and refolding of misfolded proteins damaged by cellular stress. The chaperone system re-
sponds to multiple stressors, including the accumulation of misfolded proteins, heat shock, oxidative
stress, and mechanical stress. Chaperone dysfunction contributes to numerous diseases discussed in
this review.

1.2. Cardiac Stress

Due to constant contractility, the human heart produces and uses significant amounts
of ATP, around 100 times more than its weight, within 24 h [8,9]. This high metabolic activity
of the heart, particularly the cardiomyocytes (CM), creates a strict demand for an efficient
PQC system to ensure proper protein synthesis, folding, and degradation [10]. Many
heart diseases stem from the accumulation of misfolded proteins due to mechanic stress,
oxidative stress, and pH changes; regardless of the underlying conditions that cause heart
disease, such as heart failure (HF), myocardial infarction (MI), or genetic mutations [7,11,12].
HSPs play a central role in cardiac PQC, most notably in response to stress [7,11,12]. HSPs
provide cardioprotection by preventing the accumulation of misfolded proteins, inhibiting
myocardial cell death pathways, regulating ion channels, and impeding the function of
pro-inflammatory cytokines [13]. Moreover, the importance of HSPs in heart function is
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highlighted in studies showing the protective effects of HSP-inducing therapeutics during
cardiovascular diseases [14–18].

1.3. Neurodegeneration

Like cardiomyocytes, neurons are particularly susceptible to protein aggregate-mediated
proteotoxicity due to their post-mitotic state and highly intricate structure [19–21]. HSPs are
vital in ensuring neuronal homeostasis by promoting the clearance of aggregated proteins
by the ubiquitin-proteasome system or the autophagy-lysosome system [19]. However,
when targeting misfolded proteins to either chaperone-mediated refolding or degradative
pathways fail, protein aggregates form and disrupt critical neuronal processes, eventu-
ally resulting in neuronal death [20]. The accumulation of aggregated proteins is one of
the main features of neurodegenerative diseases, including Alzheimer’s Disease (AD),
Parkinson’s Disease (PD), polyglutamine diseases, and several spinocerebellar ataxias
(Figure 2). The disease-causing protein aggregates in these conditions are briefly covered
below, highlighting the importance of HSP-dependent aggregate clearance to maintain
neuronal function.
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Figure 2. Co-chaperones and neurodegenerative disease. The dysfunction of numerous co-
chaperones contributes to neurodegenerative disease pathologies found throughout the brain. HSP70
and HSP90 co-chaperones including CHIP, HOP, FKBP51, FKBP52, and STG1 interact with pro-
teins and aggerates associated with Alzheimer’s disease (Tau, Amyloid-Beta), Parkinson’s (Alpha-
synuclein, Lewy Bodies), and Polyglutamine disease (Poly Q aggregates). The co-chaperones
DNAJC3, DNAJC5, and CHIP protect against neuronal death in spinocerebellar ataxias.

Alzheimer’s Disease is a progressive neurodegenerative disease with two main charac-
teristic features: hyperphosphorylated tau protein and amyloid-β peptide accumulation in
neurofibrillary tangles and amyloid plaques, respectively [22]. The hallmark of Parkinson’s
Disease is the formation of Lewy bodies, a buildup of aggregated α-synuclein. Genetic mu-
tations cause familial forms of PD, including α-synuclein (SNCA), parkin (PRKN), leucine-
rich repeat kinase-2 (LRRK2), and PTEN-induced putative kinase 1 (PINK1), which all
individually result in aberrant α-synuclein activity and its subsequent aggregation [23–25].
Polyglutamine (PolyQ) diseases are other examples of neurodegenerative diseases caused
by protein aggregates. Cytosine-adenine-guanine (CAG) trinucleotide repeat expansion
mutations in disease-related genes result in long stretches of glutamine residues (PolyQ)
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when translated [26,27]. PolyQ protein buildup eventually leads to their aggregation,
disrupting neuronal processes and consequent neuronal death [27]. Huntington’s Disease
(HD) is a hereditary autosomal dominant disease caused by CAG repeat expansion in
the Huntingtin gene, HTT, which encodes huntingtin protein (htt). These CAG repeat
expansions translate into a long glutamine chain attachment to huntingtin protein, and
as a result, PolyQ-htt aggregates in inclusion bodies, causing neurotoxicity [28]. Patients
diagnosed with spinocerebellar ataxias suffer from impaired balance or coordination, gait
abnormalities, speech disruptions, and irregularities in eye movement due to cerebellar
degeneration [29]. Disease-causing mutations span different genes and present as either
autosomal dominant or recessive forms of spinocerebellar ataxias. Out of all identified au-
tosomal dominant spinocerebellar ataxias (SCAs), SCA types 1, 2, 6, 7, and 17 are identified
as PolyQ diseases since the mutations in their causative genes result in PolyQ expansion
which alters the proteins’ function [30].

1.4. Cancer

HSP expression is upregulated in various cancers in which HSPs promote tumor
initiation, metastasis, and treatment resistance [6]. HSPs exert these functions by facilitating
multiple different hallmarks of cancer, such as sustained growth, evasion of cell death,
and resisting growth suppressors [31]. HSPs can inhibit the function of a primary tumor
suppressor, p53, promoting cancer cell growth [32,33]. Moreover, HSP-mediated inhibition
of pro-apoptotic pathways provides further advantages to cancer cells to survive [34,35].
Since cancer cells rely on HSPs to survive, HSP inhibitors gained importance as a possible
cancer treatment.

Several well-written reviews describe HSP90 inhibitors in cancer [36–38]. Most recog-
nizable in the literature is 17-AAG, an inhibitor that binds to HSP90’s ATP binding site.
17-AAG decreased cancer proliferation and growth in breast, colorectal, and head and
neck cancers [39–41]. In a panel of tumor types including liver, brain, kidney, lung, and
prostate, pan-HSP90 inhibitors targeted to the N-terminus, both alone and in combination,
induced mitochondrial dysfunction and cytotoxicity, resulting in decreased tumor size
and cell proliferation in vitro and in vivo [42]. This panel highlighted the broad use of
HSP90 inhibitors in different cancer types. A more extensive study in thyroid cancer cell
lines confirmed HSP90 inhibitors also targeted to the N-terminus decreased cancer cell
migration and invasion [43]. Another study by Wei et al. showed the anticancer effect
of inducing apoptosis and impairing autophagic flux in the lung cancer cell line A549
using a derived inhibitor that binds to the C-terminus of HSP90 [44]. However, drugs
such as ganetespib, capecitabine, tanespinmycin, and irinotecan (known HSP90 inhibitors)
had modest anticancer effects in clinical trials for the treatment of colorectal cancer [45].
Additionally, the expression and activity of HSPs increase in response to numerous cell
stress events (Figure 1). As such, HSP inhibitors could impact the stress response in normal
cells that rely on HSPs for survival versus cancerous cells.

1.5. Autoimmune Disorders

In recent years, several studies identified the roles of chaperones and co-chaperones in
regulating inflammatory responses and how dysfunction of the chaperone system related
to these responses leads to autoimmune diseases [46,47]. Exciting new roles for chaperones
and co-chaperones related to inflammation, autoimmune disorders, and the previously
described diseases include mitochondrial and nuclear shuttling of cargo and chaperone
activity within these organelles (Figure 1). We encourage the reader to consider several
reviews that cover chaperone-organelle specific activities and their role in disease in greater
detail [48–56].
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2. CHIP
2.1. Function, Expression, and Regulation

CHIP, Carboxyl terminus of HSC70 Interacting Protein, was discovered in a human
heart cDNA screen for TPR-domain proteins and subsequently confirmed to be a binding
partner of HSC/HSP70 [57]. There are three functional domains of CHIP, each contributing
to the multiple activities attributed to this enzyme: (1) the TPR domain, mediating chap-
erone interactions, (2) a coiled-coil domain, essential for dimerization, and (3) the U-box,
necessary for E3 ubiquitin ligase activity [58,59]. Together, these activities allow CHIP to
engage chaperones and facilitate ubiquitination of chaperone-bound clients, positioning
CHIP as a critical mediator for PQC [60,61].

