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Abstract

Adaptive immune receptor repertoire sequencing (AIRR-Seq) offers the possibility of identi-

fying and tracking B cell clonal expansions during adaptive immune responses. Members of

a B cell clone are descended from a common ancestor and share the same initial V(D)J rear-

rangement, but their B cell receptor (BCR) sequence may differ due to the accumulation of

somatic hypermutations (SHMs). Clonal relationships are learned from AIRR-seq data by

analyzing the BCR sequence, with the most common methods focused on the highly diverse

junction region. However, clonally related cells often share SHMs which have been accumu-

lated during affinity maturation. Here, we investigate whether shared SHMs in the V and J

segments of the BCR can be leveraged along with the junction sequence to improve the abil-

ity to identify clonally related sequences. We develop independent distance functions that

capture junction similarity and shared mutations, and combine these in a spectral clustering

framework to infer the BCR clonal relationships. Using both simulated and experimental

data, we show that this model improves both the sensitivity and specificity for identifying B

cell clones. Source code for this method is freely available in the SCOPer (Spectral Cluster-

ing for clOne Partitioning) R package (version 0.2 or newer) in the Immcantation framework:

www.immcantation.org under the AGPLv3 license.

Author summary

B cells recognize antigens through their BCR. During adaptive immune responses, anti-

gen-specific B cells undergo intense proliferation. This B cell clonal expansion is coupled

with a process of SHM, which results in the accumulation of mutations in the DNA

encoding the BCR. Within the specialized micro-environment of the germinal center,

these diversified B cells compete for antigen binding and presentation to follicular helper

T cells. Successful binding leads to repeated cycles of proliferation, SHM and affinity-

dependent selection ultimately resulting in the generation of high-affinity memory and

antibody-secreting plasma cells. Driven by dramatic improvements in high-throughput
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sequencing technologies, large-scale characterization of BCR repertoires is now feasible.

However, a critical barrier to quantitative analysis of these large-scale BCR repertoire data

is the accurate identification of B cell clones. B cells are inferred to be clonally related if

the distance between their BCR sequences is close enough. This paper develops a hybrid

distance function that integrates information from the V(D)J recombination process

(distance between CDR3 sequences), along with information from a common history of

clonal expansion (shared SHMs in the V and J segments of the BCR) to improve the ability

to identify clonally related sequences.

Introduction

B cells recognize pathogens through their BCR. The ability to recognize and initiate a response

to a wide variety of pathogens depends upon a large population of B cell lymphocytes each of

which expresses a particular receptor for antigen. The diversity of the BCRs (also referred to as

Immunoglobulin (Ig) receptors) is a result of genetic recombination and diversification mech-

anisms. BCRs are comprised of two identical heavy (IGH) and light (IGL) chain proteins. For

IGH-chains, diversity is initially created in the germline via recombination of variable IGHV,

diversity IGHD, and joining IGHJ genes (termed the V(D)J recombination process [1]). Diver-

sity in IGH is further increased by addition of P- and N-nucleotides at the IGHV/IGHD and

IGHD/IGHJ boundaries [2–4]. For IGL-chains, the IGLV gene is rearranged directly to IGLJ

gene. The region where IGHV, IGHD and IGHJ come together in IGH (or IGLV and IGLJ for

IGL) is termed the CDR3 (the junction region is defined as the CDR3 plus the prefix and suffix

conserved flanking amino acid residues), and this high diversity region is often involved in

antigen-binding [5].

During T-dependent responses, antigen-activated B cells undergo clonal expansion and

acquire additional diversity through SHM, an enzymatically-driven process introducing point

substitutions into the BCR locus at a rate of�1/1000 bp/cell division [6]. B cells that acquire

mutations that improve their ability to bind the pathogen are preferentially expanded leading

to affinity maturation of the B cell population over time. Therefore, SHMs have important

consequences for the kinetics, quality, and magnitude of B cell clones as the fundamental

building blocks of immune repertoires [7].

