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Abstract: Organisms that thrive in extremely acidic environments (≤pH 3.5) are of widespread
importance in industrial applications, environmental issues, and evolutionary studies. Leptospirillum
spp. constitute the only extremely acidophilic microbes in the phylogenetically deep-rooted bacterial
phylum Nitrospirae. Leptospirilli are Gram-negative, obligatory chemolithoautotrophic, aerobic,
ferrous iron oxidizers. This paper predicts genes that Leptospirilli use to survive at low pH and
infers their evolutionary trajectory. Phylogenetic and other bioinformatic approaches suggest that
these genes can be classified into (i) “first line of defense”, involved in the prevention of the entry of
protons into the cell, and (ii) neutralization or expulsion of protons that enter the cell. The first line of
defense includes potassium transporters, predicted to form an inside positive membrane potential,
spermidines, hopanoids, and Slps (starvation-inducible outer membrane proteins). The “second line of
defense“ includes proton pumps and enzymes that consume protons. Maximum parsimony, clustering
methods, and gene alignments are used to infer the evolutionary trajectory that potentially enabled
the ancestral Leptospirillum to transition from a postulated circum-neutral pH environment to an
extremely acidic one. The hypothesized trajectory includes gene gains/loss events driven extensively
by horizontal gene transfer, gene duplications, gene mutations, and genomic rearrangements.

Keywords: Nitrospira; extreme acidophile; acid mine drainage (AMD); bioleaching; evolution; acid
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1. Introduction

Although microorganisms such as Escherichia coli, Vibrio cholerae, and Salmonella spp. are
neutrophiles, some strains survive acid shock during transient passage through low pH conditions
such as in the stomach (<pH 3.5). In addition, the neutrophile Helicobacter pylori survives and grows in
the stomach by creating its own near neutral pH environment via the hydrolysis of urea to produce
CO2 and NH3 that buffer the acidity of the local environment (reviewed in [1]). Genes and mechanisms
that these microorganisms use to survive acid shock and the regulatory networks that control their
expression were reviewed in [2–6]. Due to the transitory nature of the acid shock response, these
neutrophiles have been dubbed “amateur” acidophiles [5]. In contrast, extreme or “professional”
acidophiles are organisms that thrive in extremely low pH environments (≤pH 3.5). They include
Bacteria, Archaea, and Eukarya and are found widely distributed across the Tree of Life (reviewed
in [1,7–10]).
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Extreme acidophiles maintain a cytoplasmic pH close to neutral while confronted with a >104 fold
proton gradient across the cytoplasmic membrane [1,8,11]. Extreme acidophiles use many of the
same mechanisms to cope with acid resistance as the amateur acidophiles, but also have additional
mechanisms that allow them to cope with greater proton gradients [1]. Extreme acidophiles have
several “first line” of defense mechanisms against low pH that function both within and outside
the cytoplasmic membrane to exclude protons from entering the cell. They also have second line of
defense mechanisms that consume or expel protons that have penetrated the cytoplasmic membrane.
Less is known regarding the acid response mechanisms of extreme acidophiles than their amateur
counterparts and especially the evolutionary events that resulted in the ability to grow at very low
pH values.

The ”first line” of defense of extreme acidophiles includes the development of an inside positive
membrane potential (Donnan potential), such that there is a chemiosmotic barrier that inhibits positively
charged protons from crossing the membrane and acidifying the cytoplasm. The membrane potential is
likely generated by potassium ions (and to a lesser extent, sodium ions) accumulated via the Kch, Kdp,
and Trk K+ channel proteins [12–14]. Kch is a member of the voltage-gated ion channel superfamily
mostly studied in eukaryotes, wherein they play a role in membrane potential regulation. The
KdpFABC complex is a potassium transporting P-type ATPase with a high affinity to potassium [15],
while the products of three unlinked genes (trkAEH) are necessary for Trk activity in E. coli and similar
enterics [16]. Evidence to support the role of potassium ions in forming this inside positive membrane
potential includes the observation that removing potassium and/or sodium decreases the ability of
Sulfolobus spp. [12,17] and Acidithiobacillus thiooxidans [18] to cope with acid resistance. All three of
these potassium transporters have been previously reported in Leptospirillum ferriphilum as part of its
pH homeostasis mechanism [13]. The internal positive membrane potential is a key difference between
professional acidophiles compared to amateur acidophiles [19]. However, definitive proof of the role
of potassium in generating the membrane potential is still lacking.

A second cytoplasmic membrane-associated method to reduce proton penetration into the cell
involves the use of spermidine. Spermidine is a positively charged, aliphatic polycation polyamine
that together with spermine, putrescine, and cadaverine are found in all three domains of life. These
polyamines are involved in a wide range of biological functions including acid stress responses
(reviewed in [3,20]). The mechanism by which spermidine protects against acid stress is not completely
understood but it is reported that it stimulates RpoS (σ38) synthesis in E. coli that, in turn, regulates
many genes involved in the acid stress response [21–23]. Spermidine has been detected in Leptospirillum
ferrooxidans [24] and speEH, potentially involved in its biosynthesis, and is also predicted in the
L. ferriphilum genome [13]. Orthologs of speEH have higher transcript numbers during acid stress in
the extreme acidophile Acidithiobacillus ferrooxidans, an observation that is consistent with the idea that
they may be involved in acid resistance [25].

Hopanoid membrane lipids have also been shown to be involved in the first line acid resistance
response [26,27]. Hopanoids have diverse proposed functions including modulating membrane fluidity
and permeability. They may also be involved in other stress responses including oxidative stress and
high temperature [28–30]. Hopanoid (hpn) genes are often found in gene clusters (e.g., [31]) and code for
enzymes that either synthesize hopanoids from squalene or modify them, yielding different hopanoid
molecules that may have a specific stress related function in various strains [26]. Hopanoids are
present in acidophiles [32,33], and their RNA transcripts are detected in acid mine drainage (AMD) [34].
Deletion of hopanoid synthesis genes in neutrophiles resulted in impaired growth at low pH [28,30].

