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Tissue imaging has emerged as an important aspect of theragnosis. It is essential not
only to evaluate the degree of the disease and thus provide appropriate treatments,
but also to monitor the delivery of administered drugs and the subsequent recovery
of target tissues. Several techniques including magnetic resonance imaging (MRI),
computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and
chemiluminescence (CL), have been developed to reconstruct three-dimensional
images of tissues. While imaging has been achieved with adequate spatial resolution for
shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually
observed when using a magnetic field or traditional ultrasound (US), which leads to a
need for more powerful energy input. This may subsequently result in tissue damage.
CT requires exposure to radiation and a high dose of contrast agent to be administered
for imaging. The BF technique, meanwhile, is affected by strong scattering of light and
autofluorescence of tissues. The CL is a more selective and sensitive method as stable
luminophores are produced from physiochemical reactions, e.g. with reactive oxygen
species. Development of near infrared-emitting luminophores also bring potential for
application of CL in deep tissues and whole animal studies. However, traditional CL
imaging requires an enhancer to increase the intensity of low-level light emissions,
while reducing the scattering of emitted light through turbid tissue environment. There
has been interest in the use of focused ultrasound (FUS), which can allow acoustic
waves to propagate within tissues and modulate chemiluminescence signals. While light
scattering is decreased, the spatial resolution is increased with the assistance of US. In
this review, chemiluminescence detection in deep tissues with assistance of FUS will be
highlighted to discuss its potential in deep tissue imaging.

Keywords: chemiluminescence, bioluminescence, focused ultrasound, deep tissue, imaging

INTRODUCTION

Imaging has become an essential component of biomedical research and patient treatment.
There has been tremendous improvement in imaging techniques and their application in last
30 years. These imaging tools help clinicians not only to diagnose diseases but also to visualize
the expression of the reaction, and interactions within the human body (Weissleder and Pittet,
2008). In vivo molecular imaging has significantly revolutionized modern medical diagnostics. In
order to evaluate the complex nature of tissues/organs, there is a need for advanced and versatile
imaging techniques which are not only capable of analyzing the structure and morphology of
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tissues/organs but can also efficiently monitor the functions and
molecular reactions in the cells (Nam et al., 2014). Each of the
imaging modalities available today work on different principles
and methods, and the outcome are largely variable depending
on interfaces, samples and the imaging technique used (Nam
et al., 2014). Therefore, based on the experiments and the clinical
application, the most appropriate imaging technique must be
carefully chosen from among the range of available methods.

Tissue imaging can be done using spectroscopic signal
detection techniques such as magnetic resonance imaging (MRI),
computational tomography (CT), acoustic tomography (AT),
biofluorescence (BF), and chemiluminescence (CL). Based on
the unique principle of each technique, imaging methods have
their exclusive range of applications. In most imaging methods,
the physical interaction of X-rays, radiofrequencies or sound
waves with the target/imaged object (tissues or organs) results
in a change in the energy, which is transmitted to form an
image. Based on the source and intensity of the energy, the
various imaging modalities differ in their specific properties such
as resolution, exogenous and endogenous contrast component,
penetration depth, cost, and safety (Pysz et al., 2010; Appel
et al., 2013). Due to the high energy source, CT and MRI
have the best imaging depth and resolution when compared to
luminescence and AT. MRI uses radio frequencies coupled with
strong magnetic field as the source of energy, which rebounds
off the body fat and water molecules, and the transmitted energy
is detected and translated into an image. Hence, it is generally
used for imaging of soft tissues like brain, wrists, heart and blood
vessels (Miwa and Otsuka, 2017). In comparison to CT, MRI has
two disadvantages, namely loud machine noises during imaging
and longer imaging time (Weissleder and Pittet, 2008). CT uses
X-ray energy to image the target tissue and is quick, painless
and non-invasive. It is generally used to image bone fractures,
tumors progression and internal bleeding (Pysz et al., 2010).
However, one of the constraints of CT imaging is the use of
radiation and the generation of less detailed images of soft tissues
when compared to MRI (Nam et al., 2014). AT has evolved as
a hybrid imaging method which can possibly overcome some of
the disadvantages of MRI and CT. AT imaging is based on the
acoustic wave signals which are generated when the absorbed
optical energy is converted to acoustic energy. These waves scatter
less than the optical waves in tissue, leading to generation of high-
resolution images of deeper tissues. This imaging technique has
several advantages. For example, in comparison with CT, it uses
non-X-ray laser energy source for imaging, and in comparison to
MRI, it is less expensive. However, it faces some disadvantages
like poor deep tissue imaging and imaging speed (Xia et al.,
2014). Luminescent imaging is another method of imaging.
Bioluminescence (BL) is excellent for molecular level imaging
without using an external contrast agent, and it has the capacity
for real time imaging (Zhang et al., 2006; Weissleder and Pittet,
2008). BL is a unique optical imaging method in that it depends
on an internal biological light source (based on a reaction)
unlike other imaging systems which require external energy
source. Luciferase are a group of enzymes commonly used in
BL imaging as they can emit light in the presence of oxygen
and a substrate (typically luciferin) (Contag and Ross, 2002).

The released light generated from the live cells is assessed by
a photon detector with high sensitivity (Weissleder and Pittet,
2008). Similarly, CL (first generation), without the need of
external light sources, advances luminescent imaging further
by using luminescent enhancers listed and described in detail
in Table 1. CL avoids the need for the enzyme luciferase for
imaging, thus circumventing the need for genetic modification
to produce BL for imaging (Lippert, 2017). CL also allows
imaging of whole tissues. Recently, ultrasound (US) modulated
fluorescence and US switchable fluorescence (UF) have advanced
deep tissue imaging. Although these techniques are new and
still under investigation, they are supposed to have advantage
over CT and MRI in terms of deep tissue imaging. The key
element in these types of imaging is the design of the external
contrast agent, which determines the success of the imaging
(Pei and Wei, 2019). With the exponential increase in research
into the medical applications of US, second generation CL,
i.e., ultrasound-enhanced chemiluminescence (UECL), has been
developed. In UECL, CL’s limitations in deep tissue imaging
is attenuated. The attributes of CL and UECL is discussed
in detail below.