Accurate identification of clonal relationships is important, as these clonal families form

the basis for a wide range of repertoire analyses, including diversity analysis [8–10], lineage

reconstruction and detection of antigen-specific sequences [11–13] and effector functionality

[6, 14]. One way to monitor and track B cell clonal lineages is to perform large-scale sampling

of B cell populations, amplifying, and sequencing the expressed antibody gene rearrangements

by next-generation sequencing (NGS) [15–18]. Recent studies by NGS have greatly expanded

our understanding of B cell clonal lineage development in high-throughput Adaptive Immune

Receptor Repertoire sequencing (AIRR-seq) data [19–21]. However, clonal relationships are

not directly measured, but they must be computationally inferred. To this end several compu-

tational methods have been proposed to identify B cell clones from high-throughput AIRR-seq

data [22–26].

Antibody diversity is largely dominated by the IGH-chain [5]. The IGH-chain owes this

diversity to the: (1) use of an IGHD gene, which IGL-chains lack, (2) addition of short palin-

dromic (P) nucleotides at the IGHV-IGHD and IGHD-IGHJ joints [3], (3) insertion of non-

templated (N) nucleotides at the IGHV-IGHD and IGHD-IGHJ joints by terminal deoxynu-

cleotidyl transferase (TdT) [2], and (4) higher rates of SHM than IGL-chains [27]. The IGH-
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chain junction region commonly serves as an identifier for clonal inference methodologies.

For instance, sequences whose junctions are identical or have a high degree of homology (mea-

sured by string distance at the nucleotide level) are often classified as belonging to the same

clone [28]. However, to avoid grouping together highly homologous yet distinct sequences,

some studies also regroup sequences to have the same IGHV- and IGHJ-gene annotations to

be considered clonally-related [29]. Many methods also assume that members of a clone share

the same junction length, because SHMs introduced into the BCR sequence are predominantly

point substitutions. Probabilistic models have also been developed to calculate the likelihood

of sharing a common B cell ancestor and subsequently infer clonal grouping [23, 24]. How-

ever, these methodologies have complexities that become substantially expensive for large

sequencing datasets. Overall, in practice, a common approach is to infer clones among

sequences with high junction region similarity, as well as identical junction length and IGHV-

and IGHJ-gene usage (referred to as recombination-based model) [28].

While recombination-based strategies are common among current studies, clonal relation-

ship inference solely based on the similarity of the junction region does not leverage the poten-

tial information in the V and J segments. It has been suggested that incorporating shared

SHMs in these regions could improve recombination-based clonal inference [30]. Members of

an expanded B cell clone often share specific somatic mutations and, sometimes, combinations

of mutations across the BCR. Mutations may be shared among two or more members of a

clone as a simple result of being passed down during cell division, or may be positively selected

as part of the affinity maturation process [31–35]. This hierarchy of shared mutations can be

considered as the “glue” binding all the members of a B cell clone together and shaping its line-

age tree (Fig 1). This additional IGH-chain information could be leveraged to refine clonal

relationships.

In this study, we investigated whether shared SHM patterns in the V and J segments of

the BCR can be leveraged along with the junction sequence to improve the ability to identify

Fig 1. A B cell lineage tree showing the relationships between clonally-related cells. The germline sequence (diamond) is shown at

the root of lineage, and is connected by a single branch to the most recent common ancestor (MRCA) (square). This branch consists of

mutations that are shared across all members of a clone. Several sub-branches descend from the MRCA to inferred sequences (triangles)

carrying mutations that are shared by a subset of clone members. Finally, the inferred sequences are connected to observed sequences

(circles) through mutations that are unique to each given observed sequence. Shared and unique mutations are marked at each branch

by horizontal lines and arrowhead-lines, respectively.

https://doi.org/10.1371/journal.pcbi.1007977.g001
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clonally related sequences. This model is implemented in the new version of SCOPer. The

first version of SCOPer, a spectral clustering-based method for identifying clones from high-

throughput B cell repertoire sequencing data, was presented in [26]. In the following sections,

we discuss the main steps of the methodology and explain our implementation of the recent

improvements upon the original framework. We further examine the performance of SCOPer

using simulated and experimental datasets.