The starvation-inducible outer membrane protein (Slp) has been implicated in acid resistance.
For example, in enteropathogenic E. coli, slp is located in a gene cluster that has been associated
with acid resistance [35]. Co-expression with other acid resistance genes of this cluster has been
reported [36]. Although the details of the mechanism of action of Slp remain unknown [37], it is
proposed that it prevents the entrance of organic acids such as succinate, lactate, and formate across
the outer membrane [38]. Organic acids have been shown to be highly toxic to acidophiles [39].
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Second line of defense mechanisms include proton antiporters such as NahP-/NhaA-type Na+/H+

exchangers. These proteins constitute a large family of integral membrane proteins with roles related
to homeostasis of sodium in high salt environments and regulation of intracellular pH [40]. In addition,
voltage gated ClC-type Cl−/H+ transporters [41] are essential for the survival of E. coli under extreme
acid stress [42]. In addition to its proton exporting function, the ClC channel is also proposed to
prevent inner-membrane hyperpolarization (inner positive) in E. coli at extremely acidic pH as a
result of the action of other acid resistance systems such as arginine and glutamate decarboxylation
systems [43]. A similar function for ClC in acid resistance has been proposed in the amateuracidophile
Bacillus coagulans [44].

Another second line of defense mechanism is the use of amino acid decarboxylation systems
such as the Gad glutamate decarboxylase system. These systems have two components: (i) an inner
membrane amino acid antiporter that imports the amino acid in exchange for its decarboxylated
form and (ii) a cytoplasmic decarboxylase that catalyzes the proton-consuming decarboxylation of
an amino acid [45]. Glutamate decarboxylase is the major response in E. coli under extreme acid
conditions [6]. H+-consuming reactions during acid stress have also been observed in Acidithiobacillus
caldus [33]. Several amino acid decarboxylases genes are present in Leptospirillum, e.g., [13,46], and
transcripts coding for glutamate, arginine, and lysine decarboxylation have been detected in an AMD
community [34].

In this study, we predict and analyze both first and second line of defense acid resistance systems
in the extremely acidophilic genus Leptospirillum. We create a global model of pH homeostasis
mechanisms that suggests how this genus can survive in hyper-acidic conditions. We use parsimony
to infer the evolutionary trajectories of the gene gains/losses and gene mutations that are hypothesized
to be involved in acid resistance. The Leptospirillum genus was chosen as a model system for this
study because it is one of the most extreme bacterial acidophiles known with a growth pH range
between 0.7 and 2.2 [47,48]. In addition, fluorescent in situ hybridization and “omic” studies highlight
Leptospirillum as one of the main active taxa in extremely low pH natural and man-made acid mine
drainage environments [49–58] and in commercial copper and gold biorecovery operations [47,59].

2. Methods

2.1. Genomes and Quality Assessment

Fifteen complete and partial genome sequences from the Leptospirillum genus were downloaded
from the NCBI RefSeq genomic database, National Center for Biotechnology Information (NCBI),
and Joint Genome Institute’s IMG-M databases (https://img.jgi.doe.gov/) in August 2018. In addition,
the Nitrospira marina Nb-295 genome (IMG Genome ID 2596583682, https://img.jgi.doe.gov/) was
downloaded as an outgroup for the Leptospirillum genus. Quality assessment of the 16 Nitrospirae
genomes was carried out by CheckM [60], defining >90% base completeness and <10% contamination
as high-quality genomes according to a bioinformatics pipeline (Figure 1).

https://img.jgi.doe.gov/
https://img.jgi.doe.gov/
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Figure 1. Bioinformatic pipeline outlining the strategy used for developing a model of the evolution of
acid resistance (AR) mechanisms in the extremely acidophilic. Leptosp. = Leptospirillum genus.

2.2. Phylogenetic Analysis

16S rRNA gene sequences from organisms within the Nitrospirae phylum were identified by
a BLASTn comparison against the SILVA [61], RDP [62], and GREENGENES rRNA databases [63]
with an E-value threshold of 1E−5. Gene sequences with a minimum length of 1400 nucleotides were
selected [64]. Alignments of 16S rRNA sequences were generated with MAFFT with the L-INSI iterative
refinements option [65,66], MUSCLE [67], and T-Coffee alignment tools [68]. A maximum-likelihood
tree was constructed with IQTREE [69], and the best-suited evolutionary models were selected using the
model test tool implemented in IQTREE [70] according to the Bayesian (BIC) and Akaike information
criterion (AIC). The robustness of the inferred tree was assessed using the nonparametric bootstrap
procedure implemented in IQTREE (1000 replicates of the original datasets) with the ultrafast bootstrap
option [71]. The final tree was visualized using Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

2.3. Prediction of Mobile Genetic Elements and Genome Islands

Insertion elements and transposases were predicted and classified using TnpPred [72] and
ISsaga [73,74]. Sigi-HMM [75] was used to predict genes obtained by Horizontal Gene Transfer (HGT).
IslandViewer 4 [76] was used to predict genomic islands. Genome contexts of predicted acid resistance
genes, associated hypothetical genes, and predicted mobile elements were analyzed using STRING [77]
and by manual inspection using MAUVE [78] and Artemis [79].