The TPR domain of CHIP binds directly with the C-terminal EEVD motifs found in
HSC/HSP70 and HSP90. The binding affinity of CHIP towards HSP90 is 6-fold higher
than HSP70 in vitro [62]; however, given the concentrations of these proteins and other
competing co-chaperones in cells, CHIP is likely complexed with HSC/HSP70 more than
HSP90 [62,63]. The impact of other TPR domain-containing proteins on CHIP function and
chaperone output is crucial in understanding protein quality control. The co-chaperone
HSP70-HSP90 Organizing Protein (HOP) directly competes with CHIP for chaperone bind-
ing [57,63,64]. HOP is not a ubiquitin ligase and, therefore, triage outcomes of chaperone
substrates, refolding versus degradation, are impacted based on the binding dynamics of
these co-chaperones. Most CHIP studies, including our own, overlook how manipulations
affect factors such as HOP. However, several studies make it clear that looking at the
more extensive chaperone/co-chaperone system is critical in our understanding of the
underlying biology [62–67].

Both HSC/HSP70 and HSP90 utilize additional co-factors to promote refolding, such
as HSP40 and AHA1, respectively. Nucleotide exchange for HSP70 is the rate-limiting
factor for chaperones to release their substrate, and the presence of other co-chaperones
can impact the ATPase activity of these chaperone complexes [68]. CHIP inhibits the
ATPase activity of the HSC/HSP70 and HSP40, limiting client refolding [57,62]. In contrast,
ATPase activity is not changed when CHIP engages the HSP90/AHA1 complex [62,63];
however, the rate-limiting step for HSP90 is a conformational change from the open to
closed state, an event that precedes ATP hydrolysis [69]. Overall, these data implicate CHIP
in limiting HSC/HSP70 substrate refolding and promoting ubiquitination of misfolded
HSC/HSP70 substrates to target them for degradation. The physiological role of CHIP
and HSP90-bound substrates is less clear, but since several HSP90 clients are regulatory
proteins, CHIP and ubiquitin signaling may play a cell signaling role.

Subsequent studies found that CHIP co-localizes and interacts with proteasome sub-
units [70–72], reinforcing CHIP’s role in chaperone-mediated protein triage. CHIP also
ubiquitinates HSC/HSP70 and HSP90, and this regulatory role may be necessary for at-
tenuating the heat shock response [73,74]. CHIP is expressed throughout all tissue types
and higher in metabolically active tissues such as the heart, brain, and muscle, suggesting
an increased dependence of CHIP in these systems [57]. Several reviews provide detailed
information on CHIP and its role in neurological diseases, tumorigenesis, heart failure,
and immunity [75–78]. The regulation of CHIP expression and function is still an emerg-
ing field of study; however, post-translational modifications appear to play a vital role,
including mono- and auto-ubiquitination [79] and phosphorylation [75]. Understanding
CHIP regulation at the genetic to the post-translational level undoubtedly is a critical gap
in the field.

2.2. Cardioprotection

Several labs identified cardioprotective roles for CHIP (Figure 3). CHIP protects
cardiomyocytes by promoting anti-inflammatory and anti-oxidative processes, suppress-
ing the activation of NF-kB and P38 MAPK, and down-regulating pro-apoptotic proteins
such as caspase-3 and Bax [80]. Silencing CHIP in rat neonatal cardiomyocytes exacer-
bated reactive oxygen species and inflammation in hyperglycemic conditions [80]. Loss
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of CHIP expression in mouse models increased susceptibility to ischemia-reperfusion
injury [81] and decreased fractional shortening, increased mortality, and accelerated left
ventricular hypertrophy in response to cardiac pressure overload via trans-aortic banding
(Figure 3) [82]. Schisler et al. confirmed a previous in vitro study [83] that CHIP can func-
tion as an autonomous chaperone, and in the heart, CHIP regulates cardiac metabolism
by chaperoning AMPK [82]. Nuclear receptors, including PPARα, PPARγ, and ERRα, are
well-characterized clients of HSP70 and HSP90. PPARγ and ERRα are ubiquitinated by
CHIP leading to proteasomal degradation [84,85]. CHIP also inhibits PPARβ transcrip-
tional activity, although the mechanism is not understood [86]. Recently, our lab found
that fenofibrate, a PPARα agonist and lipid-lowering drug, caused cardiac fibrosis and
reduced cardiac function in mice lacking CHIP expression [87]. These studies suggest that
the co-chaperone activity of CHIP contributes to the regulation of nuclear receptors.
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Figure 3. The role of co-chaperones in cardiac protein quality control. Heat shock proteins, including
HSP70, coordinate with co-chaperones to maintain proteostasis in the heart. Impairment of cardiac
protein quality control can lead to distinct forms of heart disease, including left ventricular hyper-
trophy, dilated cardiomyopathy, and myocardial infarction. Loss-of-function in the co-chaperone
proteins CryAB, BAG3, and CHIP alters chaperone function and the ability to maintain proteostasis,
leading to heart disease. Missense mutations in CryAB and BAG3 cause heritable forms of car-
diomyopathies (purple and orange). Loss of CryAB or BAG3 function can lead to left ventricular
hypertrophy or increased susceptibility to infarction, respectively. Finally, the ability of CHIP to ubiq-
uitinate regulatory proteins in cardiomyocytes (green) is necessary to prevent cardiac hypertrophy
and cell death in response to myocardial infarction.
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Whereas loss-of-function studies highlight a critical role for CHIP in the heart in
response to stress, increased CHIP expression, or a gain-of-function engineered version of
CHIP confers cardioprotection. Overexpressing CHIP in vivo via cardiomyocyte-specific
transgenics conferred protection against pathological remodeling and prevented loss of
function after myocardial infarction (Figure 3) [88,89]. CHIP-mediated cardioprotection
resulted in new blood vessels in hearts after myocardial infarction, decreased expression
of p53, MCP-1, and ICAM-1 (Figure 3), reduced proinflammatory cytokine expression,
and macrophage infiltration [88,89]. Reduced heart inflammation was confirmed by the
CHIP-dependent attenuation of NF-kB/p65, p38, and JNK activity (Figure 3) [88,89]. Ranek
et al. identified CHIP-S20 as a target of protein kinase G, and phosphorylation of this serine,
located in the TPR domain of CHIP, results in a prolonged half-life of CHIP protein [75].
Mice engineered with a phosphomimetic form of CHIP (CHIP-S20E) were protected against
myocardial infarct, with lower mortality rates and decreased infarct size than wild-type
mice [75]. Post MI, CHIP-S20E mouse hearts had less ubiquitinated proteins [75] suggesting
the functionally enhanced version of CHIP promotes proteostasis.

Heart failure with a preserved ejection fraction (HFpEF) is a common and untreatable
form of HF. A recent study suggests that CHIP is regulated directly by Xbp1s (a sliced
form of the X-box-binding protein) and a potential therapeutic target for HFpEF through
its ability to degrade the transcription factor FoxO1 [90]. In rat neonatal cardiomyocytes,
CHIP expression alleviated myocardial lipid formation, and either the loss of FoxO1 or
the over-expression of Xbp1s eliminates the HfpEF phenotype in mouse models [90]. In
a complementary study, treating mice with Imeglimin restored cardiac CHIP expression,
decreased FoxO1 levels, and decreased fatty acid synthase [91], demonstrating a protective
role for CHIP against apoptosis and oxidative stress.