Materials and methods

The clonal inference procedure by SCOPer is composed of four main steps (Fig 2). First (1),

BCR sequences IGHV and IGHJ genes are identified. This can be done using various publicly

available tools such as IMGT/HighV-QUEST [36] or IgBLAST [37]. Then (2), sequences are

partitioned into groups (termed as “VJ(ℓ)-group”) that share the same IGHV- and IGHJ-gene

(gene-level grouping) and junction length (length-level grouping). The gene-level grouping is

based on the assumption that the identity of germline gene (the clone members unmutated

common ancestor) cannot change through affinity maturation. The length-level grouping

is based on the assumption that sequences evolve only through point mutation (no indels).

Next (3), within each given VJ(ℓ)-group the defining metric that indicates common clonality

among BCR sequence pairs is determined by combining the similarity among junction region

sequences (subsection: recombination-based distance matrix calculation) and the V and J

Fig 2. Overview of the SCOPer workflow. First, AIRR-seq data are partitioned into VJ(ℓ)-groups which contain sequences with the

same IGHV gene annotation, IGHJ gene annotation, and junction length. Next, each VJ(ℓ)-group is subject to a recombination-based

and a SHM-based distance calculation. Finally, the outputs of these calculations are combined into an integrated distance function that is

used as the basis for inferring the BCR clonal relationships using a spectral clustering-based approach.

https://doi.org/10.1371/journal.pcbi.1007977.g002
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segment mutation profile (subsection: SHM-based distance matrix calculation) into an inte-

grated distance function (subsection: graph composition and local scaling). Finally (4), BCR

clones are identified using spectral clustering-based approach built upon this distance function

(subsection: spectral decomposition and clustering).

Recombination-based distance matrix calculation

The recombination-based component of SCOPer is focused on the sequencing reads’ junction

region. At this step, we generate a symmetric and positive pair-wise similarity matrix Xij

defined by the Hamming distance between the junction regions corresponding to the ith and

jth sequences from a given VJ(ℓ)-group. This is called the “junction-targeted” recombination-

based distance matrix. The Hamming distance is defined as the number of positions at which

the corresponding nucleotides are different. The recombination-based distance matrix can

also be generated from CDR3 region by excluding the three-nucleotide prefix and suffix from

both ends of the junction (i.e. converting junction segment to CDR3 region). Henceforth, this

is called a “CDR3-targeted” recombination-based distance matrix.

SHM-based distance matrix calculation

The SHM-based component of SCOPer is focused on the V and J segments. We develop a

model in which the occurrence of a mutation at the same nucleotide position of a pair of

sequences (referred to as “pair-wise shared mutation”) will be used, accompanying with

recombination-based component, in order to define a metric that indicates common clonality

among BCR sequence pairs. We generate a SHM-based distance matrix so that a pair of

sequences with a higher shared mutation rate are more likely to belong to the same clone,

whereas a pair of sequences with a lower shared mutation rate are considered more indepen-

dent from each other.

We begin with identification of the pair-wise mutations. First, for each VJ(ℓ)-group a single

germline representative is generated by building the effective sequence of all germlines (allele-

grouping). This will facilitate identification of the pair-wise mutations in VJ(ℓ)-groups whose

germlines have different nucleotides at the same position (alleles). The representative germline

is deterministic such that if a position contains different nucleotides, the effective will be an

IUPAC (International Union of Pure and Applied Chemistry) character representing all of the

nucleotides present. Henceforth, we refer to such sequence as “effective germline”. Then, in

each VJ(ℓ)-group, pairs of sequences are compared with the effective germline to identify

mutations. We note that, depends upon the type of recombination-based matrix calculated

in the previous step (i.e., junction- or CDR3-targeted) the junction or CDR3 region of the

sequences and germlines are excluded from this analysis.