FIRST GENERATION OF
CHEMILUMINESCENCE AND
BIOLUMINESCENCE

Luminescence in general is defined as the emission of visible light
without increase in the temperature. Luminescence emerging
from a chemical reaction is known as CL. One form of CL is
bioluminescence, which is basically the production and release
of light by a living organism (Créton and Jaffe, 2001). BL and CL
are the results of a chemical reaction in which a product at an
electronically excited state returns to the ground state by emitting
a photon, which is seen as light. This BL and CL light lasts for
few seconds as the reaction is very fast and continues for a very
short time frame. However, literature reveals that certain suitable
supplementary chemicals can modify the emission kinetics in the
range of 10 s to 30 min (Aslan and Geddes, 2009). This leads to
the improvement in the analytical signal output with significant
reproducibility (Roda et al., 2003a).

Bioluminescence is observed in vertebrates and invertebrates
(fireflies) and in some microorganisms like fungi and bacteria
(Viviani, 2002). The key component involved in the generation
of BL is the light emitting chemical luciferin, which is generated
by a series of reactions involving the enzyme luciferase. As
numerous organisms secrete luciferase and luciferin, this enzyme
and molecule respectively are generally named along with the
organism/species or group, for example – firefly luciferin (White
et al., 1961). The enzyme luciferase catalyzes the oxidation of
the luciferin to yield luminescence (Yagur-Kroll et al., 2010).
There is huge variation in the reactions occurring in different
organisms for the generation of luciferin. However, one of
the key and common factors is the requirement of molecular
oxygen and other cofactors along with luciferase, to complete
the reaction. For example, the generation of firefly luciferin
involves a chemical reaction involving luciferase, magnesium
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and adenosine triphosphate (ATP), to yield luminescent luciferin
and by-products like adenosine monophosphate, CO2, and
pyrophosphate (Marques and Esteves da Silva, 2009; Kim et al.,
2015). The mechanism of this reaction is addressed in Figure 1.
For generation of another luminescent molecule – photoprotein
aequorin, co-factors like divalent calcium or magnesium ion
are required (Brown et al., 2019). A well-known application
of BL based on these reactions is the cloning of genes for
the enzyme firefly luciferase and the photoprotein from the
jellyfish Aequorea. This gene can be transferred into a variety of
organisms including bacteria, plants, and human cells. Luminous
tobacco plants and Escherichia coli (expression of genes of
luciferases resulted in visible shades of orange, yellow and
green bacterial cells) are some of the well-known examples
(McCapra, 1990).

Chemiluminescent reactions have a great role in molecular
and cellular based assessment due to its high sensitivity
(Créton and Jaffe, 2001). For example, CL indicators are
used for immunoassays, western blots, northern (nucleic
acid detection) and southern blots. One of the key features
of CL is its capacity to evaluate the specimen at the cellular
level wherein the cells can be either live, in fixed state or
hybridized with the CL probes (Roda et al., 2000a; Sala-
Newby et al., 2000). CL has great potential to analyze
in vivo systems because of the absence of the use of heat
or exciting light which aids in measurements without any
disturbance to the living system. This is an improvement over
regular fluorescence imaging which requires high intensity
emitting light and long exposure to short wavelength
lights which may subsequently damage the living cells
(Créton and Jaffe, 2001).

Bioluminescence and CL imaging are interesting tools for
biomedical studies, clinical diagnosis, and drug development
research. They have the potential to identify and analyze
(quantitatively and qualitatively) enzymes, drug and drug
metabolites, nucleic acids such as DNA (Qi et al., 2018), micro
RNA (Ling et al., 2018), proteins (Li et al., 2015), and antigens
(Mao et al., 2019) in various specimens. These specimens can
be living cells in experiments, or fixed, cryo- and paraffin-
embedded cells/tissues samples and sections (Roda et al., 1996,
2000b). The resolving power of the CL is capable of penetrating
to the subcellular level and image the tissue section or a
single cell (Roda et al., 2003a). BL and CL offer substantial
advantages over other fluorescence imaging methods, which
mainly includes its broad range and sensitivity in imaging
samples in both micro and macro scale. In addition, the imaging
is not affected by the sample matrix, because the luminescence
is generated by specific set of chemicals involved in the reaction
(Roda et al., 2003b).

Recently, CL intensity has been further improved by using
colloidal enhancers that have enabled improvement to not
only imaging and but also therapies. Colloidal enhancers can
include gold (Li et al., 2008; Yan et al., 2019), silver (Chen
et al., 2007; Haghighi and Bozorgzadeh, 2010), platinum (Xu
and Cui, 2007), and magnetic (Yang et al., 2019) nanoparticles
(NPs). For in vivo imaging, peroxalate nanoparticles specific
are known for their high specificity and selectivity against
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FIGURE 1 | Schematic representation of (A) the mechanism involved in luciferin-mediated luminescence reaction, and (B) in vivo bioluminescence imaging using an
antibody coupled luciferase-luciferin reaction.