2.4. Identification of Genes Related to Low pH Resistance

Genes reported to be involved in acid resistance were identified through an extensive literature
search [4–6,38,80–87]. A search for similar genes in Leptospirillum and Nitrospira marina Nb-295 genomes
was carried out through BLASTp comparison [88] using a minimal E-value cutoff of 1e−5. Synteny blocks
and conservation of genetic context between Nitrospiraceae genomes were determined by MAUVE [78].
Genomic contexts were visualized by Artemis [79]. Conservation of sequences and domains within
the Leptospirillum genus were analyzed and visualized by the WebLogo [89,90] and AliView [91]
alignments tools. Selected Nitrospiraceae genes were compared against the UniProt and NCBI databases
by BLASTp to identify orthologous proteins in other microorganisms. This collection of sequences
was aligned with MAFFT using the L-INSI iterative refinements option [65,66]. IQTREE was used to

http://tree.bio.ed.ac.uk/software/figtree/
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construct a maximum-likelihood tree with 1000 replicates by the ultrafast bootstrap option [71] and to
identify the best-suited evolutionary model by the Bayesian (BIC) and Akaike information criterion
(AIC) [70]. Phylogenetic trees were visualized with Figtree (http://tree.bio.ed.ac.uk/software/figtree/)
and iTOL [92].

2.5. Evolutionary Pressures on Acid Resistance Genes

Selective pressure on genes was determined by calculating the ratio of non-synonymous DNA
substitutions (Dn) to synonymous DNA substitutions (Ds) in the coding region [93]. Individual genes
(DNA and amino acid sequences) from all protein families were extracted using custom Perl scripts.
Amino acid alignments were constructed using the MAFFT L-INSI iterative refinements option [65,66]
and MUSCLE [67] and used as input for PAL2NAL [94] in conjunction with their nucleotide sequences
to obtain the corresponding codon alignments for gene families. Dn/Ds ratios were assigned for all
possible pairwise comparisons within a protein family and calculated based on the codon alignments
using the SeqinR package of the R project [95]. Mean Dn/Ds ratios were assigned for individual gene
families by averaging all pairwise ratios within each family. Dn/Ds ratios of > 1 indicated beneficial
mutations, and ratios of <1 indicated purifying selection [96].

2.6. Mapping Evolutionary Events

The inference of branch-site-specific events was made using the 16S rRNA gene tree of Leptospirillum
genomes with N. marina Nb-295 as the outgroup. The presence and absence of genes related to acid
resistance and associated genes located within the same genomic context were mapped onto each
branch of the phylogenetic tree to model gene gain, loss, and modification events. Inference of
evolutionary events was made using maximum parsimony criteria [97,98].

3. Results and Discussion

3.1. Genomic Features of Leptospirillum Genomes

Twelve publicly available genomes of the Leptospirillum genus were analyzed together with the
genome of the neutrophile N. marina. N. marina is the closest phylogenetic relative of the Leptospirilli
with available genomic data (Table 1). Five of the genomes were complete, while eight (including N.
marina) were permanent drafts. “Leptospirillum rubarum”, Leptospirillum “5-way CG”, Leptospirillum
“C-75”, and “Leptospirillum ferrodiazotrophum” were from metagenomic samples. The G + C content of
Leptospirillum Group I, II, and III genomes were 50.1, 54.0, and 57.5%, respectively. Leptospirilli included
both mesophiles and moderate thermophiles and grew between 40–43 ◦C. However, L. ferrooxidans
C2-3, L. ferriphilum DSM 14647T, and L. ferriphilum Sp-Cl were mesophiles with growth temperatures
between 30◦C and 37◦C. Leptospirillum sp. “UBA BS” (Group IV; NCBI Accession: PRJNA176861 [32])
was not included in this study because the genome did not meet the quality criteria of CheckM [60],
exhibiting only 41% completeness with 38% contamination.

http://tree.bio.ed.ac.uk/software/figtree/
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Table 1. Properties of organisms and their genomes used in this study.

Genome Size (Mb) # Predicted
Genes G + C (%) pH Temp (◦C) Status 1 NCBI Accession 2 Geographical Origin Refs

Leptospirillum
ferrooxidans C2-3 2.5 2587 50.0 1.8 30 C NC_017094.1 Mount Oyama, Miyake, Japan [99]

Leptospirillum
ferriphilum DSM 14647 2.6 2687 54.1 1.4–1.8 37 C NZ_OBMB00000000.1 Enrichment culture, Peru [13]

Leptospirillum
ferriphilum ML-04 2.4 2475 54.6 2.5 40 C NC_018649.1 Sulfide hot spring, Yunnan, China [46]

Leptospirillum
ferriphilum YSK 2.3 2361 54.1 1.6 40 C NZ_CP007243.1 Dexing copper mine, JiangXi, China [100]

Leptospirillum
ferriphilum DX 2.3 2381 54.5 1.5 40 D NZ_MPOJ00000000.1 Dexing copper mine, JiangXi, China [101]

Leptospirillum
ferriphilum ZJ 2.3 2449 54.7 1.5 40 D NZ_MPOK00000000.1 Zijinshan copper mine, Fujian, China [101]

Leptospirillum
ferriphilum Sp-Cl 2.4 2552 54.4 1.5 37 D NZ_LGSH00000000.1 Spence mine, Chile [59]

Leptospirillum sp.
“CF-1” 2.7 2731 54.6 1.6–1.7 40 C NZ_CP012147.1 Iron Mountain, CA, USA [102]

Leptospirillum sp. “C75” 2.6 2528 54.4 0.7–1.2 40–43 D GCF_000262365.1 Iron Mountain, CA, USA [103]
Leptospirillum sp.

