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Abstract: Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of
life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair,
mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step
process that involves the participation of many protein partners. Recent biophysical studies, involving
X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS),
and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps.
In this review, after describing the biological importance of iron sulfur proteins, we focus on the
contributions of NMR spectroscopy has made to our understanding of the structures, dynamics,
and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
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1. Introduction

Metal ions are essential to life and, to function, almost half of all enzymes must associate with one
or more particular metal ions [1,2]. Iron-sulfur (Fe-S) clusters are among the most ancient yet ubiquitous
protein cofactors present in all kingdoms of life. The most common types of Fe-S clusters are [2Fe-2S],
[3Fe-4S], and [4Fe-4S], while more complex cluster forms, such as the [8Fe-7S] cluster (P-cluster) and
iron-molybdenum cofactor (FeMoco) of nitrogenase, have also been reported [3–5]. The physical and
chemical properties of Fe-S clusters enable them to play important roles in a variety of biological
pathways, including respiration, DNA repair and replication, gene regulation, central metabolism,
and RNA modification [6,7]. Fe-S clusters display large span of redox potentials and are often used
for electron transfer in cellular processes [8–11]. Fe-S clusters also play important roles in a variety
of non-redox cellular functions [12]. The instability of their clusters allows Fe-S proteins to function
as biological sensors in the regulation of cellular iron homeostasis: examples include the bacterial
transcription factors FNR and IscR, and cytosolic aconitase (IRP1) in the IRP1-IRE system [13–15].
The [4Fe-4S] cluster on mitochondrial aconitase, on the other hand, functions as a Lewis-acid catalyst
in the mitochondrial tricarboxylic acid (TCA) cycle [16]. Fe-S clusters are required for the function
of several nucleic acid processing enzymes, including glycosylases, primases, helicases, nucleases,
transcription factors, RNA polymerases, and RNA methyltransferases, although the functions of
their Fe-S clusters are poorly understood [17,18]. Loss of Fe-S proteins has been linked to genome
instability [19]. It has shown that the Fe-S cluster in primase serves as a redox switch for DNA
binding [18]. The eukaryotic replicative DNA polymerases require a Fe-S cluster for replisome
assembly and stability [20]. Fe-S clusters are also essential for DNA repair helicases XPD and FancJ [21].
Fe-S proteins are involved in the metabolism of nucleotides, such as dihydropyrimidine and flavin
adenine dinucleotide [22]. The Fe-S protein ABCE1, which plays important roles in ribosome biogenesis
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and maturation, translation initiation and termination, and ribosome recycling, has been found to be
essential to cell viability [23,24]. S-adenosyl-L-methionine (SAM)-dependent enzymes, such as lipoic
acid synthase and biotin synthase, require Fe-S clusters for their functions [25–27]. Recently, a Fe-S
protein, Drosophlia MagR (the same as ISCA1), has been proposed to be the magnetosensing protein in
biological systems [28].

Although Fe-S clusters can be synthesized in vitro without enzymatic assistance, the biogenesis
of Fe-S cluster in cellular environments is a highly regulated, multistep pathway that involves many
proteins. Our best understanding of the Fe-S cluster biosynthetic mechanism stems from studies in
bacteria, in which three machineries have been described: the NIF (nitrogen fixation) system, the ISC
(iron-sulfur cluster) system, and the SUF (sulfur utilization factor) system [4,5,7,29]. Of these, the NIF
system is specialized for nitrogen fixation, and the SUF system is utilized primarily under oxidative
stress or iron starvation conditions. This leaves the ISC system as the “house-keeping” machinery for
bacterial Fe-S cluster biogenesis. The ISC machinery, encoded by the iscRSUA operon, contains the
following components: IscR (transcription factor that regulates the expression of the iscRSUA operon in
response to the iron-sulfur cluster content of the cell), IscS (cysteine desulfurase), IscU (scaffold protein
for de novo Fe-S cluster assembly), IscA (A-type Fe-S cluster carrier protein), Fdx (electron donor), IscX
(iron-binding protein and putative iron donor), HscA (specialized Hsp70 chaperone), HscB (Hsp40
J-type co-chaperone) [5,7,30]. Another protein, which is not encoded by the iscRSUA operon but is
important to the bacterial ISC machinery, is the iron-binding protein CyaY, the bacterial homolog
of frataxin (FXN). CyaY has been shown to be a negative regulator of Fe-S cluster biosynthesis in
Escherichia coli (E. coli) [31,32]. These components form an intricate protein–protein interaction network
that facilitates Fe-S cluster assembly and transfer [33].

In nearly all eukaryotes, mitochondria are the major compartments for Fe-S cluster biogenesis.
Eukaryotic mitochondria possess an ISC machinery that was inherited from bacteria through an
endosymbiotic process and is highly conserved from yeast to man [34]. The ISC machinery in human
mitochondria consists of at least 19 known proteins and can be divided into several steps (Figure 1 and
Table 1). The first step is de novo assembly of a nascent [2Fe-2S] cluster on the scaffold protein ISCU
through coordinated reactions involving a set of essential ISC proteins: the cysteine desulfurase (NFS1),
an accessory protein (ISD11), the mitochondrial acyl carrier protein (ACP), ferredoxin (FDX1/2),
and frataxin (FXN) [24,35–37]. The second step has been proposed to be release of nascent [2Fe-2S]
cluster from the scaffold protein to the mitochondrial monothiol glutaredoxin (GLRX5) facilitated by
the mitochondrial chaperone/cochaperone system [38,39]. The [2Fe-2S] clusters can be subsequently
transferred to target proteins, trafficked to late acting protein complexes to form [4Fe-4S] clusters, or
exported from mitochondria as a sulfur-containing species used in the cytosolic iron-sulfur assembly
(CIA) machinery [40–42]. [4Fe-4S] cluster synthesis is accomplished by a set of proteins, including
ISCA1, ISCA2, and IBA57 [43–45]. Once synthesized by ISCA proteins, [4Fe-4S] clusters are inserted
into [4Fe-4S] protein targets such as aconitase, respiratory complex I, and lipoic acid synthase.
The insertion of [4Fe-4S] cluster to target proteins involves other ISC proteins such as NFU1, BOLA3,
and NUBPL. The exact functions of these proteins are not yet clearly defined, but they have been
proposed to be the intermediate [4Fe-4S] carriers and late acting factors that are essential for the
maturation of specific [4Fe-4S] proteins [46–48].

Defects in protein components of the mitochondrial ISC machinery are associated with
numerous diseases, including Friedreich ataxia (defects in frataxin), myopathy (defects in ISCU
or FDX2), and multiple mitochondrial dysfunction syndromes (defects in NFU1, BOLA3, ISCA2,
and IBA57) [24,49–51]. Extensive investigations over the past two decades have identified many new
components and established key steps in the ISC machinery (Table 1). A growing number of diseases
associated with ISC defects are being discovered through clinical, genetic, and biochemical studies.



Molecules 2018, 23, 2213 3 of 34
Molecules 2018, 23, x FOR PEER REVIEW  3 of 32 

 

 
Figure 1. Schematic representation of the current model of human mitochondrial Fe-S cluster 
biogenesis. Iron enters the mitochondrion via the iron transporter MFRN1. The cysteine desulfurase 
NFS1 (N) exists in a dimeric form and mobilizes sulfur from L-cysteine for Fe-S cluster assembly. The 
accessory protein ISD11 (I) and acyl carrier protein ACP (A) are required for the function and stability 
of NFS1. The scaffold protein ISCU (U), frataxin FXN (F), and ferredoxin FDX2 (X) all bind to the 
surface of NFS1 to form the (NIAUXF)2 complex. FXN is the proximal iron donor, which receives Fe2+ 
from an unidentified iron source. FXN regulates the cysteine desulfurase activation of NFS1 and iron 
entry to ISCU. One electron to reduce S0 to S2− is provided by an electron transport chain consisting 
of NAD(P)H, ferredoxin reductase (FDXR) and ferredoxin (FDX1/2). The other electron is likely 
provided by the oxidation of Fe2+ bound to FXN. The assembled [2Fe-2S] cluster is transferred from 
ISCU to a monothiol glutaredoxin GLRX5 assisted by the dedicated chaperone–cochaperone (HSP70-
HSC20) system. Subsequently, Fe-S clusters are either directly inserted into mitochondrial [2Fe-2S] 
proteins (e.g., Rieske protein), used for synthesis of a sulfur-containing species (X-S) for cytosolic Fe-
S cluster assembly (CIA machinery). Assembly of [4Fe-4S] clusters involves ISCA1, ISCA2, and IBA57. 
An electron donor, such as ferredoxin, may be required to convert two [2Fe-2S] clusters to a [4Fe-4S] 
cluster. Late-acting factors, such as NFU1 and NUBPL, are required for the maturation of a subset of 
[4Fe-4S] clusters, such as LIAS and SDH. The mitochondrion export of the unidentified sulfur-
containing compound (X-S) is facilitated by an ABC transporter ABCB7. In the cytoplasm, the 
cytosolic Fe-S cluster assembly machinery (CIA) inserts Fe-S clusters into cytosolic and nuclear Fe-S 
proteins. The blue stars denote the proteins (or the protein homologs) for which the structures were 
obtained by NMR, and blue arrows denote the processes that were clarified by NMR. 