We continue with a categorical approach to classify the identified pair-wise mutations

(Fig 3). For each pair of ith and jth sequences the mutations at each position are flagged with a

binary variable and categorized in three classes: (1) a single mutation which occurs only in one

of the sequences, a
ðnÞ
ij , (2) two unique mutations which occur in both sequences, b

ðnÞ
ij , and (3) a

shared mutation which occurs in both sequences, g
ðnÞ
ij . Here, the parameter n indicates the posi-

tion of each nucleotide along the sequence string. The binary variables are retrieved to create

two matrices. One of the matrices accumulates the total number of mutations:

Tij ¼
1

nij

X

n

a
ðnÞ
ij þ 2 b

ðnÞ
ij þ g

ðnÞ
ij

� �� �
: ð1Þ
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A second matrix accumulates the shared mutations:

Hij ¼
2

nij

X

n

g
ðnÞ
ij : ð2Þ

Here, Tij is a positive value and always larger than or equal to positive value Hij. The term νij,
average number of informative positions (2{A, C, G, T}) in ith and jth sequences, is a normaliz-

ing factor used to prevent bias toward pairs of sequences with fewer non-ACGT positions.

We note that SHM biases have been reported [38, 39] both in the bases that are targeted

[40, 41] as well as the substitutions that are introduced [42, 43]. These biases have been sum-

marized by hot- and cold-spot targeting model (“S5F” model that produces background

likelihood of a particular mutation based on the surrounding sequence context as well as the

mutation itself) by [44]. We reasoned that mutations at hot-spot positions could be more likely

to be shared by sequences that are not truly clonally related. In order to account for the poten-

tial influence of SHM biases, we incorporate a damping matrix in the form of:

Mij ¼
Y

n

ð1 � m
ðnÞ
ij Þ: ð3Þ

Here, m
ðnÞ
ij is the average of the mutabilities of the germlines micro-sequence motifs (e.g., a

5-mer from “S5F” model) in which a shared mutation occurs at the central position n. Each

value is subtracted from one to reverse the scaling direction (Fig 3).

Fig 3. Pair of sequences (seq) are compared with each other and the VJ(ℓ)-group effective germline (EGL) to identify unique and

shared somatic hypermutation events. The effective germline sequence is determined by IUPAC character representation of all the

nucleotides present at each position across all germlines in a given VJ(ℓ)-group (allele-grouping). Each nucleotide position of ith and jth

sequences is compared with the corresponding nucleotide position in the effective germline and somatic hypermutation events are

flagged with binary variables: (1) α: a single mutation which occurs only in one of the sequences, (2) β: two unique mutations which

occur in both sequences, and (3) γ: a shared mutation which occurs in both sequences. The average of the mutabilities of the germlines

(GLs) 5-mer motifs in which a shared mutation occurred at the central position is shown by m
ðnÞ
ij , where superscript n indicates the

position that mutation occurred. Mutation events are bold and underlined in the sequences.

https://doi.org/10.1371/journal.pcbi.1007977.g003
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We finalize the calculation by calling Eqs 1, 2, and 3 to calculate the SHM-similarity

between ith and jth sequences in the form of:

Sij ¼ Mij �N ðTij � HijjsTÞ � ð1 � N ðHijjsHÞÞ: ð4Þ

Here, N ðxjsÞ ¼ expð� x2=2s2Þ is a continuous Gaussian probability distribution, where

parameter σT and σH are the standard deviations of the T and H matrices capturing the vari-

ability of total and shared SHM events in each VJ(ℓ)-group, respectively. It is important to

note that for different VJ(ℓ)-groups the level of similarity that indicates common clonality

may be different. Therefore, using the Gaussian probability distribution, built upon the given

VJ(ℓ)-group, will make the model capable of adapting itself to the local mutation frequency.