2.3. Neurodegenerative Diseases
2.3.1. Parkinson’s Disease

CHIP also plays a protective role against several models of aggregated protein-
mediated toxicity in the brain (Figure 2), recently reviewed by Zhang et al. [78]. In some
diseases, the link to chaperones is clear. CHIP co-localizes with HSP70 and α-synuclein in
Lewy bodies, abnormal protein aggregations involved in the neurotoxicity seen in Parkin-
son’s disease [58]. CHIP-mediated protection via overexpressing CHIP requires a functional
TPR domain and HSP70 [58], highlighting how the co-chaperone function of CHIP could
be targeted for PD therapies. Other mechanisms involving CHIP-chaperone interactions
include inherited forms of PD: CHIP-HSP90-dependent degradation of leucine-rich repeat
kinase-2 (LRRK2) [92,93], CHIP-HSP70-dependent enhancement of the E3 activity of Parkin
(PRKN) [94], and CHIP-HSP70 dependent degradation of PTEN-induced putative kinase
1 (PINK1) [95]. It is compelling that at least three genes involved in familial Parkinson’s
disease are regulated by CHIP and HSP70/90.

2.3.2. Alzheimer’s Disease

The role of CHIP in Alzheimer’s disease is less clear. Tau is a microtubule-associated
protein that binds and stabilizes the neuronal microtubule network. Upon hyper-phosphory
lation and dissociation from microtubules, tau aggregates into neurofibrillary tangles to
form a defining neuropathological lesion in AD, correlating with neurodegeneration and
neuronal death (Figure 2) [96]. CHIP was initially implicated in direct ubiquitination and
degradation of tau [97–100], consistent with the detection of tau within and surrounding
proteasomes [101–103]. However, in complete contrast, several reports have proposed
chaperone-dependent/ubiquitin-independent roles for CHIP and even suggested a para-
doxically limited role for CHIP in tau degradation [104,105]. While CHIP can be found in
AD brains, it is unknown whether CHIP plays an active role in neuroprotection against
Alzheimer’s disease. Knocking out CHIP in a mouse model of AD resulted in a remarkable
increase in hyper-phosphorylated tau levels; however, total tau levels were not apprecia-
bly changed, as might be expected in the absence of CHIP [97]. These data suggest that
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CHIP likely regulates tau directly via non-degradative mechanisms or indirect interac-
tions [106,107]. CHIP inhibits tau accumulation by promoting ubiquitination and degrada-
tion of HDAC6, a known HSP90 modulator that regulates protein refolding or degradation
decisions [106]. Interestingly, HDAC6 inhibition shifts the refolding-degradation balance
towards degradation and results in HSP90 client tau protein degradation [106]. Another ex-
ample of CHIP’s indirect regulation of tau is mediated through Akt-CHIP interactions [107].
Akt-mediated MARK2 activity enhancement results in tau phosphorylation at S2626/S345,
which prevents tau’s recognition by CHIP, promoting tau aggregation [107].

2.3.3. Spinocerebellar Ataxias

Soon after the characterization of CHIP, several studies linked CHIP dysfunction to
ataxic phenotypes (Figure 2). However, it was nearly 15 years after the discovery of CHIP
when the first disease-causing coding mutation in the gene that encodes CHIP (STUB1)
was identified in a family with two siblings with early-onset ataxia [108,109]. Soon after
the report of the homozygous mutation, resulting in a missense mutation in CHIP’s U-box
(CHIP-T246M), numerous studies identified other mutations, and the disease was classified
as Spinocerebellar Ataxia Autosomal Recessive 16 (SCAR16) [109]. Looking at the myriad
of experimental and clinical reports from the past eight years [110], it is clear that SCAR16
is a neurodegenerative disease that displays a range of clinical phenotypes, including
accelerated aging, cognitive dysfunction, ataxic gait, and hypogonadism [111,112]. A
follow-up study from our group identified that the CHIP-T246M mutation results in a
structural change to CHIP’s U-box domain, leading to loss of E3 ubiquitin ligase activity
while increasing the interaction between mutant CHIP and HSC(P)70 [112]. CRISPR/Cas9
edited mice and rats harboring the CHIP-T246M mutation also exhibited age-dependent
changes in gait and cognitive dysfunction, similar to the symptoms observed in SCAR16
patients [112].

Currently, over 30 SCAR16 disease-associated mutations occur in all three functional
domains of CHIP [110]. Our lab examined the relationship between mutation locations,
the changes in CHIP function, and the clinical phenotypes of SCAR16 patients [110].
Interestingly, U-box mutations are associated with cognitive dysfunction. In contrast, TPR
mutations did not show this pattern [111], suggesting that the loss or gain of specific
functions or CHIP may contribute to the heterogeneity in patient phenotypes.

In 2019, heterozygous STUB1 mutations identified in patients with ataxia uncovered
a new classification of autosomal dominant spinocerebellar ataxia, SCA48 [113]. To date,
19 different CHIP mutations have been identified in SCA48 patients [110,114,115]. SCA48-
associated disease mutations are limited to the TPR and U-box domain in CHIP with
one exception; a nonsense mutation (p.R225*) at the end of the coiled-coil domain that
results in the deletion of the entire U-box domain [110]. A recent study identified an
increase in tau and α-synuclein aggregates in cells transfected with SCA48-associated CHIP-
G278fs mutation [116]. While the disease-causing CHIP mutations of the dominant and
recessive forms of spinocerebellar ataxias mostly differ, there are common mutations in both
diseases. However, the mechanism behind the dominant heterozygous CHIP mutations
that cause SCA48 is unknown. One compelling explanation is that these mutations mimic
haploinsufficiency, which may explain the late onset of disease that has been seen in SCA48
patients [110].

2.3.4. Polyglutamine Diseases

A study identified the link between polyQ diseases and CHIP, demonstrating that
CHIP reduced the accumulation of insoluble protein aggregates, polyQ accumulation,
and toxicity in primary neurons (Figure 2) [117]. The protective effects of CHIP required
a functional TPR domain, indicating that interactions with chaperones are essential for
CHIP’s neuroprotective role [117]. These findings helped conceptualize the idea that CHIP
contributes to the triage of soluble polyQ proteins. Likewise, an HD transgenic mouse
model revealed that the haplo-insufficiency of CHIP exacerbates disease pathology [117].
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Similarly, CHIP overexpression led to increased degradation and ubiquitination of two
common proteins that contain polyQ tracts, huntingtin, and ataxin-3, the main driver of
SCA3 [118]. The age-dependent aggregation of polyQ-expanded ataxin-3 observed in
SCA3 mouse models accelerates in the presence of CHIP haploinsufficiency, reinforcing the
protective role of CHIP in polyQ diseases [119].

Recent studies also point to a neuroprotective role of CHIP in the clearance of polyQ
aggregates. Mass spectrometry data of ataxin-3 interacting partners showed enrichment of
CHIP interaction with ataxin-3 82Q compared to wild-type ataxin-3 [120]. Furthermore,
the degradation of ataxin-3 82Q required both TPR and U-box domains of CHIP, indicating
chaperone-mediated substrate recognition and subsequent ubiquitination [120]. In U2OS
cells, treatment with YM-1, an allosteric activator of HSP70, reduced the mutant huntingtin
aggregation and nuclear accumulation [121]. Furthermore, they proposed a model in which
YM-1 increases the affinity of HSP70 to client proteins by stabilizing HSP70 in an ADP-
bound state, which provides CHIP with sufficient time to ubiquitinate mutant huntingtin
protein and promote its degradation [121]. Together, these data highlight CHIP and the
UPS as potential therapeutic targets for treating polyQ diseases.