Solution NMR spectroscopy has been employed frequently in elucidating protein structures, 
dynamic properties, and protein–protein interaction networks involved in Fe-S cluster assembly and 
transfer. NMR is a powerful method for studying paramagnetic proteins such as rubredoxins, HiPIPs, 
and ferredoxins [52]. The first solution NMR structure of a paramagnetic protein was that of E. 
halophila HiPIP I [53]. Many NMR experiments developed to investigate paramagnetic proteins have 
been successfully applied to studies of proteins containing Fe-S clusters. Experiments tailored for 
paramagnetic systems include those designed for the detection of NMR hyperfine shifts [54,55], the 
measurement of longitudinal (R1) and transverse (R2) relaxation [56], the direct detection of 13C signals 
[57,58], the collection of 2D HSQC and IR-15N-HSQC-AP data, where HSQC stands for heteronuclear 
single-quantum correlation, IR stands for inversion recover, and AP stands for antiphase [59,60]. 
NMR is also very effective in characterizing weak or transient protein–protein interactions [61], 

Figure 1. Schematic representation of the current model of human mitochondrial Fe-S cluster biogenesis.
Iron enters the mitochondrion via the iron transporter MFRN1. The cysteine desulfurase NFS1 (N)
exists in a dimeric form and mobilizes sulfur from L-cysteine for Fe-S cluster assembly. The accessory
protein ISD11 (I) and acyl carrier protein ACP (A) are required for the function and stability of NFS1.
The scaffold protein ISCU (U), frataxin FXN (F), and ferredoxin FDX2 (X) all bind to the surface of
NFS1 to form the (NIAUXF)2 complex. FXN is the proximal iron donor, which receives Fe2+ from an
unidentified iron source. FXN regulates the cysteine desulfurase activation of NFS1 and iron entry
to ISCU. One electron to reduce S0 to S2− is provided by an electron transport chain consisting of
NAD(P)H, ferredoxin reductase (FDXR) and ferredoxin (FDX1/2). The other electron is likely provided
by the oxidation of Fe2+ bound to FXN. The assembled [2Fe-2S] cluster is transferred from ISCU to
a monothiol glutaredoxin GLRX5 assisted by the dedicated chaperone–cochaperone (HSP70-HSC20)
system. Subsequently, Fe-S clusters are either directly inserted into mitochondrial [2Fe-2S] proteins (e.g.,
Rieske protein), used for synthesis of a sulfur-containing species (X-S) for cytosolic Fe-S cluster assembly
(CIA machinery). Assembly of [4Fe-4S] clusters involves ISCA1, ISCA2, and IBA57. An electron donor,
such as ferredoxin, may be required to convert two [2Fe-2S] clusters to a [4Fe-4S] cluster. Late-acting
factors, such as NFU1 and NUBPL, are required for the maturation of a subset of [4Fe-4S] clusters,
such as LIAS and SDH. The mitochondrion export of the unidentified sulfur-containing compound
(X-S) is facilitated by an ABC transporter ABCB7. In the cytoplasm, the cytosolic Fe-S cluster assembly
machinery (CIA) inserts Fe-S clusters into cytosolic and nuclear Fe-S proteins. The blue stars denote the
proteins (or the protein homologs) for which the structures were obtained by NMR, and blue arrows
denote the processes that were clarified by NMR.

Solution NMR spectroscopy has been employed frequently in elucidating protein structures,
dynamic properties, and protein–protein interaction networks involved in Fe-S cluster assembly
and transfer. NMR is a powerful method for studying paramagnetic proteins such as rubredoxins,
HiPIPs, and ferredoxins [52]. The first solution NMR structure of a paramagnetic protein was that
of E. halophila HiPIP I [53]. Many NMR experiments developed to investigate paramagnetic proteins
have been successfully applied to studies of proteins containing Fe-S clusters. Experiments tailored
for paramagnetic systems include those designed for the detection of NMR hyperfine shifts [54,55],
the measurement of longitudinal (R1) and transverse (R2) relaxation [56], the direct detection of
13C signals [57,58], the collection of 2D HSQC and IR-15N-HSQC-AP data, where HSQC stands
for heteronuclear single-quantum correlation, IR stands for inversion recover, and AP stands for
antiphase [59,60]. NMR is also very effective in characterizing weak or transient protein–protein
interactions [61], which are prevalent in the myriad of protein–protein interactions leading to Fe-S
cluster synthesis and transfer [59,62,63].
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Table 1. Proteins involved in mitochondrial ISC machinery and related diseases.

Human Protein UNIPROT ID Yeast Ortholog Diseases Cofactors Putative Functions

FXN Q16595 Yfh1 Friedreich’s ataxia (FRDA) [64,65] Fe2+ Proximal iron donor, controls iron entry
and sulfur transfer to ISCU

ISCU Q9H1K1 Isu1 and Isu2 ISCU myopathy [66–68] [2Fe-2S] Scaffold for Fe-S cluster assembly

FDX1 P10109 [2Fe-2S] Electron donor in cluster assembly

FDX2 (FDX1L) Q6P4F2 Yah1 Myopathy [69] [2Fe-2S] Electron donor in cluster assembly

NFS1 Q8WV90 Nfs1 Infantile mitochondrial complex II/III
deficiency [70] PLP Cysteine desulfurase

ISD11 (LYRM4) Q9HD34 Isd11 Respiratory chain deficiency [71] Stabilization of NFS1 in cluster assembly

ACP (NDUFAB1) O14561 Acp1 4′-phospho-pantetheine Stabilization of NFS1-ISD11 complex in
cluster assembly

GLRX5 Q86SX6 Grx5 Microcytic anemia and sideroblastic
anemia [72,73] [2Fe-2S] Fe-S cluster carrier protein

ABCB7 O75027 Atm1 Sideroblastic anemia and ataxia [74] Mitochondrial export

Mitoferrin1 (MFRN1) Q9NYZ2 Mrs3 and Mrs4 Variant erythropoietic protoporphyria [75] Mitochondrial iron importer

NUBPL Q8TB37 Ind1 Mitochondrial encephalomyopathy [76] [4Fe-4S] Involved in Fe-S cluster transfer to
Complex I

NFU1 Q9UMS0 Nfu1 Multiple mitochondrial dysfunction
syndrome 1 (MMDS1) [47,48] [4Fe-4S] Fe-S delivery to specific recipients

ISCA1 Q9BUE6 Isa1 Multiple mitochondrial dysfunction
syndrome 5 (MMDS5) [77,78] [2Fe-2S], [4Fe-4S] [4Fe-4S] cluster assembly

ISCA2 Q86U28 Isa2 Multiple mitochondrial dysfunction
syndrome 4 (MMDS4) [79] [2Fe-2S], [4Fe-4S] [4Fe-4S] cluster assembly

BOLA1 Q9Y3E2 Bol1 Iron sensing/[2Fe-2S] delivery

BOLA3 Q53S33 Aim1 Multiple mitochondrial dysfunction
syndrome 2 (MMDS2) [48] Fe-S delivery to specific recipients

IBA57 Q5T440 Iba57 Multiple mitochondrial dysfunction
syndrome 3 (MMDS3) [80,81] [4Fe-4S] cluster assembly

HSC20 Q8IWL3 Jac1 J-type co-chaperone

HSC70 P38646 Ssq1 Parkinson’s disease [82] ATP, ADP Hsp70-type chaperone involved in
cluster delivery
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In this review, we discuss recent advances in the field of Fe-S cluster biogenesis and contributions
NMR has made toward our understanding of these processes. We focus on the human mitochondrial
ISC and cytosolic CIA machineries. However, because much of our understanding of these human
machineries stems from studies of the bacterial and yeast ISC and CIA machineries, these systems are
briefly mentioned.

2. Fe-S Cluster Assembly on A Scaffold Protein as Studied by NMR Spectroscopy

The first step of mitochondrial ISC machinery is the de novo assembly of a [2Fe-2S] cluster on the
scaffold protein ISCU through coordinated reactions involving a set of essential ISC proteins (NFS1,
ISD11, ACP, ferredoxin, and FXN). ISCU is a highly conserved protein, which contains three cysteine
residues whose sulfhydryl groups serve to ligate the Fe-S cluster; the fourth ligand appears to be
either a histidine or aspartate side chain. Owing to the conformational flexibility of ISCU, NMR has
become the go-to approach to study the structures and dynamics of ISCU. NMR studies from our
laboratory have shown that apo-ISCU and its E. coli homolog (IscU) are metamorphic proteins that
populate two interconverting conformations: A structured state (S-state) and a dynamically disordered
state (D-state) [83–86]. Several structures have been determined by NMR of the structured state
of the protein [87,88] (Figure 2A–D). One structure is of the single-site E. coli variant IscU(D39A)
(Figure 2A). Another is the structure is of the S-state of wild-type IscU determined in the presence
of the D-state (Figure 2B). Two others are of zinc-binding complexes, which stabilize the S-state
(Figure 2C,D). In these Zn-ISCU complexes, Zn ion binds to same pocket as the Fe-S cluster with Kd
estimated to be around 10−13 M [89]. Recent in vitro studies have suggested a potential physiological
function of Zn2+-ISCU. Zn has been shown to inhibit in vitro Fe-S cluster assembly [85]. It has been
shown that Zn can modulate the cysteine desulfurase function in an ISCU-dependent manner [90,91].
A possible explanation is that Zn occupies Fe-S cluster binding site of ISCU, thus preventing sulfur
transfer and Fe-S formation. Recent X-ray structures of human cysteine desulfurase-ISCU complex
showed that the disordered active site cysteine-containing-loop becomes structured at the presence
of Zn [92]. These in vitro studies suggest a possible connection between Zn metabolism and Fe-S
cluster biogenesis. Zn has been shown to inhibit the mitochondrial TCA cycle and electron transport
chain [93,94], both of which depend on mitochondrial ISC machinery. Future in vivo studies are
needed to verify and further establish this connection.

Despite their high (77%) sequence identity, the S:D ratios are quite different for E. coli IscU (80:20)
(Figure 2E) and human ISCU (25:75) [84,85] (Figure 2F). The lifetimes of the S- and D-states are each
on the order of one second, and their interconversion can be measured by using ZZ-exchange NMR
experiments [85]. The S- and D-states of E. coli IscU were found to differ by the configurations of the
N13-P14 and P100-P101 peptide bonds, which are trans in the S-state and cis in the D-state [95].
The reason the scaffold protein has evolved to populate two conformations remains a mystery.
However, clues come from evidence for preferential binding of different proteins to the S- and D-states.
Our NMR studies have shown that the J-type co-chaperone (E. coli HscB, human HSC20) binds
preferentially to the S-state; the Hsp70-type chaperone protein (E. coli HscA, human HSP70) binds
preferentially to the D-state [84,96]; and the cysteine desulfurase (E. coli IscS, human NFS1) binds
both states with preference for the D-state [84,85]. Others have questioned whether IscS binds to the
D-state, and have presented NMR evidence for only the S-state in the complex [97]. We are committed
to reinvestigating this question by 19F-NMR studies of [19F-Trp76]-IscU.