hydrogen peroxide, and they have therefore been used for
deep tissue CL imaging of the inflammatory response of
mice (Lee et al., 2007). Similarly, polystyrene nanoparticles
stained with squaraine catenane endoperoxide dyes, which
are concurrently chemiluminescent and fluorescent, displayed
significantly higher CL than fluorescence, which helped in the
imaging of distribution of nanoparticles in mice (Lee et al., 2013).
Similar to colloidal and inorganic NPs, enhancement to CL has
been investigated with the help of quantum dots (QDs), including
both metallic (Song et al., 2019) and non-metallic (Wang D. M.
et al., 2019) QDs. Subsequently, enhancement effects such as
chemiluminescence resonance energy transfer (CRET) has been
discovered (Yao et al., 2017). CRET allows transfer of energy
from a chemiluminescent donor to a fluorophore acceptor (e.g.
QDs) without the need for an external excitation source, and with
low background signal. Although QDs have several advantages,
concerns regarding toxicity and environmental contamination
have been raised (Ron, 2006; Wang et al., 2015; Li et al., 2016;
Zhang et al., 2016). Chemiluminescence can also be triggered
using electrochemical techniques, and this method is called
electro-chemiluminescence (ECL). Upconversion nanoparticles,
which are generally lanthanide- or rare earth- doped materials,
have been identified and developed as ECL emitters. Unlike QDs,
these particles have low toxicity, good ECL intensity, and low
autofluorescence background. Detailed description of the use
of upconversion nanoparticles in ECL is already available in
literature (Liu et al., 2014; Gao et al., 2017; Zhai et al., 2017;

Gu et al., 2019). Alternative approaches for safe enhancement of
CL will be discussed below.

CHEMILUMINESCENT MATERIALS

Some of the most commonly used materials in CL imaging have
been described in detail below.

Luminol
Luminol is synthesized in the presence of triethylene glycol by
a reaction involving cyclocondensation of 3-nitrophthalic acid
with hydrazine to produce 5-nitro1,4(2H,4H)phthalazinedione.
The resultant product is further reacted with sodium dithionite
in the presence of heat, followed by treatment with acetic acid
to produce luminol on cooling (Maynard, 1997). CL probes
consisting of luminol are known to successfully detect and
quantify intracellular and extracellular reactive oxygen species
(ROS) produced by phagocytozing cells in the blood (Jancinová
et al., 2017). Luminol and its derivatives possess an intermediate
called α-hydroxyperoxide, which is derived by the oxidation of
the heterocyclic ring, and this reaction depends solely on the
pH of the system (Dodeigne et al., 2000). Masking or structural
modification of this heterocyclic ring (Jancinová et al., 2017)
results in a complete loss of these chemiluminescent properties
(Dodeigne et al., 2000). Kwon et al. (2014) took advantage
of this property to develop a CL chemodosimeter, in which a
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masking group was incorporated to prevent formation of the
α-hydroxyperoxide intermediate, thereby preventing CL. When
the masking group was selectively removed using a target analyte,
the CL could be turned on to get a highly selective and sensitive
signal (Kwon et al., 2014). CL is emitted solely due to the presence
of oxygen and a strong base in an aprotic media such as DMSO,
while protic solvents are capable of oxidizing luminol derivatives
only with the assistance of either enzymes or mineral catalyst
(Giussani et al., 2019).

Luminol has been used to generate CL via numerous
techniques, for instance, by pulsed laser light or optically pumped
CL. A dye absorbing red light is generated by a pulsed laser light
and this light is capable of oxidizing luminol, thus generating CL
(Khan et al., 2014). Luminol and its derivatives have found wide
applications in diagnostic and monitoring techniques of non-
immunoassay or immunoassays. Isoluminol derivatives have
displayed increased efficiency and have been found to be the
sole tracers used in substrate-labeled immunoassays (Dodeigne
et al., 2000). Luminol has displayed a higher efficiency when
its present in the free state. It has found wide applications in
enzyme labeled immunoassays, detection of hydrogen peroxide,
metal ions, amines, carbohydrates, vitamins, nitrate, enzymes
and enzyme substrates, amino acids, cyanides and carbohydrates
(Kugimiya and Fukada, 2015). Luminol has also been extensively
used as a forensic tool in the form of aerosols by many
police agencies in the U.S. for detecting trace blood patterns
at crime scenes (Stoica et al., 2016). Luminol reacts with the
reactive ROS and emits light via luminol CL (Chen et al., 2004).
ROS are produced by defensive cells like macrophages and
monocytes that are highly populated in a cancerous environment.
Alshetaiwi et al. (2013) successfully demonstrated that luminol
administration in tumorous mice allowed early stage imaging
of the tumors. Inflammation produces myeloperoxidase (MPO)
released by neutrophils and these superoxides react with Luminol
emitting luminescence which enables investigation of different
stages of inflammation (Tseng and Kung, 2013). Bedouhène et al.
(2017) showed that in the presence of horseradish peroxidase,
luminol-based CL can be used to detect superoxide anions
and hydrogen peroxide. This method can therefore be used to
detect ROS production by neutrophils, with high sensitivity.
Luminol has also been incorporated within nanoparticles for CL
imaging. Xu et al. (2019) recently developed a self-illuminating
nanoparticle using an amphiphilic Ce6-luminol-polyethylene
glycol (CLP) polymer. The Ce6 (chlorin e6), a photosensitizer,
can be excited by the BL from luminol in the presence of excess
ROS and myeloperoxidase. This excitation leads to generation
of fluorescence and 1O2 by the Ce6 via bioluminescence
resonance energy transfer (BRET), and can be used for detecting
inflammation and for tumor photodynamic therapy (PDT)
(Xu et al., 2019).