We further note that, the SHM-similarity (2[0, 1)) becomes non-zero only if the number of

pair-wise shared mutations is non-zero (H 6¼ 0). Conversely (i.e., H = 0), the SHM-similarity is

forced to zero by the third term of Eq 4, even though non-shared mutations exist (T 6¼ 0), and

consequently the recombination-based part of the SCOPer is fully in charge to infer the clonal

relationships. In practice, the behavior of the SHM-similarity function (Eq 4, ignoring the

impact of SHM hot-spots, i.e. Mij = 1) comparing two pairs of sequences can be described as

follows:

• if no shared mutations are observed, then the SHM-similarity Sij is zero,

• if the two pairs have the same total number of mutations, then the pair which accumulates

more shared mutations will have higher SHM-similarity, and

• if the two pairs have the same number of shared mutations, then the pair which accumulates

fewer non-shared mutations, will have higher SHM-similarity. (Note that Tij is always larger

than or equal to Hij).

Graph composition and local scaling

The spectral clustering at the core of SCOPer works based on a graph construction procedure

where the vertices are the observed sequences to be clustered, and the edges between vertices

are weighted dependencies among pairs of sequences. The graph construction relies on a

quantitative notion of adaptive local neighborhoods in the dataset, which are encoded by a

symmetric Kernel function. The Kernel function is used to capture intrinsic data geometries

that approximate underlying manifold models from the data. To construct the kernel graph,

first, we generate a weighted-distance matrix in the form of,

Wij ¼

(Xij Recombination-based model;

ð1 � SijÞ Xij Integrated model:
ð5Þ

The model is named “recombination-based” when recombination-based distance matrix X is

only involved in graph composition. The model is named “integrated” when recombination-

based X and SHM-based S distance matrices are both involved in graph composition. In inte-

grated model, each SHM-similarity value Sij is subtracted from one to reverse the scaling direc-

tion and transform it into a distance metric. Therefore, the pair of sequences (i.e., the graph

vertices) with higher SHM-similarity become closer to each other, thereby more likely to

belong to the same clone. The integrated model can be loosely thought of as Hooke’s Law

(W = κX, where κ = 1 − S), which rules the attraction force between a pair of sequences using a

“spring” with proportionality factor κ (see Fig 4). In the subsequent step, we generate a fully
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Fig 4. The integrated model pulls together clonally-related sequences to improve the B cell clonal inference

process. (A) V(D)J recombination generates a set of highly diverse (unmutated) sequences with large distances

between independent clones (inter-clonal diversity). (B) Clonal expansion with SHM adds additional diversity, and

leads the sequences to spread out around the initial points of creation (intra-clonal diversity). Some sequences from

independent clones could end up with CDR3s that start to look similar (dashed-lines), and may lead to false positives

in the clonal relationship inference process. (C) The SHM-similarity between pairs of sequences, expressed via shared

mutations, acts as a spring that pulls clonally-related sequences toward each other resulting in a more accurate

distinction of local neighborhoods. Black circles indicate observed sequences, while white circles indicate germlines

(GL1 and GL2).

https://doi.org/10.1371/journal.pcbi.1007977.g004
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connected graph Kernel using a Gaussian similarity function in the form of,

Kij ¼ expð� W2
ij=wiwjÞ: ð6Þ

Here, parameters wi and wj are the scaling distances corresponding to the ith and jth sequences,

respectively, which control the width of local neighborhoods allowing the level of similarity to

vary in different parts of the graph. In this way, the local neighborhoods are determined for

each sequence, instead of selecting a universal scaling parameter for all. The width of each

local neighborhood is identified by a single weighted-distance value such that sequences inside

the neighborhood are more similar to each other than the outside sequences. In order to

determine the sequence-to-sequence scaling parameters a self-tuning framework [45] (the so-

called distance-gap procedure) is incorporated into SCOPer. The distance-gap procedure

determines the scale parameter wi corresponding to the ith sequence by seeking a relatively

large gap in the set of weighted-distances from ith sequence to the rest of the sequences. The

distance-gap pipeline is performed as follows. First, the set of weighted-distances correspond-

ing to the ith row of the matrix W is retrieved. Then, a binned Gaussian kernel density estimate

of the weighted-distances is generated using the density function from the stats R package.