The sulfur atoms used in Fe-S cluster biosynthesis are generated from the enzymatic conversion
of L-cysteine to L-alanine by cysteine desulfurase. Mitochondrial cysteine desulfurase (NFS1) is
a pyridoxal phosphate (PLP)-dependent enzyme that mobilizes sulfur from L-cysteine to form a
persulfide intermediate on the conserved active-site cysteine of NFS1 [98]. Unlike its bacterial homolog
IscS, the full function and stability of NFS1 requires other two accessory proteins, namely ISD11 and
ACP. A recent study has shown that the activity of NFS1 is also regulated by phosphorylation [99].
ISD11 (or LYRM4) is a member of the LYRM (Leu-Tyr-Arg Motif) family proteins and is important for
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both mitochondrial Fe-S cluster biogenesis and iron homeostasis [100–102]. LYRM family proteins are
small, basic proteins that carry a conserved Leu-Tyr-Arg sequence close to their N-terminus. The human
genome contains at least ten LYRM proteins that localize predominantly to mitochondria [103,104].
ACP is a small, acidic protein known to function in mitochondrial fatty acid biosynthesis (FASII)
through reactions involving its 4′-phosphopantethiene (4′-PPT) cofactor, which is conjugated to a
conserved serine residue [105,106]. ACPs are universal and highly conserved proteins that are nature’s
way of transporting hydrocarbon chains in vivo [107]. ACPs are dynamic proteins. Multiple structures
of acyl carrier proteins in different forms (apo-, holo- or acylated) from different organisms have
been obtained via solution NMR [108–112]. The dynamic acyl chain-flipping mechanism of ACPs
and the transient interactions between ACPs and other proteins have also been studied by solution
NMR [113–115]. To date, no structure of ISD11 on its own has been determined. It may be that
ISD11 becomes stably structured only when it binds to ACP [116]. A possible mechanism is that
ACP stabilizes the structure of ISD11 by extending its acyl chain into the α-helical bundle of ISD11.
Our NMR data suggest that ISD11 is intrinsically disordered by itself and becomes structured upon
binding ACP [117]. Earlier, Yan et al. claimed to have successfully isolated and purified ISD11,
and their published 1H-15N HSQC spectrum of the protein indicated that it was well-structured [118].
However, our examination of this 1H-15N HSQC spectrum revealed that it closely matches that of
E. coli Acp rather than ISD11 [119]. Thus, we suggest that the protein purified by the authors of this
study was E. coli Acp, which is known to associate with ISD11 [103], and was attributed mistakenly to
ISD11. The authors also reported that their purified protein interacts with E. coli IscS [118]. Because an
interaction between Acp and IscS had been identified previously by tandem affinity purification [120],
this finding is also consistent with the isolated protein being Acp. The Acp-IscS interaction is likely to
be non-specific as none of the known IscS structures has Acp as its accessory protein [121–123], and our
LC-MS/MS and amino acid quantification experiments failed to identify Acp from purified IscS [117].
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Figure 2. NMR studies of ISCU proteins. Solution NMR structures of: (A) E. coli apo-IscU(D39A), a 
variant that is fully in the structured state (PDB: 2KQK); (B) the structured-form of wild-type E. coli 
apo-IscU (PDB: 2L4X); (C) zinc-bound Haemophilus Influenzae IscU (PDB: 1R9P); and (D) zinc-bound 
Mus musculus ISCU (PDB: 1WFZ) [87,88]. Zinc-binding stabilizes the structured state. 1H-15N HSQC 

Figure 2. NMR studies of ISCU proteins. Solution NMR structures of: (A) E. coli apo-IscU(D39A),
a variant that is fully in the structured state (PDB: 2KQK); (B) the structured-form of wild-type E. coli
apo-IscU (PDB: 2L4X); (C) zinc-bound Haemophilus Influenzae IscU (PDB: 1R9P); and (D) zinc-bound
Mus musculus ISCU (PDB: 1WFZ) [87,88]. Zinc-binding stabilizes the structured state. 1H-15N HSQC
spectra of: (E) E. coli apo-IscU; and (F) human apo-ISCU at pH 7.5 and 25 ◦C. These spectra contain
signals from both the structured and disordered states of the protein and show that human ISCU is
more disordered than E. coli IscU. See Refs. [84,85] for details.
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The role of ACP in mitochondrial Fe-S cluster biogenesis has recently come to light. In yeast,
Acp1 was found to be an essential component of cysteine desulfurase complex [124]. We demonstrated
that E. coli Acp substitutes for human mitochondrial ACP in the cysteine desulfurase complex
produced by co-expressing human NFS1 and ISD11 in E. coli cells and determined its stoichiometry
to be [NFS1]2:[ISD11]2:[Acp]2 [117], henceforth abbreviated as (NIA)2. Two independent crystal
structures of (NIA)2 were subsequently determined, each of which confirmed this stoichiometry [92,125].
The structures of NFS1, ISD11, and Acp subunits of the (NIA)2 complex are very similar in both X-ray
structures. In both structures, the conserved “LYR” motif of ISD11 interacts with Acp, and the acylated
4′-PPT cofactor of Acp is flipped-out and extends into the α-helical bundle of ISD11; this configuration
closely resembles those of the LYRM-ACP complexes found in structures determined by cryo-EM
of mitochondrial respiratory complex I [126,127] and mitochondrial ribosome [128]. However,
the quaternary architectures of the two (NIA)2 structures are strikingly different. In the (NIA)2 structure
by Boniecki et al. (PDB: 5WGB), the two NFS1 subunits form a “closed” dimer conformation similar
to that of E. coli IscS [92,121–123]. By contrast, the structure determined by Cory et al. (PDB: 5USR)
adopts a unique “open” conformation in which the two NFS1 units have little contact with each other
and the substrate-binding site of NFS1 is exposed [125] (Figure 3A–C). Our chemical crosslinking
coupled with mass spectrometry (XL-MS) and small angle X-ray scattering (SAXS) data for (NIAU)2 are
consistent with the “closed” form (Figure 3D–F). We are currently exploring the possibility of structural
heterogeneity of (NIA)2 in solution by 19F-NMR studies of (NIA)2 prepared from NFS1 containing
19F-labeled Trp. NFS1 contains three Trp residues. Preliminary results show the presence of more than
three 19F-NMR peaks in spectra of the complex, suggesting potential structural heterogeneity [129].
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ferredoxin (FDX, Yah1 in yeast), and the second is thought to be provided through the oxidation of 
Fe(II) to Fe(III). FDX is reduced by FDXR (Arh1 in yeast), which utilizes NADPH as its electron source 
[130–133]. Human mitochondria possess two ferredoxins, namely FDX1 and FDX2.  

Figure 3. Investigation of structures of (NIA)2 and (NIAU)2 by X-ray crystallography and cross-linking
as analyzed by mass spectrometry (XL-MS). (A) Overlay of one-half (NIA)1 of each of two
independently-determined X-ray structures of the human cysteine desulfurase complex (NIA)2: red,
PDB entry 5WGB [92]; blue, PDB entry 5USR [125]; (B) X-ray structure of the full human cysteine
desulfurase complex (NIA)2 by Boniecki et al. (PDB: 5WGB) showing its “closed” conformation [92].
(C) X-ray structure of full human cysteine desulfurase complex (NIA)2 by Cory et al. (2017) (PDB:
5USR) showing its “open” conformation [125]; (D) Experimental inter-subunit NFS1-NFS1 crosslinks
in (NIAU)2 as determined by XL-MS [129]. The maximum Cα-Cα distance expected for such crosslinks
is 27.4 Å. This expected distance is compatible with Cα-Cα distances in the structures (E) of (NIAU)2

(PDB: 5WLW) and (F) of (NIA)2 (PDB: 5WGB) by Boniecki et al. [92] but not with Cα-Cα distances in the
structure (G) of (NIA)2 (PDB: 5USR) by Cory et al. (2017) [125]. The positions of the crosslinked lysine
residues are indicated by spheres, and, for clarity, only the two NFS1 subunits are shown. Adapted
from Ref. [129] with permission.
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For subsequent Fe-S cluster formation, S0 released from L-cysteine by cysteine desulfurase (NIA)2

needs to be reduced to sulfide (S2−) by the addition of two electrons. The first electron is delivered
by ferredoxin (FDX, Yah1 in yeast), and the second is thought to be provided through the oxidation
of Fe(II) to Fe(III). FDX is reduced by FDXR (Arh1 in yeast), which utilizes NADPH as its electron
source [130–133]. Human mitochondria possess two ferredoxins, namely FDX1 and FDX2.