“5-way CG” 2.7 2633 51.5 0.8 42 D DS995259.1–DS995275.1 Iron Mountain, CA, USA [104]

“Leptospirillum
rubarum” 2.6 2654 54.7 1.1 41 D GCA_000205145.2 Iron Mountain, CA, USA [52]

“Leptospirillum
ferrodiazotrophum” 2.8 2727 57.5 1.1 41 D GG693851.1–GG693892.1 Iron Mountain, CA, USA [52]

Nitrospira marina
Nb-295 4.6 4276 50 6.4–7.5 30 D 2596583682 Gulf of Maine, USA ‡

1 Sequence status where C: Complete, D: Draft. 2 NCBI RefSeq accession numbers are provided; if not available, then NCBI RefSeq assembly IDs are provided. ‡ IMG genome ID
(https://img.jgi.doe.gov/). pH and temperature for organismal growth come from culture experiments or from in situ environmental measurements.

https://img.jgi.doe.gov/
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3.2. Phylogenetic Relatedness between Leptospirillum Species and Other Members of the Nitrospirae Phylum

A phylogenetic tree of the members of the Nitrospirae phylum was developed based on 16S rRNA
gene sequences (Figure 2a). The tree was rooted using the validated Rubrobacter radiotoleransT DSM
5868 as an outgroup. Three species of Leptospirillum can be distinguished in the phylogenetic tree:
L. ferrooxidans (Group I), L. ferriphilum (Group II), and “L. ferrodiazotrophum” (Group III) with bootstrap
support ≥ 60% (Figure 2a). This tree was consistent with published trees of Leptospirillum [51,101,105].
The phylogenetic branching points of the members of Group II had insufficient resolution to be
separated (Figure 2a). Therefore, the phylogenetic tree was also presented as a cladogram (Figure 2b),
showing their predicted branching order with bootstrap values. Based on the measurement of genetic
distance, it was shown that N. marina Nb-295 was the closest extant relative with a sequenced genome
to the Leptospirillum genus.
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Figure 2. 16S rRNA phylogeny and cladogram of Leptospirillum species with sequenced genomes used
in this study. Clades belonging to Leptospirillum Groups I (yellow), II (green), and III (red) are indicated.
(a) Phylogeny of the Leptospirillum genus inferred from 16S rRNA gene sequences. Filled circles at
the nodes indicate bootstrap support ≥ 60% and open circles bootstrap support < 60%. The scale bar
indicates the number of nucleotide substitutions per site. (b) Cladogram of the Leptospirillum genus
derived from the 16S rRNA gene phylogenetic tree using N. marina as an outgroup. The cladogram
shows the predicted branching order of the Leptospirillum genus. Bootstrap values are derived from
Figure 2a. Color coding is the same as shown in Figure 2a.

3.3. Gene Inventories

Genes with predicted or experimental evidence for functions related with first and second lines of
defense to low pH environments were identified in the literature. A list of the genes used, their NCBI
accession numbers, and their predicted features are provided in Supplementary Table S1.

3.4. First Line of Defense

3.4.1. Membrane Potential and Potassium Transporters

Kch, potentially encoding a K+ channel protein, was identified in all Leptospirillum genomes, but not
in N. marina. One possible explanation for this is that kch was incorporated into the Leptospirillum lineage
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by HGT after its separation from the N. marina lineage. Alternatively, kch was present in the last common
ancestor and was lost in the N. marina lineage. Examination of the NCBI database using BLASTp
showed that the best hits of the Leptospirillum Kch were with proteins of the Acidithiobacillus genus
together with several other known acidophiles (Supplementary Figure S1). These microorganisms are
frequently found in extremely acidic environments populated by Leptospirillum (e.g., [34,56,106,107]),
strongly suggesting that they have shared kch via HGT. In addition, this result was consistent with the
contention that kch is associated with acid resistance.

In Leptospirillum Group III, kch was adjacent to, but divergent from, a gene potentially encoding a
phage holin-like protein that is involved in stress response and other functions (reviewed in [108]). In
Leptospirillum Groups I and II, additional copies of the phage holin were located close to predicted
genes encoding DNA uptake competence functions (ComEC). These are thought to be one of the major
components involved in HGT (reviewed in [109]). In Leptospirillum Groups I and II, kch was clustered
with two other predicted acid resistance genes, slp8 and gadA (discussed in Sections 3.4.4 and 3.5.2,
respectively). One possibility is that kch, slp8, and gadA entered the Leptospirillum genome by HGT,
possibly via a phage mediated uptake mechanism.

A kdpABC gene cluster potentially encoding a potassium transporting Kdp P-type ATPase was
found in all the Leptospirillum genomes (Figure 3). Downstream of the kdp cluster, there was a predicted
BBP2 porin, a putative gadC2a permease, followed by another K+ sensing histidine kinase with a
response regulator CitB. This cluster may be associated with K+ regulation. According to STRING
analysis [77], this gene cluster was co-expressed in other species, suggesting that it was an operon.
Some Group II genomes contained a predicted transposase (tnp3) associated with the insertion of two
hypothetical genes. There was also an insertion of two hypothetical genes just upstream of gadC2a.
The functions of the hypothetical genes remain unknown.
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Figure 3. Phylogenetic distribution and genomic contexts of genes predicted for Kdp potassium uptake.
N. marina, which lacks these genes, is included as an outgroup. Color coding of genes: red = Kdp genes,
purple = orphan hypothetical genes, grey = additional genes whose genomic context is conserved,
orange = predicted mobile elements and their remnants (* tnp3 inserted only in CF-1, ** hyp4 inserted
only in the YSK strain), and black = gadC2A potentially involved proton export (see Section 3.5.2).

TrkA was identified in all Leptospirillum genomes and in the genome of N. marina. Comparative
amino acid sequence analysis indicated that Leptospirillum trkA was found in a cluster that was separate
from other Nitrospira (Supplementary Figure S2). An extremely large Dn/Ds ratio was observed
(~1) between trkA of Leptospirillum compared to other Nitrospira, suggesting that it could have been
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vertically inherited from a likely neutrophilic common ancestor of Leptospirillum and other Nitrospira
and then subjected to intense selective pressure to adapt to an acidic environment. Once adapted,
it underwent a few additional changes, as shown by extremely low Dn/Ds ratios (~0.05) within the
Leptospirillum genus (Supplementary Figure S2).