2.4. Cancer

CHIP appears to function in opposing roles in cancer (Table 1, Figure 4). CHIP acts
as a tumor suppressor in some cancer types, such as pancreatic cancer, breast cancer,
and head and neck cancer [122–124]. CHIP expression is lower in these cancers than in
healthy tissues, and low CHIP levels correlate with poor prognosis [122–124]. A similar
tumor suppressor role for CHIP occurs in other cancer types, including lung, renal, and
prostate cancer [125–129]. In the pancreatic cancer cell line BxPC-3, CHIP ubiquitinates and
promotes the degradation of epidermal growth factor receptor (EGFR), and overexpression
of CHIP suppresses cell growth [122] and is consistent with a tumor-suppressive role for
CHIP in glioblastoma [130]. In breast cancer, CHIP targets human epidermal growth factor
receptor 1 (Her2)/ErbB2, a member of the EGFR family, for degradation [131]. Given
that Her2 is a promising target for developing inhibitors to prevent breast cancer growth,
increasing CHIP expression or activity could suppress tumor growth via reducing Her2
receptors [132]. CHIP also regulates ovarian tumor domain-containing protein 3 (OTUD3),
a deubiquitinase that stabilizes phosphatase and tensin homolog (PTEN), a frequently
mutated tumor suppressor that plays a role in tumorigenesis [129,133]. Von–Hippel–Lindau
(VHL) is a component of a multimeric protein complex that functions as a ubiquitin ligase.
VHL is commonly mutated in renal cancer, and the subsequent loss of VHL-dependent
ubiquitin ligase activity contributes to tumor growth and metastasis [134]. In renal cancer,
CHIP targets transglutaminase 2 (TG2), a negative regulator of VHL [134]. Through this
pathway, CHIP suppresses renal cancer proliferation via ubiquitination and degradation of
TG2 [134]. CHIP also functions in a tumor suppressor role by inhibiting prostate cancer cell
proliferation [128]. Furthermore, in head and neck cancer, CHIP overexpression reduces the
proliferation, colony formation, and migration of HN13 and UMSCC12 cell lines, whereas
CHIP knockdown results in increased tumor growth and cancer cell proliferation [124].
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Figure 4. Co-chaperones and their implications across the cancer spectrum. Co-chaperones can
associate with pro-folding and pro-degradation activities towards chaperone substrates. The co-
chaperones listed indicate both the cellular triage condition, pro-folding (blue) or pro-degradation
(orange), as well as the type of cancer (ENDO ADENO- endometrial adenocarcinoma, OSTEO-
osteosarcoma). When appropriate, we included the specific BAG family member identifier; however,
we did not indicate BAG2 associations with esophageal, oral, and thyroid cancer.

CHIP functions as an oncogenic protein in some cancer systems by mediating ubiquitin-
proteasome-dependent degradation of tumor suppressor genes (Figure 5). Most no-
tably, CHIP promotes the degradation of tumor suppressor proteins such as p53 and
PTEN [135,136]. CHIP contributes to radiotherapy resistance in lung cancer by ubiquitinat-
ing and degrading p21, a CDK inhibitor; likewise, CHIP knockdown sensitized lung cancer
cells to radiotherapy [137]. Furthermore, in prostate cancer models, CHIP can activate the
Akt pathway, and overexpression of CHIP results in increased cell proliferation [138]. In
colorectal cancer, CHIP functions as an oncogene by activating MAPK and AKT signaling
pathways, resulting in increased cancer cell proliferation and migration [139]. Following
the same trend, CHIP overexpression increased proliferation and colony formation in U251
and U87 glioma cell lines [140]. Remarkably, in some cancer types such as prostate and
glioma, CHIP can act as both an oncogenic protein and a tumor suppressor; therefore,
further investigation is required to elucidate the CHIP targets and function that determine
CHIP’s role in cancer progression [128,130,138,140].
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Figure 5. Co-chaperone network influences cancer cell proliferation. The decision to refold or
degrade proteins represents an essential component of protein quality control. The co-chaperones
HOP and CHIP compete for binding the EEVD motif located at the C-terminal tail of HSP70 and
HSP90. The balance in HOP versus CHIP binding to HSPs results in a pro-folding or pro-degradation
complex, respectively. In cancer, the pro-folding environment promotes cell proliferation by the
constant re-folding of oncogenic proteins. In contrast, if CHIP–HSP binding is favored, oncogenic
proteins can be degraded through the ubiquitin-proteasome system and ultimately inhibit cell
proliferation. The cancers associated with these protein environments and identified substrates are
provided. Additionally, the affinity of HOP and CHIP to HSPs are modified by post-translational
modifications, including phosphorylation (P) and acetylation (Ac). Likewise, small molecules that
target the C-terminus of HSP70 and HSP90 may influence co-chaperone occupancy. The C-terminal
tail of HSP70/90 and post-translational modifications could be targeted to control the protein triage
environment.

Table 1. CHIP function in different cancers.

Cancer CHIP’s Role Target Reference

Breast Cancer TS HER2/ ErbB2 [131]
Ovarian cancer TS OTUD3 [129,133]

Renal cancer TS TG2 [134]
Head and Neck cancer TS unknown [124]

Lung cancer OG p21 [137]
Colorectal Cancer OG MAPK and AKT [139]

Prostate cancer
TS unknown [128]
OG Akt [138]

Glioblastoma/Glioma
TS EGFR [122,130]
OG unknown [140]

TS = tumor suppressor, OG = oncogene.
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Outcome data related to CHIP expression also point to a dichotomous role for CHIP
and cancer. In gallbladder cancer, increased levels of CHIP expression are associated with
a worse prognosis after surgery, whereas in pancreatic cancer and breast cancer, higher
levels of CHIP expression are associated with higher survival [122,123,141]. Future studies
focused on chaperone networks, and non-canonical functions of CHIP will hopefully reveal
therapeutic targets related to CHIP and cancer.

2.5. Autoimmune Diseases

Regulatory T cells (Tregs) function as the break of the immune system. Tregs maintain
immune/inflammatory homeostasis by suppressing the immune response via inhibiting
cytokine release and T cell proliferation. When Treg function is compromised, the loss of
control over immune activation can lead to autoimmune disorders [142]. Multiple studies
identified how CHIP suppresses Treg function, suggesting that aberrant CHIP regulation
could contribute to autoimmune diseases. Chen et al. demonstrated how CHIP blocked
the immuno-suppressive role of Tregs by promoting the ubiquitination and degradation
of Foxp3, a transcription factor that supports Treg function [143]. Follow-up studies from
the same group showed the active derivative of vitamin A (all-trans RA) stabilized Tregs
via downregulating CHIP expression, relieving Foxp3 inhibition [144]. A study on the
mechanism of the antihistamine cimetidine also supports the CHIP-Foxp3-Treg mechanism.
Cimetidine suppressed Treg function by CHIP-mediated Foxp3 degradation [145]. In
addition, CHIP was upregulated in systemic lupus erythematosus patients’ CD4+ T cells
and resulted in the ubiquitination and degradation of regulatory factor X 1 (RFX1), a
transcription factor that suppresses systemic lupus erythematosus [146].