FDX1 is a versatile electron mediator involved in multiple physiological processes such as
donating electrons to cytochrome P450 enzymes as part of steroid hormone biosynthesis and vitamin
D metabolism [134]. FDX2 (or FDX1L) is a newly characterized mitochondrial ferredoxin [135].
A deleterious mutation on FDX2 has been shown to be associated with a novel mitochondrial muscle
myopathy, although the clinical phenotype is relatively mild [69]. Conflicting studies regarding the
functions of these two ferredoxins have been reported. Shi and co-workers provided evidence that
both FDX1 and FDX2 are important for Fe-S cluster biogenesis [136], whereas Sheftel et al. claimed
that FDX1 is specifically involved in the production of steroid hormones and FDX2 is essential for
the biosynthesis of heme A as well as Fe-S cluster assembly [135]. NMR has been used to investigate
the interaction between FDX1/2 and other proteins in ISC machinery [132,137]. It was shown that
FDX2 interacts with ISCU [132]. We assigned the backbone 1H-15N signals of the HSQC spectra of
reduced and oxidized FDX1 and FDX2, and we followed changes in these NMR signals upon addition
of (NIA)2. The results demonstrated that both reduced and oxidized FDX1 and FDX2 interact with the
cysteine desulfurase complex. Mapping of the chemical shift perturbations onto the structures of the
ferredoxins showed that highly conserved α3 helix and β4 strand close to the [2Fe-2S] clusters of the
ferredoxins are the sites of interaction with the cysteine desulfurase (Figure 4A–D). Because the α3
helix has also been shown to bind FDXR [138], this suggests that ferredoxin (FDX1/FDX2) cannot
be reduced by FDXR while bound to (NIA)2. NMR spectra indicated that the apo forms of both
ferredoxins are disordered, and NMR titration studies revealed no interaction of either apo-ferredoxin
with (NIA)2. The hyperfine 1H chemical shifts of FDX1 and FDX2 are similar (Figure 4E,F), indicating
similar unpaired electron delocalization from the [2Fe-2S] cluster onto the protein ligands. In addition,
we showed that both reduced FDX1 and FDX2 can provide electrons for the reduction of S0 and Fe-S
cluster assembly. We also showed that, in comparison to FDX1, FDX2 binds (NIA)2 more tightly and
supports more rapid in vitro Fe-S cluster assembly. Thus, FDX2 appears to be the predominant electron
donor in mitochondrial Fe-S cluster biogenesis [137].

The de novo assembly of a Fe-S cluster on ISCU also requires a source of iron. The identity of the
primary iron source in mitochondrial ISC machinery has remained unclear despite of intense research
interest. Several candidates have been proposed, including frataxin (FXN) [139,140], iron importer
mitoferrin1 [141], and the mitochondrial pool of labile iron [142].

FXN is a highly conserved small acidic protein that is expressed in tissues rich in mitochondria,
such as heart, liver, and neurons [64,143]. Deficiency of FXN is associated with the neurodegenerative
disease Friedreich ataxia, commonly resulting from a GAA trinucleotide repeat expansion in the FXN
gene [64,144]. Several structures of FXN or its homologs have been obtained by solution NMR, which
show very similar folds [145–147]. FXN has been shown to enhance Fe-S cluster assembly on ISCU by
serving as an allosteric switch for NFS1 and to stimulate sulfur transfer from NFS1 to ISCU [90,148,149].
The bacterial frataxin homolog (CyaY), on the other hand, is a negative regulator and inhibits Fe-S
cluster biosynthesis in E. coli [31,32]. It has been shown that the activation or inhibition of Fe-S cluster
assembly is determined by the cysteine desulfurase rather than the frataxin homolog [150].

FXN has also been proposed to be iron donor owing to its ability to bind iron and transfer iron to
ISCU for in vitro Fe-S cluster assembly [139,151]. Solution NMR studies showed that the conserved
acid ridge of FXN, which consists of the α1 helix and β1 strand, forms the iron-binding site [151].
However, the discovery of an ISCU mutant in yeast that survives without frataxin [152–154] has cast
doubt on the hypothesis that FXN serves as the primary iron donor. It has been suggested that FXN,
rather than being the iron donor, controls the entry of iron to ISCU [155,156].
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Figure 4. NMR studies of human mitochondrial ferredoxins FDX1 and FDX2 and their interactions
with (NIA)2. (A) Chemical shift (CS) perturbation of the 1H-15N signals (∆δNH) of [U-15N]-FDX1
resulting from the interaction with (NIA)2. The red ovals denote the residues whose signals were
broadened beyond detection; (B) CS perturbation results from (A) mapped onto the structure of FDX1
(PDB: 3P1M). Color code: green, not significantly affected (∆δNH < 0.03 ppm); blue, significant chemical
shift changes (∆δNH > 0.03 ppm); red, severe line broadening; black, no assignments; (C) Chemical shift
(CS) perturbation of the 1H-15N signals (∆δNH) of [U-15N]-FDX2 resulting from the interaction with
(NIA)2. The red ovals denote the residues whose signals were broadened beyond detection; (D) CS
perturbation results from (C) mapped onto the structure of FDX1 (PDB: 2Y5C). Color code: green, not
significantly affected (∆δNH < 0.03 ppm); blue, significant chemical shift changes (∆δNH > 0.03 ppm);
red, severe line broadening; black, no assignments; (E) 1D 1H-NMR spectra of oxidized (OX) and
reduced (RE) FDX1 showing hyperfine shifted signals in the 10 ppm to 50 ppm and −10 ppm to
−25 ppm regions. (F) 1D 1H-NMR spectra of oxidized (OX) and reduced (RE) FDX2 showing hyperfine
shifted signals in the from 10 ppm to 50 ppm and from −10 ppm to −25 ppm regions. Adapted from
Ref. [137] with permission.

To investigate these questions, we followed changes in the 1H-15N HSQC NMR spectrum of
[U-15N]-FXN upon binding (NIA)2 and/or Fe(II). The results revealed that both (NIA)2 and Fe(II)
interact with the α1-β1 acidic ridge of FXN. Similar studies showed that ISCU binds to the β3-β5
sheet of FXN in an (NIA)2-dependent manner. By monitoring the 1H-15N HSQC signals of α1-β1 acid
ridge in the HSQC spectra of FXN, we showed that FXN-Fe(II) binds to the (NIAU)2 complex without
release of iron. Subsequent experiments demonstrated that Fe(II) was released from FXN only when
both L-cysteine and a reductant (either FDX2 or DTT) were added; the addition of either alone failed
to trigger release [156] (Figure 5). These results indicate that iron release from FXN is controlled such
that it happens only after sulfur is mobilized for cluster assembly. Release of iron could be triggered
by reaction of FXN-bound Fe(II) with the sulfur radical anion following its transfer from the cysteine
desulfurase to ISCU; this reaction would yield S2− and Fe(III), and, because we have shown that
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Fe(III) does not bind to FXN, would explain its release [156]. Alternatively, a conformational change
occasioned by the binding of L-cysteine and an electron donor could account for iron release.Molecules 2018, 23, x FOR PEER REVIEW  10 of 32 
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but becomes labile upon the addition of both L-cysteine and FDX2. (A) One-dimensional sections
along the 1H-dimension from two-dimensional 1H-15N TROSY-HSQC peaks assigned to residues V125,
S126 and F127 under conditions specified in the figure; (B) Structure of FXN (PDB: 1EKG) indicating
the positions of the residues studied; (C) Schematic representation of the possible mechanism by which
FXN controls iron entry into ISCU. Adapted from Ref. [156] with permission.

The mechanism behind the FXN-bypassing ISCU mutant remains unclear [152–154]. We showed
that when reduced FDX2 serves as the electron donor, FXN stimulates in vitro cluster assembly
on wild-type ISCU; however, no stimulation by FXN was observed when clusters were assembled
on ISCU(M108I), the human equivalent of the FXN-bypassing ISCU mutant [157]. Structural and
mechanistic studies of the ISC core complex are challenging because the complex involves the dynamic
association of several proteins [63]. NMR is one of the few techniques that is capable of probing
weak, dynamic protein–protein complexes. By using NMR titration experiments, we showed that
wild-type ISCU, FXN, and FDX2 all bind to (NIA)2, forming a large complex (NIAUFX)2. However,
when wide-type ISCU was replaced with ISCU(M108I) in the (NIAUF)2 complex, the addition of FDX2
displaced FXN leading to (NIAUX)2 complex rather than (NIAUFX)2 [157] (Figure 6). The displacement
of FXN by FDX2 explains why FXN fails to stimulate cluster assembly on ISCU(M108I). The mechanism
behind this difference between wild-type ISCU and ISCU(M108I) remains to be determined. One
clue, however, is our finding that ISCU(M108I) is fully structured, rather than metamorphic as is
wild-type ISCU [157]. E. coli IscU contains an isoleucine at residue position 108, and thus the M108I
mutation, makes human ISCU bacterial-like. In the E. coli system, CyaY was found to compete
with Fdx for binding to the IscS-IscU complex [158,159]. In this case, CyaY succeeded in displacing
Fdx thereby inhibiting the cluster assembly reaction. The yeast (S. cerevisiae) system resembles the
human mitochondrial system in that ferredoxin (Yah1), scaffold protein (Isu1), and frataxin (Yfh1) bind
simultaneously to the cysteine desulfurase to form a large complex [132]. Recent small angle X-ray
scattering (SAXS) studies by Boniecki et al. also provide evidence for formation of (NIAUFX)2 [92].
These findings underline the critical differences between eukaryotic and prokaryotic ISC machineries,
and they also suggest a mechanism to explain the strikingly different functions of frataxin in these
two machineries. Another major difference between these two systems is that bacteria possess another
iron-binding protein IscX (also known as YfhJ), which has no human homolog [160]. IscX binds Fe(II)
and has been proposed to be the iron donor in bacterial ISC system [161]. It has been shown that



Molecules 2018, 23, 2213 11 of 34

IscX competes with CyaY for the binding to IscS [122,161,162]. A recent study suggests that IscX can
rescue the Fe-S cluster assembly rate that is inhibited by CyaY by displacing CyaY from IscS-IscU
complex, and that the rescuing effect is under the control of iron: the effect is strong at low iron level
and negligible at high iron level [162]. These studies together suggest CyaY and IscX serve as dual
regulators of the bacterial ISC system, which is strikingly different from the proposed function of FXN
in the human ISC system.
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reduced ferredoxin (X) and Fe2+-FXN (F) bind to yield (NIAUFX)2 [132,157]. By combining constraints 
from NMR, SAXS and XL-MS as input to HADDOCK [156,163], we generated a structural model of 
(NIAUF)2 (Figure 7B,C) [129]. In this model, FXN is found to bind in a cleft between ISCU and NFS1, 
the α1-β1 site of FXN interacts with the conserved arginine-rich loop “271RRRPRVR277” of NFS1, and 
the β3-β5 sheet interacts with the conserved “99LPPVK103” motif of ISCU [164]. Binding of FXN opens 
up the active site of NFS1 allowing the entry of L-cysteine, which upon conversion to L-alanine 
generates S0 bound to the active site cysteine (C381) of NFS1. An electron from reduced ferredoxin 
converts the bound sulfur to a radical anion (-S•), which is transferred to one of the cysteine residues 
of ISCU (the identity of that residue remains in question [122,148,165,166]). Then an electron 
transferred from Fe2+ to the radical anion leads to the formation of -S2− and Fe3+. In the next stage, FXN 