Next, the set of extrema of the continuous density distribution is flagged by finding the

weighted-distances at which the first derivative of the distribution is zero while the second

derivative is positive, indicating a local minimum following a local maximum. Recall from uni-

variate Calculus that the first and second derivative for some function f(x) corresponds to the

slope of the tangent line and curvature of f at point x, respectively. Finally, the scale parameter

wi associated with ith sequence is determined as the closest smaller weighted-distance to the

extremum with the lowest density value. If such an extremum is not found, the scale parameter

wi is simply determined as the first largest gap of the rank-ordered set of entries corresponding

to the ith row of the matrix W.

Local scaling is especially useful when the classification of the B cell repertoire contains

multiple scales (e.g., if one clone is tight, while another one is sparse). By means of local scal-

ing, the junction sequence similarities between different clones are lower than the similarities

within any single clone. Therefore, edges between sequences in local neighborhoods are con-

nected with relatively high kernels (i.e., Kij! 1), while edges between far away sequences have

smaller kernels (i.e., Kij! 0). This is an important advantage of this methodology, by allowing

the level of sequence similarity to vary in different local neighborhoods (a biologically plausible

assumption), over other methodologies that partition sequences using an universal (fixed)

level of similarity overall the sequences [25].

Spectral decomposition and clustering

Having defined a scheme to set the graph scale parameters automatically, following with the

calculation of the graph Kernel matrix K, the last unknown free parameter in the model is the

number of clones k, which is determined by the eigen-decomposition of the Laplacian matrix.

First, the Laplacian matrix L = D − K is calculated, where D is the diagonal matrix with its ith

diagonal element being the sum of ith row of K. Then, the Laplacian matrix is eigen-decom-

posed with eigenvalues {0 = λ1� λ2� � � � � λm} and corresponding eigenvectors fcig
m
i¼1

,

where m indicates the number of sequences. Then, the number of clones k is determined by

finding the largest gap within the eigenvalue spectrum (the so-called “eigen-gap” procedure) at

which adding another clone does not give much better modeling of the data. Finally, we per-

form k-means Euclidean distance-based clustering over the k eigenvectors fcig
k
i¼1

associated

with the smallest k eigenvalues to find the members of each clone.
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Bulk B cell simulation and library preparation

Each simulated dataset was generated using the AbSim R package (version 0.2.6) in a B cell

single-lineage fashion [46]. Each B cell clone simulation begins with a random selection

from sets of IGHV, IGHD, and IGHJ germline sequences [47] to produce a unique V(D)J

recombination event. Then, clones are made by introducing mutations using a local nucleotide

context-dependent model (i.e., S5F model from [44]), along a phylogenetic tree in which

branching events occur stochastically. This process was repeated to create a collection of 25

simulated datasets. The size of each repertoire was sampled from a normal distribution (mean

equal to 600k and standard deviation equal to 100k) and the clone sizes were sampled from a

gamma distribution (shape equal to 0.75, scale equal to 0.75, and amplitude sampled from a

normal distribution with mean equal to 1k and standard deviation equal to 0.1k). The remain-

ing parameters were set as default. After simulation was done, the V and J annotations along

with the junction segment of each simulated sequence were identified using IgBLAST version

1.13.0 [37]. Then, the outputs were retrieved and tab-delimited database files were generated

using the command line tool MakeDb, from Change-O (version 0.4.5) [48]. Quality checks

were also undertaken to remove non-productive sequences. Specifically, each sequence was

checked to satisfy a set of constraints that the: (1) whole sequence be annotated as functional,

(2) whole sequence contains no stop codons, and (3) junction is in-frame (i.e. the length is

modulo 3). Sequences which did not meet these criteria were excluded. At this point,

sequences that are identical (i.e. copies that were generated coincidentally) are grouped

together into “unique sequences”. The simulated datasets were further processed using the

SHazaM (version 0.1.11 or newer) and Alakazam (version 0.2.11 or newer) R packages from

Immcantation framework (www.immcantation.org) resulting in new columns containing

VJ(ℓ)-group identifiers, mutation frequencies, and distance-to-nearest values (i.e., distribution

of normalized Hamming distances from each junction sequence to its nearest non-identical

neighbor in a given VJ(ℓ)-group). Finally, the outcome was a single tab-delimited file per each

simulated dataset containing the metadata information associated with each sequence to be

used as input to the clonal inference pipeline.