3.4.2. Spermidine Biosynthesis and Associated Genes

The Leptospirillum genomes were searched for genes potentially encoding aliphatic polycation
polyamines. No genes encoding for spermine or cadaverine biosynthesis were detected in any of the
genomes. However, a conserved cluster of four genes potentially encoding spermidine biosynthesis
was predicted in all three Leptospirillum groups, extending the earlier prediction of spermidine genes in
in L. ferriphilum [13]. This cluster was not detected in N. marina (Figure 4 and Supplementary Figure
S3). Three of the genes in the cluster were predicted to encode the biosynthesis of spermidine from
S-adenosyl-L-methionine (SAM): speH encoding S-adenosylmethionine decarboxylase, speE encoding
spermidine synthase, and an odc-like gene predicted to produce putrescine from ornithine (Figure 4a,b).
The fourth gene (hyp4) encoded a conserved hypothetical protein UPF0182 found in many organisms
in the same genomic context, but whose function remains unknown. UPF0182 was predicted to have a
signal peptide for protein export and six transmembrane regions and was most likely to be an inner
membrane protein.
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Figure 4. (a,b) Predicted spermidine biosynthesis genes and pathways of Leptospirillum. (a) Phylogenetic
distribution and genomic contexts of spermidine biosynthesis genes. Color coding of genes: red =

spermidine biosynthesis genes, purple = orphan hypothetical genes, orange = mobile elements and
their remnants. * tnp1 was observed only in strain “CF-1” of Group II. (b) Predicted functions of the
spermidine biosynthesis genes. (c,d) Heat maps of the nucleotide sequence identity of speE (c) and
speH (d) in Leptospirillum. Red coloring indicates 100% nucleotide sequence identity, and numbers
indicate the percent nucleotide identity.
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An additional upstream gene, termed dgc1 (for diguanylate cyclase), was found only in Group II
(Figure 4). This gene contained a predicted GGDEF domain and three associated GAF superfamily
domains. In other organisms, the GGDEF domain is involved in cyclic diguanosine monophosphate
turnover and the production of the secondary messenger C-di-GMP (reviewed in [110]). A functional
GGDEF gene was reported in the extremely acidophilic genus Acidithiobacillus, although it was
associated with the EAL rather than the GAF domains [111,112]. The secondary messenger C-di-GMP
was implicated in the regulation of biofilm formation and other functions in many bacteria [113].
Spermidine has also been associated with both the formation and inhibition of biofilms in other
bacteria [30,31].

All three Leptospirillum groups contained a hypothetical orphan gene (hyp1) upstream of the
spermidine cluster, and Group III contained, in addition, two predicted hypothetical orphan genes
downstream (hyp2 and hyp3; Figure 4a). Although hyp1 remains of unknown function, it has been
identified in AMD community proteomes along with the full spermidine “acid resistance cluster” [52,55].
Transcripts for the spermidine genes have been detected in AMD community meta-transcriptomes [34].

Genes potentially involved in HGT and/or genome rearrangement were detected in the
neighborhood of the spermidine cluster. These included a predicted P-type conjugative transfer
protein TrbG with a signal sequence and lipoprotein signal and a TnpIS5-like sequence (Figure 4a).

Heat maps derived from alignments of DNA sequences of speE and speH in Leptospirillum Group
II illustrated an important aspect of their evolution (Figure 4c,d). The DNA sequence of speE was
100% conserved between some strains. For example, speE of “L. rubarum”, L. sp. “C75”, and L. sp.
“CF-1” from Iron Mountain, USA, shared 100% nucleotide sequence identity (Figure 4c). Inspection
of the position of these strains in the phylogenetic cladogram (Figure 2b) suggested that speE was
inherited from their last common ancestor and its sequence subsequently maintained under strong
selective pressure within the shared acidic environment of Iron Mountain. The close physical proximity
of the strains could also facilitate genetic exchange and homologous recombination, contributing to
the maintenance of DNA sequence similarity. The speE of L. ferriphilum ZJ, DX, and Sp-Cl formed
another cluster with 100% DNA sequence identity different from the Iron Mountain cluster (Figure 4c).
Strains ZJ and DX were from China, whereas Sp-Cl was from Chile. In this case, close geographic
proximity could not explain the sequence identity, and selective pressure resulting from a similar
environment seemed more likely to account for the maintenance of sequence identity. A comparison of
the nucleotide sequences of speH showed 100% identity in strains of Group II Leptospirillum from Iron
Mountain, China, and Chile, with two exceptions (Figure 4d). The exceptions were L. ferriphilum DSM
14647 (from Peru) and L. sp. ‘5-way CG’ (from Iron Mountain) that formed a second cluster with 100%
sequence identity.

It was hypothesized that geographical proximity could potentially explain some of the evolutionary
trajectories of speE and speH, perhaps by maintenance of sequence identity via homologous
recombination [104]. However, adaptation of vertically inherited genes to similar acidic econiches was
a more likely explanation for those strains not geographically juxtaposed (e.g., L. ferriphilum Sp-Cl and
L. ferriphilum DSM 14647).

3.4.3. Hopanoid Biosynthesis

HpnCDE, potentially encoding squalene and a core set of hopanoid biosynthesis genes
(hpnFGAHROP), were identified in Leptospirillum and N. marina (Figure 5). All these genes showed
considerable syntenic conservation within all Leptospirillum Groups and N. marina, suggesting that they
were inherited from a common ancestor by vertical descent. On the other hand, hpnIJ, encoding enzymes
that modify hopanoids to bacteriohopanetetrol cyclitol ether, were predicted only in the genomes of
Leptospirillum. It was hypothesized that hpnIJ entered the genome of the ancestral Leptospirillum after
its divergence from the other Nitrospira. Mobile elements (tnp1-3) were detected in the neighborhood
of the hpn gene cluster in Leptospirillum Group I (Figure 5b), suggesting that HGT of the cluster into
Leptospirillum may have occurred. HpnIJ have been shown in Burkholderia to be involved in C35
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extensions of hopanoids including bacteriohopanetetrol (BHT), BHT glucosamine, and BHT cyclitol
ether, which are in turn involved in the response to environmental stress conditions including low
pH [29].
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Figure 5. Genomic contexts for genes predicted to participate in (a) squalene and (b) hopanoid
biosynthesis and bacteriohopanetetrol modification. Color coding of genes: red = squalene and
hopanoid genes, grey = additional genes whose genomic context is conserved, purple = orphan
hypothetical genes, orange = mobile elements and their remnants (tnp1-3), and white = other genes.
* = hpnJ1, hpnJ2, and 3 are located in other genome locations. (c) Predicted pathways for squalene and
hopanoid biosynthesis in Leptospirillum and N. marina. Blue lettering = biosynthetic steps encoded in
both Leptospirillum and N. marina, and in red lettering, biosynthetic steps predicted only in Leptospirillum.
Abbreviations: BHT = bacteriohopanetetrol, ABH = aminobacteriohopanetriol.