Coelenterazine
Coelenterazine is derived from a protein called coelenterate,
which has been synthesized by several methods described
elsewhere (Dodeigne et al., 2000). This compound possesses a
superoxide anion in its structure, which is responsible for causing
coelenterazine to give out CL. Unlike luminol, coelenterazine

does not require any catalyst to trigger CL (Silva et al., 2012). CLA
(2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one)
and specifically MCLA probe (2-methyl-6-(4-methoxyphenyl)-
3,7-dihydroimidazo[1,2-a]pyrazin-3-one) which is more efficient
are some of the several coelenterazine analogs that have
been prepared and used (Dubuisson et al., 2005; Wang et al.,
2012; Diaz et al., 2018). In contrast to luminol, MCLA is cell
impermeable, and is therefore useful for detection of superoxides
outside the cell (Diaz et al., 2018). Besides being widely employed
for monitoring of superoxide, coelenterazine and its analogs
have found wide applications as prosthetic groups of various
photoproteins like mnemiopsin, aequorin, phialidin obelin,
and beroverin. Of all the above mentioned photoproteins,
aequorin is widely used for measuring intracellular calcium
and in immunoassay applications (Nguyen et al., 2018; Feno
et al., 2019). Coelenterazine has been used often in cancer
imaging. CL produced by coelenterazine are used to estimate the
elevated levels of ROS that are produced by cancer cells (Bronsart
et al., 2016a). Coelenterazine has also been used to detect and
image chronic inflammation associated with conditions like
inflammatory bowel disease, as it produces CL upon reaction
with ROS associated with inflammation (Bronsart et al., 2016b).
Bronsart et al. (2016a) were able to detect chemiluminecence
in vivo at 3 and 6 days after intravenous administration
of coelenterazine in tumorous mice. Wang Y. et al. (2002)
successfully combined colenterazine with a fusion gene construct
which enabled real-time imaging of gene expression both in cell
culture and animal models.

Peroxyoxalic Acid and Their Derivatives
Peroxyoxalate CL is achieved in the presence of a base
catalyst and an appropriate fluorophore by combining
hydrogen peroxide with oxalate ester (Dodeigne et al., 2000).
Peroxyoxalic acid and their derivatives undergo oxidation in
the presence of hydrogen peroxide producing high-energy
intermediates which is dioxetanedione. Peroxyoxalate and
its derivatives have found wide applications in determining
selective fluorophores especially after separation by high
performance liquid chromatography (Huertas-Pérez et al.,
2016). However, as compared to the previously mentioned
compounds, fluorescence is not emitted by the high-energy
intermediate itself. Light emission is produced by energy transfer
to a fluorescer, which gets excited in a S1 state (Smellie et al.,
2017). The oxalate compound and the fluorescent sensitizer
can be chosen independently. However, as compared to other
chemiluminescent producing compounds, the efficiency of the
peroxyoxalic acid and their derivatives are reportedly low. The
efficiency of this fluorescent material is higher in organic solvents
as compared to aqueous solvent mixtures (Dodeigne et al., 2000).

Another limitation is the observance of high background
in peroxyoxalate CL which is produced due to the blending
of hydrogen peroxide and peroxyoxalate (Cepas et al., 1995;
Romanyuk et al., 2017). This background emission can be
suppressed by addition of continuous reagent like bis(2,4,6-
trichlorophenyl)oxa-late (TCPO)-hydrogen peroxide system
(Niu et al., 2006). The TCPO system have been used to detect
the protein labeled 2-methoxy-2,4-diphenyl-3(2H)-furanone
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(MDPF) (Salerno and Daban, 2003). Another disadvantage of
this material is the poor stability of the compound in water
or aqueous solutions since partial water hydrolysis results in
the decomposition by decarboxylation and decarbonylation,
limiting its application in diagnostics (Delafresnaye et al., 2019).
Peroxyoxalate chemiluminescence (POCL) has also found wide
applications in detecting hydrogen peroxide-forming enzymes
namely cholesterol oxidase, uricase, xanthine oxidase, glucose
oxidase, and choline oxidase (Nozaki and Kawamoto, 2003).
It has also been used to eliminate tumor cells, where the CL
can be absorbed by photosensitizers accumulating within the
tumor, resulting in singlet oxygen generation and subsequent cell
death (Romanyuk et al., 2017). POCL-containing nanoparticles
have also been studied, which are sensitive to endogenous
hydrogen peroxide and can be used to study inflammation,
where overproduction of hydrogen peroxide is expected (Lee
et al., 2007). Peroxalate loaded nanoparticles injected into the
peritoneal cavity demonstrated high specificity and selective
imaging of hydrogen peroxide-related inflammatory diseases
(Lee et al., 2007). POCL has been used in literature frequently
in nanoparticle and hydrogel preparations. Li et al. (2019)
developed a POCL nanoparticle – glucose oxidase-doped
alginate hydrogel, in order to determine glucose levels in the
tumor periphery to study tumor metabolism. Following glucose
permeation into the system, it will be oxidized by glucose oxidase
to produce H2O2, which will be detected by peroxyoxalate.
Following subcutaneous injection of the solution into CT-
26 tumor bearing mice, the gel allowed localization of the
nanoparticles to provide a high signal-to-noise ratio at the tumor
site (Li et al., 2019).

Acridinium Esters
Acridinium esters possess high quantum yields that can be
detected in the attomole range (Weeks et al., 1983; Natrajan
et al., 2010). In comparison with other materials, simple chemical
triggers of acridinium derivatives display quick light emission
with their minute size permitting easy labeling protocols of
nucleic acids and proteins. Acridinium phenyl esters display
greater luminescence than simple alkyl esters (Natrajan et al.,
2010). Unlike the other chemiluminescent materials, acridinium
do not require a catalyst to produce CL. Hydrogen peroxide
and a strong base are sufficient to cause them to produce
chemiluminescence (Dodeigne et al., 2000). Another advantage
is their ability to exhibit faster light emission with simple
chemical triggers (Natrajan et al., 2010). The main disadvantage
of this chemiluminescent material is its instability in aqueous
medium as the ester bond that is present between the acridinium
ring and the phenol undergoes hydrolysis (Brown et al., 2009;
Natrajan et al., 2010).