3. BAG Family Proteins

There are six BAG (Bcl-2-associated athanogene) proteins, evolutionarily conserved
throughout different species and named for the presence of at least one 50 amino acid BAG
domain [147–149]. BAG proteins bind to the ATPase domain of HSP70 family chaperones
and serve as a nucleotide exchange factor [150–152]. BAG proteins contain additional
domains that mediate protein–protein interactions, including single polyproline (PxxP)
regions, WW domains, and ubiquitin-like domains. Via HSP70 and BAG-dependent
protein interactions, BAG family proteins regulate multiple cellular processes such as
differentiation, division, apoptosis, and migration [151].

3.1. Heart Disease

BAG3 is expressed in the heart and regulates the ATPase activity of HSP70 family chap-
erones, including HSC70 and HSP70 [153]. These two members of the HSP70 family share
85% sequence similarity [154] but differ in their expression patterns; while HSC70 is consti-
tutively active in the heart, HSP70 is expressed in response to various stressors [7]. BAG3
mutations cause a heritable form of dilated cardiomyopathy (DCM, Figure 3). DCM com-
prises 30%–40% of all HF cases and is one of the leading causes of sudden heart death [155]
and heart transplantation [156]. The primary pathophysiology of DCM is the dilation and
enlargement of one or both ventricles, with less than 40% left ventricular ejection fraction,
which indicates inadequate ventricular contractility [155,157]. Interestingly, sex plays a role
in the prognosis of DCM patients with BAG3 mutations; females had a better prognosis and
developed fewer cardiac events than their male counterparts [158]. Furthermore, reduced
expression of BAG3 in myofilaments occurred only in male patients [159].

Increased BAG3 expression occurs during both physiological hypertrophy and patho-
logical remodeling, processes that can preserve healthy heart function or worsen it, re-
spectively [160]. These observations highlight the importance of BAG3 in regulating
cardiomyocyte responsiveness to stimuli. Likewise, genetically manipulating BAG3 in
mouse models also perturbs cardiac function. BAG3 haploinsufficiency in mouse models
increased apoptosis in the heart, increased heart size, and reduced left ventricular ejec-
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tion fraction [161]. Human BAG3 overexpression in mouse models reduces fractional
shortening, indicating a deteriorating heart condition [162].

Furthermore, BAG3 overexpression in the heart muscle of a CryAB R120G Tg mouse
model reduces the fractional shortening and promotes the release of atrial natriuretic
peptide (ANP), a physiological response to low blood pressure [163]. Heart-specific BAG3
loss-of-function in an αMHC-Cre mouse model increases ANP release, heart size, and
fibrosis, which are the indicators of coronary heart disease [164]. Partial loss of BAG3
diminishes the contractility of human CMs [165]. Interestingly, modifying the endogenous
BAG3 in mice to mimic the human BAG3-P209L mutation does not induce cardiomyopathy
in transgenic knock-in mice up to 16 months of age [166]. However, when the human form
is overexpressed with cardiomyocyte-specific αMHC P209L BAG3 Tg mice, gradually they
develop HF by one year of age even though no observed HF indicators were present at
birth [167].

BAG3 is regulated transcriptionally by heat shock factor 1 (HSF1), an HSP70 and
stress-induced transcription factor that regulates numerous genes involved in protein
triage [168]. In healthy human iPSC-derived cardiomyocytes edited with the CRISPR-Cas9
system, a heterozygous knock-in DCM-associated mutation, BAG3-R477H, and a BAG3
knockout decreased BAG3/HSP70 complex formation and resulted in myofibrillar disarray
under proteasome inhibition [169]. Induction of the heat shock response by lentiviral HSF1
transduction in heterozygous BAG3-R477H IPSC-derived CMs alleviated the proteasome
inhibition-induced myofibrillar disarray compared to the controls, indicating the potential
therapeutic effects of HSF1 in BAG3-associated DCM [169]. However, it is unclear if the
therapeutic effect of HSF1 is dependent only on BAG3 transcriptional induction or other
HSF1 target genes involved in proteotoxic stress responses [169].

3.2. Cancer

BAG1-L is the largest isoform of BAG1 and is the only isoform that contains a nu-
clear localization sequence, allowing it to function in the nucleus and regulate nuclear
hormone receptors, including the androgen receptor (AR) [170,171]. BAG1-L inhibition is a
promising treatment of AR-dependent prostate cancer as BAG1-L knockdown decreased
cancer cell proliferation by reducing AR signaling [172,173]. Furthermore, BAG1-L is used
as a biomarker for the prognosis of breast cancer (Figure 4) [174,175]. BAG2 accelerates
the ATPase cycle on HSP70 and can change the refolding and degradation rates of HSP70
client proteins [150]. Interestingly, BAG2 functions as an oncogene in multiple cancer types
(Figure 4). In esophageal carcinoma, oral cancer, and gastric cancer, BAG2 overexpression
promotes cancer cell proliferation and is associated with poor prognosis [176–178]. BAG2
activates the MAPK pathway and ERK1/2 signaling in oral cancer and gastric cancer,
respectively, as seen with BAG2 overexpression [177,178]. BAG2 also modulates estrogen
receptor signaling by inhibiting CHIP expression and promoting the overexpression of
mouse double minute 2 homolog (MDM2), an estrogen receptor modulator [116]. Addi-
tionally, BAG2 can induce pro-apoptotic pathways in response to proteasome inhibition in
thyroid carcinoma cells [179].

BAG3 is another important BAG-family protein member in cancer progression (Figure 4).
Increased BAG3 expression is shared across all cancer types and can create a desirable
microenvironment for cancer progression in pancreatic ductal adenocarcinoma, melanomas,
lung cancer, breast cancer, and prostate cancer [180]. Since there is a broad involvement for
BAG3 in multiple different cancer types, research has focused on BAG3 inhibitors [181]. A
BAG3 inhibitor showed promising efficacy in inhibiting cancer cell proliferation in breast
cancer, prostate cancer, pancreatic cancer, and lung cancer cell lines [182]. Interestingly,
Rosati et al. found that serum from pancreatic cancer patients contained BAG3, and
pancreatic ductal adenocarcinoma cells secrete BAG3 [183]. Therefore, other therapeutic
approaches that target BAG3 include the use of neutralizing antibodies. Showing the
promising results of these approaches, anti-BAG3 and anti-PD1 treatment with targeted
antibodies in a mouse model reduced pancreatic tumor volume along with an increase
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in CD8+ T cells [184]. Antibodies against BAG3 also inhibited the growth of pancreatic
cell xenografts [185]. One confounding factor in developing anti-BAG3 therapeutics for
cancer is that BAG3 plays an essential role in proper heart function, as discussed above.
Therefore, BAG3 inhibitors should be extensively tested for their effects on heart function,
and localized delivery methods for the inhibitors should be investigated.

4. HOP/Stress-Inducible Phosphoprotein 1

HOP, first discovered as a heat-inducible gene in yeast, is an HSP90 and HSP70 co-
chaperone that facilitates client refolding [186,187]. HOP contains three TPR domains and
can simultaneously bind to HSP90 and HSP70, enabling client transfer between HSP90
and HSP70 [188–195]. Furthermore, the interaction between HOP and HSP90 stabilizes
HSP90 in open conformation which leads to non-competitive inhibition of HSP90 ATPase
activity [190,196–198]. The importance of HOP in protein quality control was highlighted in
a recent paper by Bhattacharya et al. Remarkably, HOP expression is necessary for proper
proteasome assembly and, remarkably, HOP knockout cells effectively compensate for the
impaired UPS via a compensatory increase in protein refolding [199]. A more detailed
explanation of interactions between HOP and HSP90/HSP70 is covered extensively in
another review [200]. STI1 is the predominant name used in neurodegeneration studies,
whereas in cancer, HOP is commonly used.