3.4.4. Slp Starvation Lipoprotein

Four copies of slp were identified in N. marina (termed slps1-4) and an additional four copies
were discovered in Leptospirillum (termed slps5-8). Phylogenetic analysis of their amino acid
sequences suggested that all eight copies were distinct and displayed different evolutionary trajectories
(Supplementary Figure S4). It is possible that one or more of the Leptospirillum slps were derived by
vertical descent from the slps of the inferred ancestor with N. marina. However, the long branch lengths
derived from the phylogeny made it difficult to pin-point unambiguously the Nitrospira ancestral slp
that gave rise to an ancestral Leptospirillum slp.

The evolutionary trajectories of the slps in some clades of Leptospirillum could be explained by the
similarity of geographic location. For example, slp6 and slp7 were found in clades belonging mainly
to Iron Mountain, USA, and exhibited 100% amino acid sequence identity (Supplementary Figure
S5). However, geographical proximity could not explain all trajectories. For example, slp5 and slp7 of
L. ferriphilum DSM 14647 from Peru had 100% amino acid sequence identity with the Iron Mountain,
USA, clade (Supplementary Figure S5). Furthermore, slp8 of L. ferriphilum DSM 14647 from Peru had
100% amino acid sequence identity with slp8 from a Chinese location (L. ferriphilum ML-04) and with
Leptospirillum sp. “5-way CG” from Iron Mountain, USA. We concluded that the inheritance pattern of
the slps could be explained either by geographic proximity or by adaptation to similar acidic econiches
similar to that postulated for speE and speH, as described in Section 3.4.2

Several deductions could be inferred from an inspection of the genomic contexts of the four
Leptospirillum slps (Figure 6): (i) All four slps in each group displayed a different genomic context and,
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with the exception of slp5, also between species of the same group. The genomic context of slp5 was
strongly conserved between Groups I and II and slightly conserved with Group III (Figure 6a). (ii)
All four slps were located near genes potentially encoding transposase-like functions, tRNAs, and
phage-like genes, suggesting that they entered the genomes by HGT or underwent mobile element
mediated rearrangement within these genomes. (iii) slp7 and slp8 were associated with hpnR and kch,
respectively, genes potentially encoding other acid resistance functions (Figure 6b,d). (iv) All four slps
were associated with a number (18 in total) of orphan hypothetical genes with no known function.
Given the context of these genes, they may be related to acid resistance or other stress-related functions
and can be highlighted for future experimental analysis. Alternatively, they could be unidentified
phage remnants.
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Figure 6. Genetic context of slp genes in Leptospirillum. (a) Genetic context for slp5 present in all
Leptospirillum; (b) genetic context slp7 present in all Leptospirillum; (c) genetic context of slp6 present
only in Group III; and (d) genetic context of slp8 present only Group II. Color coding of genes: red = slp,
purple = orphan hypothetical gene, green = tRNA, gray = other conserved genes, orange = mobile
elements, tnp1 (COG0675), tnp2 (PHA02517), tnp3 (pfam13701), tnp4 (COG3677), tnp5 (pfam13751), and
phageIS, and black = kch, potentially involved in acid resistance (see Section 3.4.1). * = present in all
strains of Group II except L ferriphilum DSM 14467 and “L. rubarum”.

Although the function(s) of the Leptospirillum slps remain(s) unknown, all contain the lipobox motif
that is characteristic of slps in other organisms, at the end of a predicted signal peptide (Supplementary
Figure S6) characteristic of slps from other organisms [114]. The +2 position after the lipobox was
proposed to be the main determinant for protein export such that if it had an Asp amino acid residue,
then it was retained at the inner membrane (Supplementary Figure S6). An Asp was identified only in
Slp5 from Group III, suggesting all the other proposed Slps might be exported to the outer membrane.

3.5. Second Line of Defense

3.5.1. Proton Antiporters

One gene copy of the putative voltage gated ClC-type chloride/proton antiporter (ClcA) was
identified in all Leptospirillum genomes, but not in N. marina. The genomic region around clcA was not
conserved in any of the Leptospirillum Groups. However, each genomic context of clcA was associated
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with mobile elements or their remains. For example, a transposase DDE domain (cl26088) and a DNA
recombinase Rci/bacteriophage Hp1-like integrase (cd00796) were in its neighborhood in Groups III
and II. Cluster analysis of the ClcA amino acid sequences showed that the evolutionary trajectory
of ClcA followed the pattern of the 16S rRNA phylogeny and was most likely inherited by vertical
descent within the Leptospirillum groups (Supplementary Figure S7). We suggested that the mobile
elements associated with clcA could have been involved in its chromosomal relocation in each group.