Despite this limitation, acridinium derivatives have found
wide applications in immunoassays. Acridinium ester has been
successfully used to perform ultrasensitive immunoassays of
various proteins and antibodies. tumor markers (a-fetoprotein),
thyroid stimulating hormone (TSH) and immunoglobulins (Ma
et al., 2017; Min et al., 2018; Chen et al., 2019). Acridinium ester
is also able to successfully label strands of DNA to produce DNA
probes to emit CL (Komori et al., 2019). In a study, wild-type

p53 was immobilized on the surface of gold-functionalized
magnetic nanoparticles. 2′,6′-dimethylcarbonylphenyl-10-
sulfopropylacridinium-9-carboxylate 4′-NHS ester was mixed
with the complementary sequence of wild-type p53. The
two samples were mixed and the gold-conjugated magnetic
nanoparticles were subsequently separated. CL imaging showed
ultrahigh sensitivity and selectivity in detecting the p53 tumor
suppressor gene up to a limit of 0.001 ng/mL (Wang L.
et al., 2019). Several other applications include estimating
thermodynamic affinities of oligonucleotide probes that are
bound to simple synthetic as well as complex biological targets
and hybridization rate constants (Créton and Jaffe, 2001;
Nakazono et al., 2019).

FCLA (3,7-Dihydro-6-[4-[2-[N0 -(5-
Fluoresceinyl)thioureido]-
Ethoxy]phenyl]- 2-Methylimidazo[1,2-
a]pyrazin-3-One Sodium Salt)
FCLA is a highly efficient water soluble chemiluminescent agent
(He et al., 2002a). FCLA is an analog belonging to Cypridina
luciferin that efficiently reacts with superoxide anion (O−2 ) or
singlet oxygen (1O2) that emits luminescence via a dioxytane
intermediate (He et al., 2002a). OH− + NaOCl +H2O2, a
typical reaction system is involved in generating a singlet
oxygen which produces emission at about 532 nm (Wang Y.
et al., 2002). Researchers have developed a novel method to
diagnose superficial tumors by photodynamic diagnosis mediated
by CL probe containing FCLA (Wang J. et al., 2002). Wei
et al. (2011) utilized FCLA CL to monitor tumor necrosis in
response to photodynamic therapy. First the FCLA was injected
subcutaneously in mice, and light irradiation was provided after
a 1 h. A near linear relationship was observed between the
extent of damage from PDT, and the CL (Wei et al., 2011).
FCLA CL was also used recently to detect ROS generation
following DNA duplex-based photodynamic therapy against
retinoblastoma (Wei et al., 2016).

There are several examples in literature of coupling
chemiluminescent probes with enhancers such as US. Due
to US’ ability to penetrate deep within the tissues and remain
targeted to a small region, undesirable side effects can be
minimized and greater spatial information of the CL molecules
can be obtained (He et al., 2002b; Kobayashi and Iwasa, 2018).
Ultrasonic irradiation of water results in acoustic cavitation
producing •OH and •H, which form active oxygen species.
These oxygen species react with FCLA producing CL (He et al.,
2002b). He and colleagues observed that, when a sonosensitizer
(hematoporphyrin derivative) accumulating in tumor tissues
was exposed to ultrasound in vivo, FCLA reacted with the
resulting active oxygen species to emit CL. This CL was stronger
from the tumor region in comparison from other regions. He
reported that the application of US increased the intensity of
chemiluminescence emitted by FCLA (He et al., 2002b; Wei et al.,
2016) and it resulted in excellent signal-to-noise ration ratio of
a sonoluminescence image of tumorous mice on subcutaneous
injection of FCLA solution (He et al., 2002a).
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SECOND GENERATION OF
CHEMILUMINESCENCE:
ULTRASOUND-ENHANCED
CHEMILUMINESCENCE

There are many advantages to using US and CL simultaneously.
Since both US and CL are imaging techniques, they can be used
for dual imaging in order to accurately visualize the tissue of
interest. In addition, US can enhance the intensity of CL by
reducing light scattering while increasing spatial resolution. Both
of these approaches are described below.

Combination of US and CL for Dual
Imaging
In an in vivo study by Alhasan et al. (2012) on tumor (luciferase-
transfected PC3 cancer cell lines) bearing nude mice, D-luciferin-
based bioluminescent imaging (BLI), fluorescence imaging and
doppler ultrasound imaging techniques were simultaneously and
independently conducted. Both BLI and US were able to correctly
indicate time-dependent percent reduction in tumor blood flow
following the injection of arsenic trioxide (ATO) – a model
vascular disrupting agent (Figures 2A,B), and a correlation was
obtained (Figure 2C) with R2 > 0.77 (Alhasan et al., 2012). On
the other hand, fluorescence imaging did not show any changes
in the first 24 h following ATO administration. Jung et al. (2018)
developed curcumin-containing antioxidant vanillyl alcohol-
incorporated copolyoxalate (PVAX) nanoparticles, which can be
simultaneously used for anti-cancer therapy, peroxalate CL, and
amplification of ultrasound signals through generation of H2O2
triggered CO2 bubbles at ischemic sites. More recently, Liu et al.
(2019) used nanobubbles doped with luminol, 1,1′-Dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) and 1,1′-
dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate
(DiD) dyes for dual BLI and US imaging. The luminol could
detect myeloperoxidase activity in areas of inflammation and
emit a blue light. By integrating BRET and fluorescence
resonance energy transfer (FRET) using the DiI-DiD, the
light can be shifted into red light. This method was used in
combination with ultrasound imaging to get more information
on anatomical structure and vasculature (Liu et al., 2019).
This shows that US and BLI are useful tools that may be
used independently or simultaneously to obtain important
vasculature-related and anatomical information while providing
therapy. However, in majority of the cases described in recent
literature, US has been chiefly used as a tool for enhancing CL.

Mechanism of UECL
Although CL is widely used in tissue imaging, a chief concern
raised in literature is that the scattering light increases noises of
the detection. The increase in noises could be explained using
the following redox reaction, similar to the Fenton reaction
(McMurray and Wilson, 1999):

H2O2 HO¯ + HO•

Ox Red

(1)

FIGURE 2 | Images captured for tumor vasculature disruption before (top)
and 4 h after (bottom) injection of arsenic trioxide (8 mg/kg) using
(A) Bioluminescent and (B) US techniques. (C) Graph comparing US and BLI
in tumors as fractional signal versus baseline. Nude mice bearing
MCF7-mCherry-luciferase tumors were used. Reprint (Alhasan et al., 2012)
under open-access terms of Creative Commons Attribution License.