4.1. Neurodegeneration
4.1.1. Alzheimer’s Disease

Neurons secrete STI1 that subsequently binds to cellular prion protein (PrPc) [201].
The binding between STI1 and PrPc is neuroprotective, resulting in neuritogenesis and
neuronal growth and survival [202–207]. For example, STI1-PrPc interaction prevents
amyloid-b oligomer (AbO) induced toxicity by inhibiting PrPc binding to AbO in cell
culture models and primary mouse neurons; this protective effect depends on ternary
complex formation with HSP90, STI1, and PrPc [208,209]. Interestingly, STI1 levels increase
in the hippocampus of AD mouse models and the human AD cortex (Figure 2) [208]. In
addition to STI1’s effects on AbO toxicity, STI1 loss-of-function increases tau toxicity in
the fly retina [210]. However, no other follow-up studies investigated the role of STI1 in
tau protein regulation. A recent study challenged the neuroprotective role of STI1 in AD
mouse models. Lackie et al. showed that overexpression of STI1 in the 5xFAD mouse
model exacerbated the AbO burden and increased memory deficits [211].

4.1.2. Parkinson’s Disease

HSP90 mediates α-synuclein aggregation in an ATP-dependent manner; therefore,
co-chaperones that inhibit HSP90 ATPase activity, such as STI1, appear to prevent HSP90-
dependent α-synuclein aggregation (Figure 2) [212]. Along the lines of this idea, a study
showed that STI1 delayed PD-associated mutant α-synuclein-A53T accumulation [213].

4.1.3. Huntington’s Disease and Amyotrophic Lateral Sclerosis (ALS)

In HD, loss of STI1 worsens PolyQ-htt-induced toxicity while the increase in STI1
is protective against it (Figure 2) [214,215]. Paradoxically, a genetic screen to identify
mediators that regulate mutant Huntington identified knocking down the STI1 homolog
in Drosophila reduced the proteotoxicity [216]. In the TDP-43 yeast model for ALS, STI1
deletion resulted in increased TDP-43 toxicity [217]. Interestingly, while moderate overex-
pression of STI1 protected against TDP-43 toxicity, high levels of STI1 exacerbated it [217].
It is clear that in HD and ALS, proteotoxicity is sensitive to levels of STI1 expression,
and additional studies that include other components of the chaperone/co-chaperone
machinery may lead to important insights into disease mechanisms.
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4.2. Cancer

Given the ability of HOP to facilitate protein folding by coordinating with HSP70
and HSP90, increased expression of HOP in the backdrop of cancer creates a pro-folding
environment facilitating the folding and accumulation of oncogenic proteins, such as
HER2, Bcr-Abl, c-MET, and v-Src (Figure 5) [218–220]. For example, HOP expression and
HOP–HSP complex formation were higher in colonic carcinoma than non-tumor tissue
samples [219]. The mRNA encoding HOP and HOP protein levels were more elevated
in gastric tumor samples than non-tumor tissue samples, suggesting HOP expression
may be an effective predictor of gastric cancer-related mortality [221]. While increasing
HOP expression is associated with a pro-cancer phenotype, reducing HOP expression
was sufficient to decrease cell proliferation, migration, and invasion in osteosarcoma and
colorectal cancer cell models (Figure 4) [222–224].

In addition to the chaperoning of oncogenic proteins, HOP also contributes to a pro-
cancer cellular environment by regulating signaling proteins that are substrates of HSP70
and HSP90. In turn, HOP’s co-chaperone activity can activate several signaling pathways,
including JAK/STAT, AKT, and MAPK. For example, Hop maintains the stability of JAK2,
the upstream regulator of STAT3, contributing to tumor growth and metastasis in both
melanoma and ovarian cancer [225,226]. In colorectal cancer tissue samples, HOP ex-
pression correlated with STAT3 signaling, poor survival, and advancing stages of cancer,
whereas HOP knockdown in colorectal cancer cells reduced proliferation, invasion, and
migration [223,224]. Supplementing growth media with recombinant HOP protein stimu-
lated proliferation in glioma cells and effect dependent on activation of TRAP1/AKT and
MAPK/PI3K signaling [227]. In complementary experiments, knockdown of HOP reduced
glioma cell proliferation and increased apoptosis; additionally, analysis of 153 glioblastoma
patient samples revealed a positive correlation between HOP and TRAP1 expression [228].

These data highlight HOP as a promising molecular target for cancer therapies. Sup-
pression of HOP activity or expression renders tumor cells susceptible to the stress of rapid
proliferation, ultimately slowing tumor growth. Currently, there are no small molecules
that directly inhibit HOP [229]. However, HOP/HSP90 complex inhibitors block HSP90
binding to HOP, resulting in anti-cancer effects [230–234]. Additional therapeutic targets
include the post-translational modifications of HSP70, HSP90, and HOP, as these modifica-
tions impact the HOP/HSP interaction. Acetylation and phosphorylation of HSP70 increase
the affinity for HOP binding over other co-chaperones, including CHIP (Figure 5) [64,67].
A similar phosphorylation site in HSP90 also promotes HOP versus CHIP binding [64].
In proof-of-principal experiments, blocking HSP90 acetylation reduced the HOP-HSP90
interaction and inhibited cancer growth [235]. Conversely, phosphorylation of HOP inhibits
binding to heat shock proteins and decreases substrate refolding [195] offering another
possibility to target HOP for cancer therapies. Recently, HOP was found to have intrinsic
ATPase activity, which opens the possibility of small molecule inhibition targeting this
domain [236].

5. FKBP51 & FKBP52

FKBP51 and FKBP52 are members of the peptidyl-prolyl cis-trans isomerase (PPIase)
family, identified alongside HSP90 as a part of steroid hormone complexes [237–241].
FKBP51 and FKBP52 bind to HSP90 via their TPR domains and regulate steroid hormone
receptors independent of FKBP51/FKBP52’s PPIase activity [242–245]. FKBP51 and FKBP52
regulate multiple signaling pathways, and we point the reader to several in-depth reviews
on the biological functions of FKBP51 and FKBP52 [246–248].

5.1. Alzheimer’s Disease

Overexpression of FKBP51 in HeLa cells prevented tau degradation, resulting in
increased total tau and phosphorylated tau levels (Figure 2) [249]. Furthermore, FKBP51
interacted with tau in the axonal tracts and promoted microtubule polymerization in
a tau-dependent manner in vitro [249] and subsequently confirmed in vivo [250]. Blair
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et al. showed that tau levels were reduced in FKBP51 knockout mouse brains, whereas
overexpression of FKBP51 in the tau transgenic mouse model resulted in the accumulation
of tau oligomers [250]. They also identified an age-dependent increase in FKBP51 in healthy
human brains with even higher levels of FKPB51 measured in AD brains [250].