Figure 6. NMR evidence that FDX2 binds to (NIAUF)2 without displacement of FXN but that FDX2
added to (NIAU(M108I)F)2 displaces FXN. (A) 1H-15N TROSY-HSQC spectrum of [U-15N]-FXN;
(B) 1H-15N TROSY-HSQC spectrum of [U-15N]-FXN after the addition of 0.5 subunit equivalent
of unlabeled (NIAU)2; (C) 1H-15N TROSY-HSQC spectrum of [U-15N]-FXN after the addition of
0.5 subunit equivalent of unlabeled (NIAU)2 and 1.0 subunit equivalent of unlabeled FDX2; (D) 1H-15N
TROSY-HSQC spectrum of [U-15N]-FXN; (E) 1H-15N TROSY-HSQC spectrum of [U-15N]-FXN after the
addition of 0.5 subunit equivalent of unlabeled (NIAU(M108I))2; (F) 1H-15N TROSY-HSQC spectrum
of [U-15N]-FXN after the addition of 0.5 subunit equivalent of unlabeled (NIAU(M108I))2 followed by
the addition of 1.0 subunit equivalent of unlabeled FDX2; (G) Schematic summary of the NMR data.
Adapted from Ref. [157] with permission.

The current model of the mechanism of mitochondrial Fe-S cluster assembly consists of the
following steps (Figure 7A). It starts with the recruitment of ISCU by (NIA)2 to form (NIAU)2. Then,
reduced ferredoxin (X) and Fe2+-FXN (F) bind to yield (NIAUFX)2 [132,157]. By combining constraints
from NMR, SAXS and XL-MS as input to HADDOCK [156,163], we generated a structural model
of (NIAUF)2 (Figure 7B,C) [129]. In this model, FXN is found to bind in a cleft between ISCU and
NFS1, the α1-β1 site of FXN interacts with the conserved arginine-rich loop “271RRRPRVR277” of NFS1,
and the β3-β5 sheet interacts with the conserved “99LPPVK103” motif of ISCU [164]. Binding of FXN
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opens up the active site of NFS1 allowing the entry of L-cysteine, which upon conversion to L-alanine
generates S0 bound to the active site cysteine (C381) of NFS1. An electron from reduced ferredoxin
converts the bound sulfur to a radical anion (-S•), which is transferred to one of the cysteine residues of
ISCU (the identity of that residue remains in question [122,148,165,166]). Then an electron transferred
from Fe2+ to the radical anion leads to the formation of -S2− and Fe3+. In the next stage, FXN and
oxidized ferredoxin are released. Ferredoxin is reduced by ferredoxin reductase (FDXR), which binds
to the same surface of ferredoxin that binds NFS1 [137,138], and Fe2+-FXN is regenerated with Fe2+

from a, yet to be identified, mitochondrial iron protein. Then reduced ferredoxin and Fe2+-FXN bind
back to the (NIAU)2 complex, and the cycle is repeated to complete the assembly of a [2Fe-2S] cluster.
Future studies are needed to test the key steps of this model.
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Figure 7. Proposed steps of Fe-S cluster assembly on ISCU and a structural model of (NIAUF)2.
(A) Schematic representation of the steps leading to Fe-S cluster assembly on human ISCU. It starts
with the recruitment of ISCU by (NIA)2 to form (NIAU)2. Then, reduced ferredoxin (X) and Fe2+-FXN
(F) bind to yield (NIAUFX)2. (NIA)2 converts L-cysteine to L-alanine to generate sulfane sulfur.
An electron from reduced ferredoxin converts the sulfane sulfur to a radical anion (−S•), which is
transferred to one of the cysteine residues of ISCU, and an electron transferred from Fe2+ to the radical
anion leads to the formation of -S2− and Fe3+. In the next stage, FXN and oxidized ferredoxin dissociate
from the (NIAUFX)2 complex. Ferredoxin is reduced by ferredoxin reductase (FDXR), and Fe2+-FXN is
regenerated with Fe2+ from a, yet to be identified, mitochondrial iron protein. Then reduced ferredoxin
and Fe2+-FXN bind back to the (NIAU)2 complex, and the cycle is repeated to complete the assembly
of a [2Fe-2S] cluster; (B) A structural model of (NIAUF)2 built by the HADDOCK server by combining
NMR and XL-MS restraints with the X-ray structures of (NIAU)2 (PDB: 5WLW) and FXN (PDB: 1EKG);
(C) Expanded view of the boxed region in (B). The regions of the FXN model colored red and blue
indicate its binding interfaces with NFS1 and ISCU, respectively, as identified from NMR studies.
The arginine-rich loop on NFS1 (magenta) and the “99LPPVK103” loop on ISCU (green) are involved in
the interaction with FXN. The inset was rotated 90◦ for better view of the protein interaction interfaces
of the complex. See Ref. [129] for details.
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3. [2Fe-2S] Cluster Transfer as Studied by NMR Spectroscopy

The second step of mitochondrial ISC machinery is the transfer of the nascent Fe-S cluster
assembled on ISCU to a recipient Fe-S protein. This process is facilitated by the mitochondrial
HSP70-HSC20 chaperone–cochaperone system in an ATP-dependent manner [167,168] (Figure 1).
The homologous chaperone and cochaperone in the E. coli ISC system are HscA and HscB, respectively.
Mitochondrial HSP70 (also known as mortalin or HSPA9) is a multifunctional protein involved in
many cellular processes such as stress response, control of cell proliferation, and inhibition/prevention
of apoptosis [169,170]. The specificity of HSP70 toward different cellular functions is driven by its
interaction with J-protein cochaperones [171,172]. HSC20 is the cochaperone involved in Fe-S cluster
transfer [173]. Recent studies suggest that HSC20 facilitates Fe–S cluster delivery to target proteins by
recognizing the “LYR” motif in specific recipient Fe–S proteins or accessory factors [174,175]. HSP70
recognizes the conserved “LPPVK” loop of ISCU [176]; however, this loop is not exposed in the
S-state of ISCU. Solution NMR studies showed that HSP70 binds to the D-state of ISCU, whereas
HSC20 binds to the structured state, and the β-sheet of ISCU (S-state) forms the binding interface for
HSC20 [84,96]. The mechanism of transfer of holo-ISCU from the (NIAU)2 complex to the co-chaperone
is unknown. A possible mechanism is that HSC20 displaces cysteine desulfurase from ISCU because
their binding to ISCU is mutually exclusive [173]. The HSC20-holo-ISCU complex then interacts with
the ATP-bound state of HSP70. Both ISCU and HSC20 simulate the ATPase activity. ATP hydrolysis
induces a conformational change of HSP70, and ISCU undergoes a conformation change (likely from
the S- to the D-state) that makes its “LPPVK” loop accessible to HSP70 and stimulates release of the
[2Fe-2S] cluster to a recipient protein [167,177]. The nucleotide exchange factor (NEF) then binds to
HSP70 and catalyzes the exchange of ADP for ATP to set up the subsequent cycle [178].

Recent studies have shown that Fe-S cluster release from ISCU can involve the single-domain
monothiol glutaredoxin 5 (GLRX5, Grx5 in yeast) [131]. A member of monothiol glutaredoxin family
with a signature CGFS active site, GLRX5 has been characterized as an intermediate Fe-S cluster carrier
involved in cluster transfer downstream of ISCU [39]. E. coli Grx5 can receive a [2Fe-2S] cluster from
IscU, and the presence of HscA-HscB leads to a 700-fold increase in the transfer rate [179]. In yeast,
Grx5 has been shown to interact with the Hsp70 chaperone Ssq1 at a site close to but not overlapping
with the Isu1 binding site. The proximity of Isu1 and Grx5 on the Hsp70 chaperone allows for rapid Fe-S
cluster transfer from Isu1 to Grx5 [38]. A crystal structure has shown that each of two GLRX5 molecules
provides one cysteinyl ligand to the bridging [2F-2S] cluster and that the remaining two thiolate ligands
come from glutathione (GSH) molecules bound to each GLRX5 [180]. Solution NMR studies show that
GLRX5 is monomeric in solution and dimerizes upon cluster binding [181]. Although its cluster binding
site is less ordered, the backbone conformation of the solution NMR structure of apo-GLRX5 [181]
is similar to that of the GLRX5 subunit in the X-ray structure of the holo-protein [180]. Interestingly,
1H-15N IR-HSQC-AP and paramagnetic 13C-NMR experiments of [2Fe-2S]-GLRX5 showed two set of
peaks around the Fe-S cluster binding site, indicating that two dimeric [2Fe-2S]-GLRX5 species exist in
solution [181]. Monothiol glutaredoxins and A-type proteins have been shown to be partners in Fe-S
cluster trafficking [182]. Using NMR titration experiments, Banci et al. observed unidirectional Fe-S
cluster transfer from GLRX5 to A-type Fe-S cluster carriers, ISCA1 and ISCA2. 15N-NMR relaxation
experiments indicate that ISCA1 and ISCA2 receive the [2Fe-2S] cluster from [2Fe-2S]-GLRX5 in their
hetero-dimeric state [181].