A second mechanism postulated to remove protons from the cytoplasm involved the NhaP
sodium/proton antiporter for which two copies, termed nhaP1 and 2, were identified only in
Leptospirillum Group II. A cluster analysis of their amino acid sequences suggested they were members
of two different families (Supplementary Figure S8). NhaP1 was located in a conserved genomic
context in all members of Group II. Remnants of a number of transposases and integrases together
with tRNA-Arg were detected in the gene neighborhood, suggesting that nhaP1 was acquired by
HGT in an ancestral Leptospirillum after its divergence with the last common ancestor. However,
the conserved genomic context is consistent with the idea that it was inherited vertically within the
different groups after the initial HGT event. A copy of nhaP2 was found only in L. ferriphilum ML-04
(Group II). However, its sequence was interrupted by a transposase insertion (tnp1; Figure 7a). It was
unlikely that nhaP2 was functional because the transposase insertion introduced stop codons in its
reading frame and split the functional NhaP domain (COG0025) into two parts.
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Figure 7. Gene context of (a) nhaP2 showing conservation in all strains of Group II. Color coding
of genes: red = nhaP2, orange mobile element tnp1 (transposase DDE_3; pfam13358) found only in
strain ML-04. (b) Phylogenetic distribution of gadA in all Leptospirillum Groups. Color coding of genes:
red = gadA, purple = orphan hypothetical genes, grey = conserved genes predicted to be involved in
trehalose biosynthesis, orange = mobile element (tnp2 (PHA02517), black = kch, potentially involved in
acid resistance (see Section 3.4.1), and white = other genes.

3.5.2. Gad Decarboxylase

Four copies of the acid resistance amino acid permease (gadC) and one copy of the acid resistance
amino acid decarboxylase (gadA) were identified in all Leptospirillum. In contrast, N. marina contained
only one putative amino acid permease. The glutamate decarboxylase (gadA) did not show synteny in
its genome context between the three groups (Figure 7b), and a cluster analysis suggested that the gene
was introduced by HGT from Archaea (in separate events, as the top hits for the three groups were
different; Supplementary Figure S9). In addition, four predicted gadC amino acid permeases encoding



Genes 2020, 11, 389 14 of 23

genes were identified in a separate genomic location to gadA with one of them in the gene context of
potassium transporter Kdp system (Figure 3). Cluster analysis suggested one gadC copy was similar
to the one found in the N. marina genome with three additional families present in the Leptospirillum
genomes (Supplementary Figure S10).

GadA (glutamate decarboxylase) in Leptospirillum Groups II and III was associated with a cluster
of trehalose biosynthesis genes (Figure 7b). It has been shown that potassium, glutamate, and trehalose
form part of a response to osmotic shock and acid stress in E. coli (reviewed in [115]), suggesting that a
similar response was possible in Leptospirillum Groups II and III.

3.6. Model of Leptospirillum Acid Resistance

A model of the Leptospirillum acid resistance systems, classified into first and second lines of
defense mechanisms, is shown in Figure 8. Transcriptomic and proteomic analyses supported the
relationship of the first line of defense genes with low pH adaptation in Leptospirillum [11,34,52,55,116].
Evidence also linked the expression of the KdpABC high-affinity potassium transport system and the
HpnCDEFGIJHGRP and BamA hopanoid system to acid stress in AMD communities [34,52,55,116].
Environmental expression of genes involved in the second line of defense, such as the glutamate
decarboxylase system gad and the Na+/H+ antiporter nhaP, has been detected [34,116,117]. Clearly,
additional experiments are required to explore the validity of the model. However, we posit that it
provides a platform for helping to circumscribe future experimental directions.
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Figure 8. Model of acid resistance in Leptospirillum, categorized as either first line of defense involved
in preventing the uptake of protons into the cell or second line of defense involved in neutralizing or
expelling protons that enter the cell. Multiple hypothetical orphan genes (Orph) cluster with both first
and second line of defense genes. The red arrow indicates that expression of KdpABC is activated by
external K+ sensed by KdpD. The cytoplasm is conjectured to be about pH 6, as has been found in
other extreme acidophiles, although this has not been experimentally determined in Leptospirillum.

Three genomic regions of Leptospirillum contained potassium transport system kch genes in
proximity with other acid resistance genes, for example, gadC2 (Figure 3), slp (Figure 6), and gadA
(Figure 7). This could allow their coordinated regulation. Each of these systems was associated with
multiple mobile elements, suggesting that they could have entered the genome by HGT. Acid resistance
genes were also found in close proximity to other stress responsive genes such as those involved in
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biofilm formation (Figure 4) and trehalose biosynthesis (Figure 7), potentially allowing coordination of
genes involved in acid resistance and osmotic stress.

Whereas the inventory of potential mechanisms involved in first and second lines of acid resistance
in Leptospirillum was quite extensive, they were by no means the only ones used by organisms for
acid resistance. For example, in Leptospirillum, protons were hypothesized to be exported by the
glutamate decarboxylase system, but evolutionary and mechanistically related systems such as
ornithine decarboxylases have been implicated in acid stress responses in amateur acidophiles [86].
The extreme acidophile Ferrovum, belonging to the Betaproteobacteria class, has been hypothesized to
use the Kef-type K+ transport system to help in maintaining a positive inside membrane potential
and to utilize urease activity to neutralize its immediate environment [118]. External cellular capsule
formation has been speculated to be involved in acid resistance in the Acidithiobacillia class [119].
None of these systems were predicted in Leptospirillum. Given that multiple acid resistance mechanisms
were found in different Bacterial classes widely distributed in the Tree of Life, it was most likely that
acid resistance evolved independently multiple times, perhaps aided by HGT. A similar conclusion
has been made regarding the evolution of acid resistance in Archaea [120].

Genes encoding orphan hypothetical proteins located in genomic contexts associated with both
first and second line of defense acid resistance genes may potentially encode unknown acid resistance
mechanisms or functions that modify known acid resistance responses. Their bioinformatic prediction
highlighted the need for experimental investigation into their functions.