Although FKBP52 shares 75% sequence similarity with FKBP51, their tau pathology
roles appear different [247]. FKBP52 expression is reduced in the frontal cortex of human
AD and FTDP-17 brain samples [251]. FKBP52 binds to hyperphosphorylated tau in the
distal part of the axons and prevents tau-mediated microtubule assembly [252]. The same
study also showed that FKBP52 overexpression decreased tau accumulation in differenti-
ated PC12 cells [252]. In HeLa cells, knocking down FKBP52 increased total tau levels [253].
FKBP52 also interacts with a pathological tau mutant (P301L), and knockdown of FKBP52
in the transgenic tau-P301L zebrafish model rescued the associated axonal growth and
branching defects with tau-P301L [254]. Furthermore, the truncated form of tau and caspase
cleaved tau species can bind to FKBP52, and these interactions promote tau oligomerization
and aggregation [255,256]. Interestingly, the interactions between FKBP52 and different
tau species are independent of FKBP52’s PPIase activity [257]. New studies investigated
the role of FKBP52 in tau pathology and tau-mediated cognitive deficits in wild-type and
tau transgenic mouse models [258,259]. FKBP52 overexpression in aged wild-type mice
resulted in increased phosphorylation of AD-associated tau species and impairments in
spatial reversal learning [258]. Contrary to this observation, FKBP52 overexpression in
rTg4510 mice failed to show an increase in phosphorylated tau species [259]. However, they
observed a decline in spatial learning and increased neuronal loss in the hippocampus of
rTg4510 mice overexpressing FKBP52, further highlighting the beneficial effects of FKBP52
inhibition in AD [259].

5.2. Cancer

FKBP51 and FKBP52 are linked to hormone-dependent cancers such as ERα-dependent
breast and AR-dependent prostate cancer (Figure 4) [260]. For example, the expression of
FKBP51 and FKBP52 was higher in both breast cancer and prostate cancer tissues compared
to normal tissues [261,262]. In prostate cancer, FKBP51 and FKBP52 promoted cell prolifer-
ation by regulating AR’s nuclear translocation and dimerization [263]. In a complementary
study, knocking down FKBP51 in the human prostate cancer cell line, LNCaP, decreased
cancer cell proliferation along with decreased NF-kB signaling [264]. FKBP51 promotes
the epithelial-to-mesenchymal transition through NF-kB signaling activation in papillary
thyroid carcinoma cell lines K1 and TPC-1 [265]. However, additional experiments looking
at the cytoskeleton formation to indicate increased migration and invasion were not seen
with FKBP51 overexpression [265].

In contrast, rather than promoting tumorigenesis, FKBP51 overexpression decreased
the proliferation of endometrial adenocarcinoma cell lines by inhibiting the Akt signaling
pathway. In pancreatic cancer, FKBP51 also acts as a tumor suppressor by negatively
regulating Akt phosphorylation [266]. Decreasing FKBP51 expression resulted in increased
Akt phosphorylation and cancer growth, measured via cell proliferation in the SU86 cell
line proliferation and tumor size in a mouse model [266,267]. Together, these studies
suggest that FKBP51 affects unique signaling pathways depending on the cellular context,
an important consideration in targeting FKBP51 for therapies.

5.3. Therapeutics

FKBP51 and FKBP52 are potential therapeutic targets for certain cancers and AD.
For example, FKBP51 and FKBP52 inhibitors decreased AR-dependent prostate cancer
cell proliferation [260,263,268]. However, FKBP51 and FKBP52 inhibitor selectivity is a
concern as the PPIase domains of FKBP51 and FKBP52 share high similarities with other
FKBP proteins, and current PPIase inhibitors fail to show selectivity [247]. Whereas PPIase
inhibition may be therapeutically effective in cancer, in AD models, there are PPIase-
independent activities of FKBP51 and FKBP52 that appear to be important [245,257]. To
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that end, blocking the interaction between FKBP51 and FKBP52 to HSP90 is another strategy
for therapeutics. However, these inhibitors likely block interactions between other TPR
domain-containing proteins and HSP90 [246,247], again complicating the specificity of this
approach. Recent efforts to identify selective inhibitors for FKBP51 and FKBP52 focus on
using molecular dynamics simulations to achieve isoform selectivity [269].

6. CryAB
6.1. Cardioprotection

CryAB (Alpha-crystallin B chain), classified initially as a chaperone, also functions as
a co-chaperone [270]. Desmin is a crucial intermediate filament in cardiac muscles [270]. As
of now, there are no adequate therapies for Desmin-related cardiomyopathies (DCRM) [271].
CryAB mutation R120G is a missense mutation that brings about a severe form of DRCM
riddled with the accumulation of misfolded proteins (Figure 3) [271]. Using transgenic mice
that overexpress CryAB, researchers demonstrated how over-expressing CryAB R120G
mutant in CMs triggered aggregate accumulation intracellularly eventual heart failure by
12 months of age [271]. Moreover, mutation-driven disruptions in the CryAB/desmin inter-
action results in myofibrillar disarray, protein aggregation, heart dysfunction, and abrupt
cardiac death [271–273]. In failing human hearts, Bouvet et al. found increased insoluble
CryAB, soluble desmin, and hyperphosphorylated desmin levels [270]. Hyperphospho-
rylation of desmin leads to its aggregation, disrupting the cardiac muscle cytoskeleton
and ultimately results in cardiomyopathy [274]. As a co-chaperone of HSC70, CryAB
clears hyperphosphorylated desmin aggregates formed during ischemic HF via chaperone-
assisted selective autophagy [270]. Another study identified insoluble aggregates positive
for CryAB in murine cardiomyocytes [163]. Mutant CryAB-R120G mice have reduced heart
contractility, a rise in insoluble aggregates in CMs, and an increase in BAG3 compared to
control mice by eight months of age [163]. Overexpressing BAG3 in the heart muscle of a
CryAB-R120G Tg mouse resulted in BAG3-mediated CryAB degradation [163]. Another
study identified the BAG3-P209L mutation in a pediatric heart with left ventricular wall
thickening and larger atria [275]. Interestingly, IHC staining showed CryAB, desmin, and
ubiquitin present in the intracytoplasmic inclusions with a slight increase in overall desmin
levels in the mutant heart compared to control tissue [275].

6.2. Cancer

CryAB is an essential factor in multiple cancers (Figure 4). CryAB inhibits migration
and invasion of the cancer cells in bladder cancer cells by decreasing PI3K and AKT
signaling, suggesting that CryAB acts as a tumor suppressor [276]. Paradoxically, in gastric
cancer tissue samples, CryAB expression was higher than normal tissues [277]. Similarly, in
colorectal cancer cell lines, CryAB expression is upregulated and promotes metastasis and
invasion [278]. Furthermore, inhibiting CryAB in vitro induced cancer cell apoptosis and
in vivo decreased migration and tumorigenesis [278]. CryAB may play an oncogenic role
in osteosarcoma, as the downregulation of CryAB decreased cancer cell proliferation [279].
Collectively, these studies highlight CryAB as a potential therapeutic to decrease tumor
progression.

6.3. Multiple Sclerosis

CryAB plays an essential role in multiple sclerosis, an autoimmune disease that results
in the demyelination of the central nervous system. In addition to being the most prominent
mRNA expressed in early multiple sclerosis lesions [280], the accumulation of CryAB at
these lesions is reversible [281]. Clinical trials using CryAB immunotherapy slowed disease
progression in multiple sclerosis patients [280,282–284]. However, it is unclear if CryAB is
working through its autonomous chaperone function or via HSP/co-chaperone function,
highlighting a gap in our current knowledge base regarding the CryAB-MS mechanism.
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7. Sgt1

Sgt1 was first identified in yeast as a regulator of SCF (Skp1-Cul1-F-box) E3 ubiquitin
ligase complex, and later on, its expression was confirmed in the mammalian tissues such
as the brain, liver, and lungs [285,286]. Sgt1 interacts with HSP90 through its CHORD
domain, and together Sgt1-HSP90 ensures the proper kinetochore assembly [287–290].
Sgt1’s role as a co-chaperone was established by observing that Sgt1 levels are upregulated
upon heat shock, and Sgt1 prevents aggregate formation in citrate synthase aggregation
assay [291].