Recent studies by Maio et al. suggest an alternative mechanism of Fe-S cluster transfer from ISCU
that is independent of intermediate carriers such as GLRX5 [183]. Maio et al. showed that HSC20
can guide the target of specific Fe–S recipient proteins for cluster delivery by binding to a consensus
LYR sequence present in specific proteins [175]. One example is succinate dehydrogenase subunit b
(SDHB) in respiratory complex II, which contains three LYR motifs close to the Fe-S cluster binding
sites. Maio et al. showed that HSC20 was able to guide the insertion of [2Fe-2S] cluster from holo-ISCU
to SDHB by recognizing the LYR motifs [175]. In another recent study, Maio et al. demonstrated that
HSC20 could guide the insertion of [2Fe-2S] cluster from holo-ISCU to a Rieske protein UQCRFS1 in
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complex III by binding to the LYR sequence in LYRM7, which forms an intermediate assembly complex
with UQCRFS1 [174].

4. Maturation of [4Fe-4S] Cluster by NMR

[4Fe-4S] clusters are the most commonly used Fe-S cluster in cells. Multiple in vitro studies have
shown that [4Fe-4S] can be assembled on ISCU [155,184–186]. However, recent in vivo studies by
the Lill and other groups suggest that ISCU can only form a [2Fe-2S] cluster and that the maturation
of [4Fe-4S] clusters in mitochondria requires a set of other mitochondrial proteins, including two
A-type carrier proteins (ISCA1 and ISCA2) and IBA57, a protein currently with no known function
except for its involvement in the maturation of Fe-S proteins containing [4Fe-4S] clusters [44,45].
A recent study using a mouse model suggested that only ISCA1 is required for the maturation of
mitochondrial [4Fe-4S] clusters [43]. Defects in ISCA1, ISCA2 and IBA57 have been associated with
numerous mitochondrial diseases now categorized as multiple mitochondrial dysfunctions syndromes
MMDS3 (IBA57) [80,81,187], MMDS4 (ISCA2) [79], and MMDS5 (ISCA1) [77,78]. A common phenotype
of these MMDS diseases is the deficiency in mitochondrial [4Fe-4S] proteins, such as lipoic acid
synthase (LAS), a strong indication of their functions in mitochondrial [4Fe-4S] cluster maturation.
Solution NMR studies by Brancaccio et al. provide direct in vitro evidence supporting the role of
ISCA1-ISCA2 in [4Fe-4S] cluster maturation [188]. 15N-NMR relaxation experiments showed that
apo-ISCA2 exists in solution as a homodimer. ESI-MS, EPR, and paramagnetic 1H-NMR studies
showed that, whereas the “as purified” ISCA2 dimer contains a [2Fe-2S] cluster, the chemically
reconstituted dimeric ISCA2 contains a [4Fe-4S] cluster. The nature of the cluster bound to ISCA2
can be altered by changing the redox conditions. NMR titration experiments showed that ISCA2 and
ISCA1 form a heterodimeric complex. Mapping of the chemical shift perturbations suggested that
the ISCA2-ISCA1 heterodimer interface closely resembles that of (ISCA2)2 homodimer. By 1H-15N
HSQC NMR and UV/vis studies, the authors demonstrated that [2Fe-2S]-GLRX5 can transfer its
cluster to ISCA2-ISCA1 and that the cluster transfer occurs via a weak, transient interaction between
[2Fe-2S]-GLRX5 and ISCA2-ISCA1. NMR, EPR, and UV/vis data all identified the new cluster on
ISCA2-ISCA1 as [4Fe-4S], indicating that the ISCA2-ISCA1 heterodimer is capable of converting two
[2Fe-2S] clusters to a [4Fe-4S] cluster. It remains unclear what role IBA57 plays in the maturation of
[4Fe-4S] clusters, although IBA57 has been shown to interact with ISCA2 and to potentially form a
hetero-trimeric complex with ISCA1-ISCA2 [43,45]. The cluster transfer from GLRX5 to ISCA2-ISCA1
likely involves a chaperone–cochaperone system, although it remains to be seen how it functions
in the cellular environment. In addition, a biological electron donor, such ferredoxin, may also be
needed to reduce two [2Fe-2S] clusters to a [4Fe-4S] cluster. A recent NMR study by Brancaccio
et al. demonstrated that the [4Fe-4S] cluster maturation on ISCA2-ISCA1 is impaired by Cu(I):
Cu(I) can bind ISCA2-ISCA1 tightly and prevent ISCA2-ISCA1 from receiving Fe-S clusters from
holo-GLRX5. The authors suggested that impaired [4Fe-4S] cluster maturation may explain cellular
Cu(I) toxicity [189].

5. Trafficking of [4Fe-4S] Cluster Studied by NMR

Following the maturation of [4Fe-4S] clusters as described above, the trafficking of these [4Fe-4S]
clusters in mitochondria is facilitated by late-acting ISC targeting factors or intermediate [4Fe-4S]
cluster carriers, such as NFU1 and NUBPL, which receive [4Fe-4S] clusters from [4Fe-4S]-ISCA1-ISCA2
complex and deliver them to downstream recipient proteins [47,48,190–193].

One of these late-acting factors is NFU1, a protein that binds a [4Fe-4S] cluster and was initially
thought to be an alternative scaffold protein in the ISC machinery [194]. Clinical and genetic studies of
patients of multiple mitochondrial dysfunctions syndromes 1 (MMDS1) identified mutations in the
gene for NFU1 [47,48,195]. The biochemical phenotype suggested deficiency of a subset of [4Fe-4S]
proteins such as lipoic acid synthase (LIAS) and succinate dehydrogenase (SDH). NFU1 was thus
characterized as a late-acting factor required for the maturation of a subset of [4Fe-4S] proteins.
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Studies in yeast showed that NFU1 binds ISCA and [4Fe-4S] client proteins [46]. NFU1 consists of two
domains: a highly conserved C-terminal domain (CTD) and a less conserved N-terminal domain (NTD).
The structures of CTD and NTD were determined separately by solution NMR spectroscopy [196].
The NTD has a βββαββα fold with an additional short a turn α1′ between strand β3 and helix α1;
the CTD has a αββαβ fold with a kink in the middle of helix α1. In both domains, the β strands
form an antiparallel β sheet, and the two helices pack on one side of the β sheet to form a two-layer
sandwich topology. The conserved CXXC-containing-motif that serves as the Fe-S cluster ligands is
located on a flexible loop between β2 and α2 of CTD [196]. Small angle X-ray scattering (SAXS) data
indicated that full-length NFU1 adopts a dumbbell-shaped structure, with CTD and NTD connected
by a flexible linker region, similar to that of Arabidopsis thaliana NFU protein [196,197]. NFU1 contains
only two cysteine residues, which are located in the CTD and are essential for activity. Thus, two CTD
molecules are needed to coordinate the [4Fe-4S] cluster.

We determined from NMR diffusion, SAXS, size-exclusion chromatography (SEC), and analytical
ultracentrifugation (AUC) measurements that [4Fe-4S]-NFU1 made by enzymatic reconstitution exists
in solution as a hexamer [196]. According to a SAXS-based ab initio model, the structure is a Y-shaped
complex composed of three [4Fe-4S]-(NFU1)2 units. Each of the three legs consists of two NFU1
molecules whose CTDs ligate the [4Fe-4S] cluster. One NTD of each leg is free and the other NTD
participates in a tripartite complex (Figure 8). This model predicts two sets of NTD NMR peaks, one for
the free ends and one for the complexed end. This prediction was confirmed by NMR spectra [196].
We speculate that the bundling of three [4Fe-4S] clusters in a single aggregate may offer an efficient
mechanism for cluster delivery to recipient proteins.
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Figure 8. Structural model of [4Fe-4S]-NFU1. (A) Rigid body reconstructed model of the [4Fe-4S]
cluster-bound dimer of NFU1 superimposed onto the dummy atom model reconstructed from the
SAXS data for dimeric apo-NFU1; (B) Expansion of the region of the [4Fe-4S] cluster; (C) Configuration
of cluster ligation consistent with the SAXS results; (D) The rigid body reconstructed model of the
trimer of cluster-containing dimers of NFU1 superimposed onto the dummy atom model reconstructed
from the SAXS data for holo-NFU1. The tripartite binding region is formed by the N-terminal domain
of one NFU1 subunit of each of three NFU1-[4Fe-4S]-NFU1 units. The model is consistent with NMR
studies. Adapted from Ref. [196] with permission.
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A few studies have investigated cluster transfer from NFU1 to a recipient protein. Gao et al.
showed by monitoring circular dichroism (CD) spectra changes that Arabidopsis thaliana NFU2 can
transfer a [4Fe-4S] cluster to APR1 [198]. E. coli holo-NfuA was capable of transferring a [4Fe-4S]
cluster to lipioyl synthase (LipA) and activating LipA activity [199]. We showed that holo-NFU1
can transfer its [4Fe-4S] cluster to mitochondrial apo-aconitase (AcnA) and activate its AcnA activity.
1H-15N HSQC NMR spectra of NFU1 before and after cluster delivery to AcnA revealed that NFU1
became monomeric after transferring the Fe-S cluster to AcnA. Our NMR data also suggest that the
cluster transfer process likely adopts a “hit-and-run” mechanism as no interaction was detected by
NMR between apo-NFU1 and holo-AcnA after cluster transfer [196].