From Eq. (1), it could be interfered that, with the ubiquitous
appearance of oxidizing agents in tissues, free HO• are also
commonly produced within tissues. Subsequently, to increase
signal to noise ratios, one could reduce the background signals by
locally increasing production of H2O2 or free HO• of the target
tissue while reducing those amounts in the nearby medium.

The possibility of using US to enhance sensitivity of
CL was first discussed two decades ago in a non-tissue
mechanistic study by McMurray and Wilson (1999). Although
their system was non-tissue, it was proven that the intensity of
sonochemiluminescence, ISCL, was linearly increased with the
increase of US power up to 100 W. The study was conducted
at 10−3 M luminol and 10−4 M H2O2. McMurray proposed
that, at the air-liquid interface of the cavitation bubbles, water
and oxygen molecules were freed and more local free radicals
were created.

H2O→ HO− + HO• (2)

O2 → 2O• (3)

In term of mechanical and physical properties of tissues, it
has been shown that focused ultrasound (FUS) creates periodic
compression and rarefaction of tissues, which changes refractive
indices of tissues locally and allows less optical absorption
and scattering (Li and Wang, 2004; Murray et al., 2004).
Laser light can also be modulated with frequency of US. It
has been discussed in literature that tissues oscillate with US
frequency that subsequently produce harmonic interference to
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FIGURE 3 | Schematic design of ultrasound-enhanced chemiluminescence. Dash arrow and waves are mechanism and signals without ultrasound enhancement;
solid arrows and waves are mechanism and signals with ultrasound enhancement.

laser light (Li and Wang, 2004; Murray et al., 2004; Jarrett
et al., 2014). Meanwhile, a phenomenon called photon–phonon
interaction (Kempe et al., 1997; Jarrett et al., 2014) modulates
the frequency of the transmitted laser light. Consequently, laser
light is modulated to transverse deeper into tissues with less
reflection. A detailed schematic of the mechanism of UECL is
shown in Figure 3.

Effects of Ultrasound on
Chemiluminescent Signals
Since observing that chemiluminescent signals can be modulated
by US, there have been more research conducted to understand
this concept. A detail mechanism was proposed (McMurray
and Wilson, 1999), who suggested that ISCL was correlated
to free radical HO• concentration, which was confirmed
to be linearly proportional to γ-ray pulse radiolytic dose
or US power. More interestingly, the authors reported that
effective distances were strongly dependent on the alignment
of US waves. This means that the more focused the US
delivered, the more aligned or less scattered the luminescent
light was, and therefore the higher the resolution of the CL
signal recorded.

From Figures 4A,B, it can be clearly observed that,
with increased focus of US, the CL signals were also
correspondingly increased. This result indicates FUS can
significantly enhance sensitivity of CL (Figure 4C) by enhancing
the distance that the CL laser can travel (Figure 3). The
mechanism behind this is unclear; however, it might be
due to the fact that the temperature of focal points was
increased locally by the US, and it has been noted elsewhere
in literature that increases in temperature could increase
sensitivity of CL. Aslan et al. (2006) has previously reported

that all red, blue and green CLs were increased up to
75-fold through heating although in this case the heat was
introduced by microwaves.

In correlation with the findings by McMurray and Wilson
(1999) and Greenway et al. (2006) studied the effects of US power
and the distance of US probe from the sample, on CL signals
(Figure 5). The signals were reported to be significantly enhanced
with the distance of 2–8 mm, and was dependent on the US power
(between 60 and 126 W) (Greenway et al., 2006). In agreement
with McMurray and Wilson (1999) and Greenway et al. (2006)
suggested a mechanism where ultrasonication produces H2O2
that subsequently stabilized the short-lived free radicals HO•
as below:

HO• + H2O2 → O•−2 + H3O+ (4)

The stabilized O•−2 would then react with luminol and produce
increased signals. This mechanism is supported by the fact that
CL intensity has been reported to increase in alkaline solutions
(McMurray and Wilson, 1999; Miyoshi et al., 2001) where
reaction (4) is accelerated to the right and produce more O•−2 .
Recently, similar mechanism of O•−2 enhancing CL has been
proposed by Chen et al. (2014), where quantum dots utilized O•−2
to enhance the signals of CL. For FUS, it is able to control the
power and focal point, thus it concretes for the potential of US in
enhancing sensitivity of CL.

Recently, researchers have been studying UECLs on tissue
environment mimics. Huynh et al. (2013) studied FUS enhancing
CLs through a gel tissue phantom as a scattering medium.
Using 1 MHz US transducer and creating cavitation pressure
0.42 MPa, the authors detected luminescent objects at depth
of 7 mm with 10 times more sensitivity than traditional
luminescent methods (Huynh et al., 2013). The resolution was
reported at 3 mm. Huynh et al. (2013) also indicated that

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 February 2020 | Volume 8 | Article 25

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00025 February 5, 2020 Time: 18:8 # 9

Le et al. Ultrasound-Enhanced Chemiluminescence Imaging

FIGURE 4 | US-dependent luminol CL when using (A) flat and (B) wedge-ended sonoprobe tips. Bell-shape distribution (C) indicated highly penetration of US in
supporting CL. Reproduced with permission from McMurray and Wilson (1999).

the application of microbubbles, which were FUS contrast
agents, could enhance CL. In agreement with this research,
Kobayashi et al. (2015) also reported that the sensitivity of
POCL was increased along with the increase of inner pressure
up to 6 MPa created from FUS. A clear increase and decrease
in CL signals were recorded with on and off stimulation of
FUS (Figure 6).