Neurodegenerative Diseases

Although Sgt1’s role in neurodegeneration has not been extensively studied, a decrease
in Sgt-1-immunopositive neurons in the cerebral cortex of the AD brain has been identified,
indicating Sgt-1 might serve a neuroprotective role in AD (Figure 2) [292]. On the contrary,
a recent study identified upregulation of Sgt-1 mRNA levels in the temporal and frontal
cortex of PD patients with no significant changes in the protein expression [293]. These
data suggest that Sgt-1’s role in neurodegeneration might be disease-specific and requires
further investigation.

8. HSP40/DNAJ Protein Family

HSP40/DNAJ proteins are a class of molecular chaperones/co-chaperones that regu-
late protein translation, folding, unfolding, translocation, and degradation [294,295]. These
roles are primarily carried out by forming a complex with HSP70 via a conserved J-domain
to enhance the ATPase activity of HSP70 [294,295]. HSP40/DNAJ proteins, alongside
with HSP70, interacts with disease-causing misfolded proteins and promotes their clear-
ance [295–299]. Therefore, HSP70 and its co-chaperones, HSPsp40/DNAJ proteins, are
considered potential therapeutic targets in cellular and animal models of ataxia and other
neurodegenerative conditions [296].

8.1. DNAJC3

DNAJC3 is a co-chaperone of BiP (immunoglobulin heavy-chain-binding protein), an
HSP70 family member. BiP, primarily residing in the endoplasmic reticulum, facilitates
the folding of the nascent polypeptides and ensures homeostasis by mitigating the cellular
stress response caused by unfolded proteins [297]. DNAJC3 assists BiP with the de novo
folding of nascent proteins and targeting misfolded proteins for degradation [297,299].
Nonsense mutations in DNAJC3 were identified in a consanguineous Turkish family in
which three siblings were diagnosed with the autosomal recessive disorder ACPHD (ataxia,
combined cerebellar and peripheral, with hearing loss and diabetes mellitus, Figure 2) [300].
Furthermore, they identified a loss-of-function mutation in a patient with diabetes who
also presented hearing impairment and ataxia [300]. These findings indicate DNAJC3
mutations could be associated with ataxia phenotypes.

8.2. DNAJC5

DNAJC5, also called cysteine string protein-a (CSPa), is a major presynaptic co-
chaperone implicated in various neurodegenerative diseases [298]. DNAJC5 is primarily
expressed in neurons to chaperone the synaptic SNARE protein SNAP-25 [298]. This chap-
eroning event facilitates the formation of the synaptic SNARE complexes that are vital for
synaptic vesicle fusion to the plasma membrane for presynaptic neurotransmission [298].
DNAJC5 has various neuroprotective properties. Mutations in DNAJC5 cause autosomal
dominant adult-onset neuronal ceroid lipofuscinosis (ANCL, Figure 2) [301,302]. ANCL, a
neurodegenerative disease with symptoms like ataxia, seizures, and dementia, is charac-
terized by the accumulation of lipofuscin, an autofluorescent lysosomal waste [302,303].
DNAJC5 KO mice showed deficiency in neuromuscular function and impairments in
synaptic transmission, indicating that DNAJC5 expression is vital for proper synapse
function [304].
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To date, there are no other diseases that are associated with DNAJC5 mutations.
However, alterations in the levels and activity of DNAJC5 impact other neurodegenerative
conditions. DNAJC5 can interact with mutant huntingtin that contains an expanded PolyQ
domain but not with the wild-type protein [305]. A proteomic study of the mouse brain
also confirmed the association between DNAJC5 and mutant huntingtin protein [306].
However, DNAJC5’s role in Huntington’s Disease has yet to be established.

8.3. Rheumatoid Arthritis

Proteins in the HSP40/DNAJ family contribute to autoimmune diseases such as
rheumatoid arthritis. Patients with rheumatoid arthritis had elevated levels of autoan-
tibodies to HSP40 and DNAJ proteins; moreover, HSP40 inhibited proliferation of T
cells from these patients, consistent with a regulatory role for HSP40 in the immune
response [307–310]. Additionally, Koffeman et al. developed an immunotherapy for
rheumatoid arthritis using a peptide fragment of DNAJP1, a DNAJ family member, high-
lighting the utility of HSP40/DNAJ family proteins as potential therapies for autoimmune
diseases [311].

9. Targeting Co-Chaperones with Small Molecules for Therapies

There are multiple functional domains of HSP70 and HSP90 that serve as possible
targets for small molecule inhibition [312–314]. Conversely, there are diseases where
activation of HSP70 to mimic thermal and immune preconditioning may be beneficial
to outcomes [36,315]. We encourage the reader to look at in-depth reviews regarding
the current landscape of targeting HSP70/90 function in cardiovascular disease [316,317],
cancer [37,38,318], neurodegeneration [4,315], and inflammation [318,319]. More recent
approaches include targeting the interactions between HSP90 and co-chaperones to inhibit
chaperone function [320]. Given the importance of the C-terminal tail of both HSP70 and
HSP90 interacting with TPR-co-chaperones, such as CHIP and HOP (Figure 5), targeting
the chaperone tails to modify chaperone function is an emerging concept [321].

9.1. CHIP

Despite the data demonstrating the knockdown of CHIP decreases cancer proliferation,
such as in colorectal and lung cancer, the literature is scant regarding small molecule
targeting of CHIP. Complications with small molecule targeting of CHIP include off-target
effects given the diverging roles of CHIP across cancer types (Table 1) and the implication
of altered CHIP function in other organ systems (Figures 2 and 3).

9.2. BAG1

Enthammer et al. isolated a thioflavin (Thio-2) that inhibited BAG1 interactions
and decreased growth of BRAF-resistant breast cancer cell line MCF7 [322]. Cato et al.
found that Thio-2 attenuated the BAG-1L/Androgen receptor interaction and decreased
androgen receptor-dependent pancreatic cancer growth [172]. In combination with other
breast cancer chemotherapies, BAG1 down-regulation improved the effectiveness and
cytotoxicity of the drugs in drug-resistant breast cancer cell lines [323]. Therefore, more
research on BAG-1L inhibitors would be beneficial for decreasing tumor progression.

9.3. BAG2

Despite the evidence that inhibition of BAG2 decreased cancer cell proliferation,
as highlighted above in oral and gastric cancer, there are no reports of small molecule
inhibitors of BAG2.

9.4. BAG3

One confounding factor in developing anti-BAG3 therapeutics for cancer is that BAG3
plays an essential role in proper heart function, as discussed above. Most recently, Martin
et al. highlighted the cardiomyocyte toxicity of the cancer therapeutic JG-18 that targets
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the BAG3-HSP70 interaction [159]. Therefore, much like CHIP, BAG3 inhibitors should be
extensively tested for their effects on heart function, as well as localized delivery systems.

9.5. CryAB

As mentioned in Section 6.2, CryAB is a potential therapeutic target for some cancers
such as osteosarcoma, gastric and colorectal cancer. Chen et al. identified a structure-
based small molecule inhibitor for CryAB that decreased triple-negative breast cancer cell
growth [324]. However, this was one of the few studies investigating CryAB’s therapeutic
potential in cancer progression, highlighting a gap for future work.

10. Conclusions

Undoubtedly, co-chaperones impart a range of control over HSPs, allowing for the
fine-tuning of responses to cellular stress. It is also clear that, although co-chaperones are
prime candidates for targeted therapies, there is still much to learn about crosstalk between
co-chaperones and the resiliency of biological compensation. We hope, in the years to come,
that more studies will elucidate the broader scope of the chaperone/co-chaperone network
and provide hope for so many harmful human diseases.
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