[4Fe-4S] cluster maturation in mitochondria also requires BOLA family proteins. BOLA-like
proteins are known to partner with monothiol glutaredoxins (Grxs) and mediate Fe-S cluster delivery
and cellular iron regulation [200]. The human proteome contains three BOLA proteins, namely BOLA1,
BOLA2, and BOLA3. BOLA1, and BOLA3 are localized to mitochondria, whereas BOLA2 is localized
to cytosol and involved in CIA pathway. Deficiency of BOLA3 is associated with mitochondrial disease
MMDS2 [48]. Depletion of BOLA1 in cultured human cells leads to increased mitochondrial protein
thiol oxidation and changes in mitochondrial morphology [201]. Recent studies have confirmed that
both BOLA1 and BOLA3 are important for mitochondrial [4Fe-4S] cluster maturation and that they
play overlapping, but not entirely identical, roles in this process [46,202]. The structures of BOLA1
and BOLA3 have been solved recently by solution NMR [202]. The NMR structures of BOLA1 and
BOLA3 showed similar αββαβ folds, with the three β strands forming a β-sheet (β1↓β2↑β2↑) and
the two helices packing on one side of the β sheet to form a two-layer sandwich topology. Both are
structurally similar to other BOLA-like proteins from Mus musculus and Arabidopsis thaliana [203,204].
The key differences between BOLA1 and BOLA3 are in the loop between β1 and β2, which contains
several key residues that may potentially bind Fe-S clusters. NMR titration showed that both BOLA1
and BOLA3 bind apo-GLRX5 and holo-GLRX5. NMR relaxation and thermophoresis results showed
that both BOLA proteins form a 1:1 complex with apo-GLRX5 with Kd about 3 µM. Mapping of the
NMR chemical shift perturbations accompanying the formation of complexes onto the structures of
apo-GLRX5, BOLA1, and BOLA3 revealed that helix α2, β-sheet and an invariant His residue H96
of both BOLA proteins are involved in their interaction with GLRX5. The authors further studied
interaction between [2Fe-2S]-GLRX5 and BOLA proteins. Chemical shift perturbation analysis showed
that the NMR signals from putative Fe-S cluster binding sites on the BOLA proteins were affected
by the addition of holo-GLRX5, whereas NMR signals from the GSH binding site and surrounding
residues of GLRX5 were affected by the addition of BOLA proteins. The 1H-15N HSQC and 15N
relaxation data from GLRX5-BOLA complexes were consistent with the formation of 1:1 heterodimeric,
[2Fe-2S]-bridged, GLRX5-BOLA complexes [202]. UV/vis, CD, EPR, and NMR data suggested that the
BOLA1-GRX5 complex coordinates a reduced Rieske-type [2Fe-2S]1+ cluster, whereas the BOLA3-GRX5
complex coordinates an oxidized, ferredoxin-like [2Fe-S]2+ cluster. The [2Fe-2S]-BOLA1-GRX5 complex
is formed in preference to the [2Fe-2S]-BOLA3-GRX5 complex, as the result of its higher cluster binding
affinity [205].

Although both BOLAs interact with GLRX5 and can form heterodimeric holo-complexes, it has
also been shown that BOLA1 is better at stabilizing the [2Fe-2S] cluster on GLRX5 than BOLA3,
indicating the potential functional differences between the two BOLA proteins as a consequence of
different stability, redox potential and solvent accessibility properties of the [2Fe-2S] clusters [205].
Several lines of evidence indicate that NFU1 and BOLA3 act together as late-acting factors for [4Fe-4S]
cluster maturation in LIAS and SDH: a) mutations on NFU1 (MMDS1) and BOLA3 (MMDS2) have
similar clinic and biochemical phenotypes such as severe epileptic encephalopathy and dilated
cardiomyopathy, severely reduced activities of pyruvate dehydrogenase complex (PDHc) and α-
ketoglutarate dehydrogenase complex (α-KGDH), due to reduced lipoylation of the E2 subunits of
these enzymes, and deficiency of respiratory chain complexes I, II and III [47,48]; b) NFU1 interacts
with BOLA3; and c) overexpression of Nfu1 leads to increased level of Bola3 expression in yeast
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cells [46,202]. However, the precise function of BOLA3 in this process remains elusive. In addition,
the physiological function of GLRX5-BOLA1 is a mystery. It could play a role in mitochondrial iron
sensing and regulation, similar to that of the yeast cytosolic Grx5-Bol2 complex [200,206], or it may
assist GLRX5 in [2Fe-2S] delivery to the ISCA1-ISCA2 complex [141].

6. CIA Machinery as Studied by NMR Spectroscopy

The biogenesis of cytosolic and nuclear Fe-S proteins involves intimate coordination between
the mitochondrial ISC machinery and the CIA system. The CIA system utilizes a sulfur-containing
compound (X-S) synthesized by mitochondrial ISC machinery and exported via an ATP binding
cassette (ABC) transporter (Atm1 in yeast, ABCB7 in human) located in the mitochondrial inner
membrane [42,207–209]. The identity of X-S is still undetermined, however, a recent study using
size-exclusion chromatography combined with inductively coupled plasma mass spectrometry
(SEC-ICP-MS) suggested that the X-S species has a molecular mass between 700 and 1000 Da [210].

To date, 13 CIA components have been identified (Table 2). The current working model of CIA can
be divided into two major steps (Figure 9). First, a transiently bound [4Fe-4S] cluster is assembled on a
scaffold protein complex consisting of two P-loop NTPase proteins, namely NUBP1 (Nbp35 in yeast)
and NUBP2 (Cfd1 in yeast) [211,212]. In the second step, the [4Fe-4S] cluster on the NUBP1-NUBP2
scaffold is transferred to dedicated apo-proteins such as IRP1 and ABCE1. This transfer reaction is
mediated by the iron-hydrogenase-like protein NARFL (also known as IOP1, Nar1 in yeast) [213],
the CIA targeting complex comprises CIAO1, CIA2B (yeast Cia1 and Cia2) [214,215], and MMS19
(yeast Mms19) [216,217]. Other late-acting factors that are required for the insertion of Fe-S cluster
to specific apo-protein targets have also been identified. CIA2A has been shown to be a late-acting
factor required for the maturation of cytosolic IRP1, a key factor for cellular iron homeostasis [215].
The structure of monomeric CIA2A have been obtained by solution NMR; two different X-ray structures
of dimeric CIA2A forms have also been reported [218,219]. In a recent study, by using NMR, UV/vis
and EPR, Maione et al. showed that CIA2A and CIAO1 form a heterodimeric species CIA2A-CIAO1,
which can bind a [4Fe-4S] cluster. The CIA2A alone is incapable of binding any type of Fe-S cluster.
The [4Fe-4S] cluster on CIA2A-CIAO1 complex can be transferred to apo-IRP1 to generate active form
of IRP1 [220]. Two other CIA proteins, named ORAOV1 and YAE1D, have recently been identified,
and shown to be late-acting factors required for the maturation of ABCE1 [221]. CIA machinery has
been linked with DNA metabolism and genome stability [207]. For example, the CIA protein MMS19
is required for Fe-S transfer to enzymes involved in for DNA metabolism. Mutations in MMS19
cause genome instability, and the phenotypes include defects in methionine synthesis, sensitivity to
genotoxic stress, and extended telomeres [217,222]. It is worth mentioning that a radically different
mechanism regarding the synthesis and transfer of Fe-S clusters in cytosol has recently been proposed:
Kim et al. have shown that Fe-S clusters can be synthesized de novo by cytosolic ISCU and NFS1 (cISCU
and cNFS1) and that Fe-S cluster insertion into recipient proteins is mediated by cytosolic HSC20
(cHSC20) and CIA targeting complex (CIAO-CIA2B-MMS19), with cHSC20 recognizing the “LYR”
motif on CIAO [223].
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Table 2. Proteins involved in CIA machinery.

Human Protein UNIPROT ID Yeast Ortholog Cofactors Putative Functions

NUBP1 P53384 Nbp35 [4Fe-4S] Scaffold protein for formation of a [4Fe-4S] cluster [211,212]

NUBP2 Q9Y5Y2 Cfd1 [4Fe-4S] Scaffold protein for formation of a [4Fe-4S] cluster [211,212]

NDOR1 Q9UHB4 Tah18 FAD, FMN, NADPH Electron transfer [224,225]

Anamorsin (CIAPIN1) Q6FI81 Dre2 [2Fe-2S], [4Fe-4S] Electron transfer [224,225]

GLRX3 O76003 Grx3 and Grx4 [2Fe-2S], GSH Fe-S cluster transfer, iron trafficking [206,226,227]

BOLA2 Q9H3K6 Isd11 [4Fe-4S] Fe-S cluster transfer [226,228]

NARFL (IOP1) Q9H6Q4 Nar1 Adaptor protein to connect early and late-acting CIA
components [216,229]

CIAO1 O76071 Cia1 CIA targeting complex [214]

MMS19 Q96T76 Met18 CIA targeting complex [217,222]

CIA2A (FAM96A) Q9H5X1 Specific maturation factor of IRP1 [215]

CIA2B (FAM96B) Q9Y3D0 Cia2 CIA targeting complex [215]

YAE1D1 Q9NRH1 Yae1 Specific maturation factor of the cytosolic ABCE1 [221]

ORAOV1 Q8WV07 YNL260C Specific maturation factor of the cytosolic ABCE1 [221]
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on mitoNEET to its dormant [2Fe-2S]+ state. The maturation of mitoNEET is shown to be dependent 
on mitochondrial ISC machinery. The blue stars denote the proteins (or the protein homologs) for 
which the structures were obtained by NMR, and blue arrows denote the processes that were clarified 
by NMR. 
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Human NDOR1, which belongs to the family of diflavin reductases, consists of two domains: The 
first binds FMN, and the second binds FAD and NADPH [225]. Anamorsin also consists of two 
domains: an N-terminal domain (NTD) and a C-terminal cytokine-induced apoptosis inhibitor 1 
domain (CIAPIN1 domain), which contains two highly conserved cysteine-rich motifs (CX8CX2CXC 
and CX2CX7CX2C), and the two domains are connected by a flexible linker [230]. Banci et al. solved 
the structure of the NTD of anamorsin by solution NMR and showed by UV/Vis, EPR and 1H 
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Figure 9. Schematic representation of the current model of human cytosolic Fe-S cluster assembly (CIA
machinery). The CIA machinery requires the mitochondrial ISC assembly machinery, which synthesizes
an unidentified sulfur-compound (X-S) that is exported from mitochondria by ABCB7. The X-S
compound might be used to assemble [4Fe-4S] clusters on the (NUBP1-NUBP2)2 heterodimeric complex
and assembly of [2Fe-2S] clusters on GLRX3 and GLRX3-BOLA2. The electrons needed for [4Fe-4S]
clusters assembly on the (NUBP1-NUBP2)2 are provided by the electron transfer chain composed of
NADPH, NDOR1, and anamorsin. [2Fe-2S]-(GLRX3)2 homodimer or the [2Fe-2S]2-GLRX3-BOLA22

heterotrimer are capable of transfer Fe-S cluster to anamorsin. [4Fe-4S] clusters on (NUBP1-NUBP2)2

are subsequently transferred to the intermediate carrier NARFL, which transfers them into cytosolic
and nuclear [4Fe-4S] target proteins. The latter process is assisted by the CIA targeting complex
CIAO1-CIA2B-MMS19. Other late-acting factors may be required for the maturation of certain cytosolic
Fe-S proteins. The YAE1D1-ORAOV1 complex is required for the maturation of ABCE1, and the
CIA2A-CIAO1 complex is required for the maturation of cytosolic aconitase IRP1. MitoNEET has
been shown to be capable of repairing an Fe-S cluster on IRP1 damaged under oxidative stress
conditions. NDOR1-anamorsin complex is capable of reducing the Fe-S cluster on mitoNEET to its
dormant [2Fe-2S]+ state. The maturation of mitoNEET is shown to be dependent on mitochondrial ISC
machinery. The blue stars denote the proteins (or the protein homologs) for which the structures were
obtained by NMR, and blue arrows denote the processes that were clarified by NMR.