We can see from the research reviewed above that
theoretical studies and lab bench experiments have
proven that US, especially FUS, does have beneficial
effects on increasing the sensitivity of CL. However,
there is a need for evidence of efficacy on tissue-
based systems. For this, scientists have mimicked tissue

microenvironments using turbid medium and ex vivo tissues
for their studies.

FUS-CL in Turbid Microenvironments
In order to mimic tissue environments, agarose phantom is
usually used as it has similar scattering coefficient as that
of native tissues following Monte Carlo model (Wang et al.,
1995). Since native tissues may vary from species to species,
phantoms typically have a scattering coefficient from 1 to
80 cm−1 (Kobayashi et al., 2016; Ahmad et al., 2017; Zhu et al.,
2018). Through phantoms, transparent silicon tubes were run
at different depths. CL solutions passing through the silicon
tubes were recorded with or without stimulation of US that is
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FIGURE 5 | CL intensity was increased with the increase of ultrasonication
power. Reproduced from Greenway et al. (2006) with permission from The
Royal Society of Chemistry.

focused at the center of the tubes. Minimum distance between
two tubes that generate non-identical signals are considered
as resolution. Schematic design of UECL imaging system is
illustrated in Figure 7.

Using FUS at different stimulation levels, authors not only
observed 10 times higher signal-to-noise ratio (Zhu et al., 2018)
for 1064 nm luminescent laser but also increased sensitivity or
better spatial resolution. The best resolution was reported at
2 mm (Ahmad et al., 2017; Klein et al., 2018) using 640 nm
laser or 18F lasers. The deepest penetration were obtained
at 25–30 mm (Kobayashi et al., 2016) recorded on agarose
phantom using POCL system. Interestingly, focused US at a
low power could enhance POCL using indocyanine green (ICG)
as the fluorophore (Kobayashi et al., 2016). In most cases in
literature, we can see that the more powerful the FUS, the
greater the penetration and resolution. For instance, once FUS
was increased from 1 to 2 MHz, signals were 10 times stronger
as normalized to background (Klein et al., 2018; Zhu et al.,

2018) while increasing FUS from 2 to 3 MHz allowed fourfold
deeper penetration and 33% better resolution (Ahmad et al., 2017;
Zhu et al., 2018).

FUS-CL in ex vivo Studies
FUS-enhanced CL have also been studied ex vivo on dissected
tissues and outcomes have been promising. Ahmad et al.
(2017) observed clear peaks of two chemiluminescent sources
(encapsulated inside plastic tubes) placed at 10 mm distance
in chicken breast tissue at depth of 20 mm. Meanwhile, the
experiments of Kobayashi et al. (2016) were even more interesting
that they reached resoluble signals at a depth of 25 mm
(Figure 8) in porcine tissues. On the other hand, Dawood (2016)
demonstrated that greater penetration depth of lasers [637, 808,
or 1064 nm Nd:YAG (Neodymium-dopped Yttrium-Aluminum-
Garnet (Julian, 2016) laser probes] was achieved through 10 mm
bovine tissue with help of FUS (Dawood, 2016) for the fact
output intensity was increased by 35–45% while attenuation was
decreased 3–10%. The more powerful the FUS, the greater the
penetration depth of the laser light in the tissue, without having
to increase the laser power (Dawood, 2016). This clearly indicates
the potential of US to enhance CL by allowing greater penetration
of laser through decreasing their attenuation coefficient while
passing through the tissues. To summarize, we can see from
literature that US at high power (typically 3 MHz and above
or 5 W/cm2) can enhance CL signals and can enable imaging
of tissues as deep as 30 mm at a resolution as high as 2 mm.
Summary of FUS enhanced CL is provided in Table 2 above.

CONCLUSION AND FUTURE OUTLOOK

The significant enhancement of CL with the help of US has been
proven by theoretical demonstration, using tissue mimics, and by
ex vivo studies. The enhanced spatial information and reduced
light scattering observed when combining ultrasound with CL is
promising for deeper imaging of biological tissues. Among all the

FIGURE 6 | (A) CL intensity was increased with the increase of FUS pressure. (B) Changes in CL signals in the presence and absence of FUS triggers. Reproduced
from Kobayashi et al. (2015) with permission from Applied Physics Letters.
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FIGURE 7 | Schematic design of an imaging system utilizing Ultrasound-enhanced chemiluminescence.

mechanisms being studied for CL enhancement using US, the use
of US modulated laser light has shown most promise for practical
medical imaging. The more focused and powerful the US, the
deeper the penetration, and better the resolution CL signals that is
obtained. US at 3 MHz or 5 W/cm2 and above has given the most
enhancement to CL according to literature, as described above.
At this setting, tissues have been imaged up to a depth of 30 mm
with a good resolution of 2 mm. Additionally, US also has the
advantage of providing computational data for data processing,
and this may also advance the UECL further (Pei and Wei, 2019).

FIGURE 8 | (A) Images of an incised porcine muscle tissue in which a CL
target capsule consisting of a 0.5 mm silicone tube, was embedded.
(B) Two-dimensional tomographic image obtained with the slab of porcine
muscle. The tissue, measuring 50 mm (X) × 50 mm (Y), had a CL target
embedded within it to a depth of 25 mm. Reproduced with permission from
Kobayashi et al. (2016).

There are, however, a few drawbacks to this technology.
A major cause of concern is the local heat generated by US. The
more the focus, the greater the heat generated. Although local
heat generated by US enhances intensity and resolution of CL
images, generation of heat beyond the endurance of cells and can
lead to tissue damage. According to a review of previous literature
by Yarmolenko et al. (2011), the threshold damage temperature
is 42◦C, and cumulative equivalent minutes at 43◦C (CEM43)
of more than 1 usually causes damage to tissues. To avoid the
risks of overheating the tissues under consideration, the exposure
duration should be optimized. For example, in a research by Pei
et al. (2014), a short HIFU exposure of 0.3 s or 300 ms limited the
temperature to below 43◦C. According to their calculations, the
CEM43 was 0.0013 (Pei et al., 2014). Since primary cells in tissues
are vulnerable to heat, and focused UECL is limited in its ability
to control local heat, there needs to be detailed investigation into
methods to overcome this limitation of FUS so that it can be used
broadly without tissue damage.