3.7. Phylogenetic Distribution of Acid Resistance Genes and Their Inferred Evolutionary Trajectories

Evolutionary events leading to acid resistance in the Leptospirillum genus were inferred using
parsimony bioinformatic methods [121] and were mapped onto the branches of the phylogenetic tree
of Leptospirillum (Figure 9).
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Figure 9. Inferred evolutionary reconstruction of the acid related genes of Leptospirillum with the main
evolutionary events (gene gain/loss/fusion/duplication). Parsimony was used for the inferences. Names
in red = first line of defense mechanisms and blue = second line of defense mechanisms. Black square
= presence and white square = absence of mechanism. Black squares with white sections = mechanism
is present in some, but not all, strains. LCA = last common ancestor.

Many of the predicted acid resistance genes were hypothesized to have been absent in the
inferred last common ancestor of Leptospirillum and N. marina. These included genes encoding the
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K+ transporters Kch and Kdp, the four spermidine gene clusters, HpnIJ, ClcA, NhaP, and GadC2 and
3. It was proposed that they entered the Leptospirillum ancestral line by HGT via conjugation (e.g.,
the spermidine four-gene cluster), viruses (e.g., slps7 and 8, clcA), and multiple examples involving
transposases. HGT has been suggested to be a prevalent mechanism in genome evolution in a wide
range of microorganisms [122].

With two exceptions, the donors of the HGT genes were difficult to trace, perhaps because
the events occurred so long ago that molecular signals of the donors have been erased with the
passage of time. The Leptospirillum Kch potassium transporter had several top BLASTp hits with
other extreme acidophiles, including the Acidithiobacillus genus which shares its low pH environment.
Leptospirillum is rooted deeper in the Tree of Life than Acidithiobacillus and therefore was probably
ancestral to it, suggesting that the direction of transfer of Kch was from a Leptospirillum ancestor
to an Acidithiobacillus ancestor. A second example of possible HGT donor identification lied in the
comparison of the “L. ferrodiazotrophum” and “L. rubarum” glutamate decarboxylase acid resistance
system with other members of the AMD community, suggesting that the genes were introduced by
HGT into a Leptospirillum ancestor from an Archaeal Ferroplasma ancestor.

Gene duplication and gene diversification events were identified using a combination of
phylogenetic inference based on alignments of families (cluster analysis) [123] and calculations
of Dn/Ds [94–96]. Multiple examples of gene duplication events were detected. These included
examples of potential vertical descent followed by gene duplication giving rise to paralogs (e.g.,
HpnJ1-3 in Group II). There were also many cases of gene duplications that were predicted to be
xenologs, arising from HGT events. Xenologs were defined as a distinct form of horizontal gene
transfer in which a gene was displaced by an ortholog from a different lineage [124], e.g., slps5-8 in
Leptospirillum replaced slps present in the last common ancestor.

The relative timing of the events leading to the hypothesized transition of the ancestral
Leptospirillum from a circumneutral or mildly acidic environment to a hyper-acidic one was difficult to
assess. Based on what was known about acid stress response mechanisms of moderate (“amateur”)
acidophiles (pH 3.5–6), it seemed likely that the first transition events involved the development of
second line of defense mechanisms including proton expulsion mechanisms such as ClcA, NhaP, and
Gad. However, it could not be ruled out that the mechanisms of the first line of defense were also
involved in the early transition to very low pH environments. Some of these, such as hopanoids and
spermidine, could have been gained initially to provide protection from other stresses such as oxidative
stress or high temperature and subsequently adapted for low pH protection.

This paper focused on the potential mechanisms employed by Leptospirillum to thrive in extremely
low pH environments. One of the major aspects of adaptation that was not investigated was how
proteins fold and function in acid conditions. The cytoplasm was hypothesized to be around pH 6
or circumneutral, as was shown for other acidophiles, although this was not experimentally verified
for Leptospirillum. If this assumption were correct, then only proteins or protein loops outside
the periplasmic membrane would be exposed to low pH. Protein adaptations to low pH have
been investigated in other acidophiles (e.g., [125,126]), but since no information was available for
Leptospirillum, the model of its hypothesized transition from a neutral to an acid environment remains
incomplete. Other major lacunae in our knowledge of the evolution of acidophilia in Leptospirillum
were how changes in pH were sensed and transduced into gene regulation and how chaperones could
be involved in maintaining protein integrity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/4/389/s1,
Figure S1: Unrooted phylogenetic tree constructed from the predicted amino acid sequences of Kch in the
Leptospirillum genus. Figure S2. (a) Unrooted phylogenetic tree constructed from the predicted amino acid
sequences from TrkA in the Leptospirillum genus. (b) Dn/Ds box plots for TrkA. Figure S3. Unrooted phylogenetic
tree constructed from the predicted amino acid sequences of SpeE in the Leptospirillum genus. Figure S4.
Phylogenetic tree for slp gene copies (in different background highlighted colors) from the Leptospirillum genus.
Figure S5. Heatmap of amino acid identity sequences of slp genes for the Leptospirillum genus. Figure S6. Multiple
sequence alignment of N. marina and Leptospirillum slp gene sequences including a WebLogos plot of the slp
lipobox. Figure S7. Unrooted phylogenetic tree constructed from the predicted amino acid sequences from ClcA
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in the Leptospirillum genus. Figure S8. Unrooted phylogenetic tree constructed from the predicted amino acid
sequences from NhaP1 and 2 in Leptospirillum Group II. Figure S9. Unrooted phylogenetic tree constructed from
the predicted amino acid sequences from GadA in the Leptospirillum genus. Figure S10. Unrooted phylogenetic
tree constructed from the predicted amino acid sequences from GadC in the Leptospirillum genus. Table S1. 16S
rRNA gene sequences used for the phylogenetic tree for the 26 Nitrospirae used in the study; best hit IDs used in
the clustering analysis; IDs for the acid resistance genes; predicted locations of the hypothetical genes included in
the study and the names and accessions for acid resistant genes not found in Leptospirillum.
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