Electrons needed for the first step of the CIA pathway (Fe-S cluster assembly on the
NUBP1-NUBP2 scaffold protein complex) are provided by a dedicated electron transport chain
consisting of NADPH, NDOR1 (Tah18 in yeast), and anamorsin (also known as CIAPIN1, Dre2 in
yeast) [224,225]. Human NDOR1, which belongs to the family of diflavin reductases, consists of two
domains: The first binds FMN, and the second binds FAD and NADPH [225]. Anamorsin also consists
of two domains: an N-terminal domain (NTD) and a C-terminal cytokine-induced apoptosis inhibitor
1 domain (CIAPIN1 domain), which contains two highly conserved cysteine-rich motifs (CX8CX2CXC
and CX2CX7CX2C), and the two domains are connected by a flexible linker [230]. Banci et al. solved
the structure of the NTD of anamorsin by solution NMR and showed by UV/Vis, EPR and 1H



Molecules 2018, 23, 2213 20 of 34

paramagnetic NMR experiments that the CIAPIN1 domain binds a [2Fe-2S] cluster through its first
cysteine-rich motif [230]. CIAPIN1 domain binds another Fe-S cluster through its second cysteine-rich
motif, although the identity of this second cluster is still the subject of debate [231,232]. Banci et al.
used NMR spectroscopy to investigate the structural properties of the CIAPIN1 domain. 15N NOE
and 15N R2/R1 NMR experiments indicated that CIAPIN1 is largely disordered [224]. Using NMR
titration coupled with 1H-15N HSQC experiments, Banci et al. showed that the disordered [2Fe-2S]
cluster binding site of the CIAPIN1 domain interacts with helices α2-α4 of the FMN-binding domain of
NDOR1 and that the interaction is not dependent on the presence of a [2Fe-2S] cluster. The interaction
mode enables electron transfer from the FMN-binding domain of NDOR1 to anamorsin. Banci et al.
observed electron transfer from the reduced FMN-binding domain of NDOR1 to the [2Fe-2S]2+ cluster
on the CIAPIN1 domain of anamorsin [224].

The CIA pathway also requires the function of a multidomain CGFS monothiol glutaredoxin
(GLRX3) and a BOLA family protein (BOLA2). In yeast, Grx3 has been shown to interact with
Fra2 (yeast BOLA2 homolog), which is required for ion sensing [200,206,233]. It has been shown
that human GLRX3 and BOLA2 form a [2Fe-2S] cluster-bridging complex [226,234]. Furthermore,
in vivo experiments by Frey et al. show that the GLRX3-[2Fe-2S]-BOLA2 complex can interact
with the anamorsin-NDOR1 complex to serve as an Fe-S cluster chaperone in CIA machinery by
transferring [2Fe-2S] clusters to the anamorsin-NDOR1 complex [226]. GLRX3 consists of three
domains: one N-terminal Trx domain and two Grx domains (GrxA and GrxB), with each Grx domain
binding a glutathione-coordinated [2Fe-2S] cluster via protein dimerization [226,234]. Solution NMR
titration experiments by Banci et al. showed that the N-terminal Trx domain of GLRX3 interacts with
the well-structured N-terminal domain of anamorsin, and that the interaction is stabilized by the
unstructured linker region of anamorsin. The authors further showed by that [2Fe-2S] cluster on
GLRX3 can be transferred to anamorsin and that the GLRX3-anamorsin complex binds two [2Fe-2S]
clusters [235]. Using 1H-15N HSQC NMR, 15N R2/R1 NMR relaxation, and analytical gel filtration
experiments, Banci et al. further showed that both Grx domains of GLRX3 interact simultaneously with
BOLA2 to form a GLRX3:BOLA22 complex with two bridging [2Fe-2S] clusters between GrxA-BOLA2
and GrxB-BOLA2. Chemical shift perturbation mapping revealed that the α3 helix and the β3 strand
on BOLA2 interact with the [2Fe-2S] cluster-binding sites and their surrounding regions of GrxA and
GrxB [228]. Banci et al. further showed that [2Fe-2S]2-GLRX3-BOLA22 can donate a [2Fe-2S] cluster
to anamorsin, as consistent with the in vivo findings that the GLRX3-BOLA2 complex serves as the
chaperone that transfers a [2Fe-2S] cluster to anamorsin [226,228].

Recent NMR studies suggest a potential relationship between CIA machinery and mitoNEET.
MitoNEET is a ~17 kDa [2Fe-2S] protein anchored on the outer mitochondrial membrane by a single
transmembrane helix; its soluble region is located in the cytosol. MitoNEET, which is a diabetes and
cancer drug target, plays a role in mitochondrial energy regulation, autophagy, redox sensing, and cell
survival [236–238]. The crystal structure of MitoNEET shows that it forms a dimer, with each subunit
containing a Rieske-type [2Fe-2S] cluster coordinated by side chains from three cysteine and one histidine
residue [239]. A recent study showed that the maturation of mitoNEET is dependent on the mitochondrial
ISC machinery and that mature mitoNEET can repair a damaged Fe-S cluster on cytosolic IRP1, a key
regulator of cellular iron homeostasis [240]. By using 1H-15N SOFAST-HMQC NMR experiments,
Ferecatu et al. demonstrated that mitoNEET can cycle between a well folded holo-form and a highly
disordered apo-form just by insertion/disassembly/reinsertion of the Fe-S cluster [240]. NMR and
UV/vis data by Golinelli-Cohen et al. show that mitoNEET can transfer the [2Fe-2S] cluster to a recipient
protein. The transfer of [2Fe-2S] cluster depends on the redox state of the [2Fe-2S] cluster on mitoNEET.
While the reduced [2Fe-2S]+ cluster is extremely stable and cannot be released, the oxidized [2Fe-2S]2+

cluster is labile and can be transferred to an apo-protein [241]. It is unclear what system regulates the
redox states of mitoNEET. One possibility is the anamorsin-NDOR1 redox complex [242]. By using
UV/vis spectroscopy, Camponeschi et al. showed that the FMNH•−-NDOR1-[2Fe-2S]+-anamorsin
complex can reduce oxidized [2Fe-2S]2+-mitoNEET. The authors further demonstrated by 1H-15N
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HSQC NMR experiments coupled with protein titration that mitoNEET interacts with anamorsin but
not NDOR1 in the FMNH•−-NDOR1-[2Fe-2S]+-anamorsin complex. Mapping of the chemical shift
changes of mitoNEET revealed that the [2Fe-2S] cluster binding site of mitoNEET is most affected
by binding to anamorsin [243]. This study provided in vitro evidence of a potential connection
between the CIA system and mitoNEET. Overall, these NMR studies suggest a role for mitoNEET
as a Fe-S repair protein for cytosolic IRP1 under oxidative stress. The Fe-S cluster repair is based on
a redox switch mechanism. Under oxidative stress conditions, the [2Fe-2S] cluster of mitoNEET
becomes oxidized and labile and can be released for IRP1 repair. Once oxidative stress is not
present, the Ndor1/anamorsin complex of the CIA machinery reduces mitoNEET back to its dormant
[2Fe-2S]+ form [240,241,243]. The finding that the maturation of the [2Fe-2S] cluster is dependent on
mitochondrial ISC machinery [240] provides valuable insight into the intimate connection between the
mitochondrial ISC machinery and the cytosolic CIA machinery.

7. Conclusions

Eukaryotic Fe-S cluster biogenesis is a complicated process that involves multiple factors
forming intricate protein–protein interaction networks. Many of the protein–protein interactions
are transient and weak, which make their detection and characterization challenging. In the past
decade, solution NMR has contributed tremendously to the field of Fe-S cluster biogenesis. Solution
NMR techniques have helped elucidate many key processes, including Fe-S cluster assembly and
transfer, [4Fe-4S] maturation, and cytosolic Fe-S cluster biosynthesis. NMR is especially advantageous
in studying the weak and transient protein–protein interactions that are prevalent in Fe-S cluster
biogenesis. Although much progress has been made and a clearer picture of Fe-S cluster biogenesis is
emerging, many questions remains unanswered. We believe that, in the coming years, NMR will be
instrumental in increasing our understanding of mechanisms of eukaryotic Fe-S cluster biogenesis,
how the defects of this process lead to human disease, and, finally, how disease states can be controlled.
New breakthroughs in NMR techniques such as in-cell NMR [244–249], which make it possible to
study protein structure and dynamics directly in cells, may also contribute to our future understanding
of Fe-S cluster assembly and maturation.
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