With the emerging interest in FUS studies and the
development of sophisticated technology, UECL is expected
to play a greater role in tissue and molecular imaging in
the coming years. In the future, we can expect to see more
sophisticate formulations involving drug-loaded microbubbles
tagged with CL probes, for theranostic applications. The
microbubbles can be used not only for imaging but also for
delivering therapeutics for treatment. This would mean that
under stimulation of US, laser light can be modulated to
penetrate deeper into tissues while microbubbles will deliver
the therapeutics in response to the US stimuli. In return,
the chemiluminescent images may give in situ feedback about
the delivery process. The electroluminescence upconversion
particles, which are already gaining significant attention in
recent years, can also be combined with ultrasound to further
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TABLE 2 | Summary of ex vivo and in vivo applications of UECL.

Ultrasound type Power CL probe Increased signalξ (folds) Tested environment Depthξ Spatial
resolutionλ

Reference

FUS 2 MHz Nd:YVO4 (Neodymium-doped
yttrium orthovanadate) laser with
1064 nm wavelength; Embedding
aluminum foil as target

10 less signal-to-noise Agarose phantom from 20%
w/v intralipid. Scattering
coefficient 1–4 cm−1

5 mm 3 mm Zhu et al., 2018

FUS 3.5 MHz; 1 MPa 640 nm emitting CL probe ∼7-folds Agar phantom from agar and
polystyrene microspheres.
Scattering coefficient 80 cm−1

∼20 mm 2 mm Ahmad et al., 2017

FUS 1 MHz; 10 MPa 18F, tracking Cerenkov photons N/A Agarose phantom containing
250 µM voxels. Scattering
coefficient 10 cm−1

5 mm 2 vs. 6 mm
without US

Klein et al., 2018

Low power FUS < 0.14 W/cm2 POCL system Agarose phantom from 10%
w/v intralipid, 20% w/v glycerol
and 2% w/v agarose;
Scattering coefficient 15 cm−1

25–30 mm 6 mm Kobayashi et al., 2016

Low power FUS <0.14 W/cm2 POCL system ∼1.5 Porcine muscle 25 mm Kobayashi et al., 2016

FUS 3.5 MHz; 1 MPa 640 nm emitting CL probe ∼9–11-folds Chicken breast ∼20 mm 10 mm Ahmad et al., 2017

FUS 3.3 MHz; 637 nm diode, 808 nm diode, and
1064 nm

∼1.35–1.45-fold in power
output;

Bovine muscles 10 mm Dawood, 2016

5 W/cm2 Nd:YAG lasers ∼7–10% decrease in
attenuation (637 and 808 nm
lasers); ∼3% decrease in
attenuation (Nd:YAG lasers)

ξ : larger is better; λ: smaller is better.

Frontiers
in

B
ioengineering

and
B

iotechnology
|w

w
w

.frontiersin.org
12

February
2020

|Volum
e

8
|A

rticle
25

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00025 February 5, 2020 Time: 18:8 # 13

Le et al. Ultrasound-Enhanced Chemiluminescence Imaging

enhance their properties for imaging. These particles possess
good biocompatibility but low toxicity, high photostability and
low photobleaching (Jin et al., 2018; Gu et al., 2019), and they
are able to convert near infra-red (NIR) at deep penetration
up to 10 mm (Yang et al., 2012; Jin et al., 2018; Gu et al.,
2019) into visible radiation. Their photostability plus penetration
ability and the aforementioned UECL ability to modulate
NIR lasers ex vivo could possibly return in synergistic effects.
Additionally, a label-free imaging technique called non-linear
optical microscopy (NLOM), has been studied for both precision
and safety advantages. The principle of label-free non-linear
optical microscopy is based on two-photon excited fluorescence
(TPEF) from cofactors nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FAD+) that provides
high-resolution cellular redox imaging (Hou et al., 2018). More
interestingly, this technique shares the same redox reactions to
CL and UECL, therefore the two techniques could possibly image
the tissues simultaneously and complement each other. Another
technique that could also complement CL and UECL for imaging
of shallow tissues is surface-enhanced Raman scattering (SERS).
It has been reported that SERS have been successfully applied
in small animal in vivo diagnostic and cancer detection (Henry
et al., 2016). When using nanotags as enhancers, SERS alone or in
combination with Spatially offset Raman Spectroscopy (SESOR),
could be used to image at different depths [∼5 mm with SERS
(Stone et al., 2010) and 45–50 mm with SESOR (Stone et al.,
2011)] on porcine tissues. This combination is therefore expected
to provide complementary information to make the imaging
more comprehensive.

High intensity focused US, or HIFU, is also attracting more
interest from researchers and we can expect to see more
research into the use of HIFU combined with CL in the

future. The development of this technology allows scientists
to have greater control on the focus and localization, besides
controlling the heat generated. Several versions of HIFU,
namely ultrasound-guided and MRI-guided HIFU, have been
tested preclinically and in pilot studies, for breast cancer,
liver cancer, pancreatic cancer (Maloney and Hwang, 2015)
and prostate cancer (van Velthoven et al., 2016). MRI-guided
HIFU is clinically approved in the European Union for
palliative treatment of bone lesions (Maloney and Hwang,
2015). The UECL technique by HIFU therefore has high
translational potential. It will significantly enhance physiological
imaging of living organisms by providing high resolution
images, which will aid in providing accurate diagnosis and
therapy in the future.
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