Table 1 presents an overview of 25 BCR simulated datasets used in this study. Furthermore,

the global metrics of the BCR simulated repertoires, including: (1) junction length distribution,

(2) distance-to-nearest distribution, (3) clonal relative abundance distribution, (4) clone size

distribution, (5) mutation frequency distribution, (6) number of clones per VJ(ℓ)-group, (7)

average pair-wise SHM for clone, and (8) negative-control test, are presented in S1 Fig:1-25:

A-H, respectively.

Results

Pair-wise shared SHM are enriched in B cell clones

Clonally related cells will share SHMs that were accumulated by common ancestors over

the course of clonal expansion. However, cells from distinct clones are also expected to share

mutations at some positions, such as SHM hot-spots [49]. Therefore, we sought to evaluate the

degree to which pair-wise shared mutations were enriched in B cell clones. For each simulated

dataset, the pair-wise shared SHM matrix H was generated for each B cell clone by comparing

the IGHV and IGHJ regions of each pair of sequences with the relevant germline sequence.

Then, the average of the upper triangular elements was calculated (note that H is a symmetric

matrix). We found that pair-wise shared SHMs could be identified in� 95% of non-singleton

B cell clones (i.e., clones with more than one member) across all simulated datasets. The non-

PLOS COMPUTATIONAL BIOLOGY SCOPer: Spectral Clustering for clOne Partitioning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007977 June 23, 2020 10 / 22

http://www.immcantation.org
https://doi.org/10.1371/journal.pcbi.1007977


singleton clones without shared mutations tended to be small (with <5 members), so the

chance of observing pair-wise shared mutations is lower (S1 Fig:1-25:C).

We next sought to test whether this high rate of pair-wise SHM sharing was specific to clon-

ally-related sequences. We generated a set of artificial clones (negative controls) by randomly

sampling sequences across known clones. Specifically, for each clone from the 100 largest

VJ(ℓ)-groups (covering� 30% of the total reads), we generated a set of 1000 negative controls

with the same size as the given clone. We note that since sampling was performed within each

VJ(ℓ)-group, the negative controls were generated from sequences with the same junction

length, IGHV, and IGHJ genes as the given clone, thus resulting in a conservative control

experiment. Then, for each clone and corresponding set of negative controls, the pair-wise

shared SHM matrix H was generated by comparing the IGHV and IGHJ regions of each pair

of sequences with the relevant germline sequence. We performed this analysis for all simulated

datasets and calculated the average of the upper triangular elements of H. We found that the

true clones exhibited significantly (p< 0.001) higher pair-wise shared SHM rates (on average

�16 ± 6 mutations per clone) compared with the set of negative controls (on average�5 ± 1

mutations per clone), with a percentage difference of�105% on average across all simulated

datasets (S1 Fig:1-25:H). Thus, pair-wise shared SHM are enriched in BCR clones. These

results support the idea that the pair-wise shared SHM frequency can be leveraged as a biomet-

ric (fingerprint) in the clonal relationship inference process.

Table 1. Overview of 25 simulated datasets generated by the AbSim R package [46]. Each B cell clone is generated by one set of randomly selected unmutated human

IGH-chain germline gene sequences [47] to produce the V(D)J recombination event. Then, the germline undergoes clonal expansion along a phylogenetic tree in which

branching events occur stochastically. SHM along this tree is modeled using a local sequence context-dependent model (i.e., “S5F” model from [44]).

Simulation Sequences Clones Unique V-genes Unique J-genes

1 460 225 10 544 96 6

2 676 333 5972 96 6

3 795 203 5292 95 6

4 834 136 3906 93 6

5 636 596 8812 95 6

6 560 380 9865 96 6

7 639 035 8167 95 6

8 687 921 6361 95 6

9 634 590 7620 95 6

10 591 967 8250 95 6

11 849 528 3764 92 6

12 548 293 10 064 96 6

13 532 610 10 381 96 6

14 806 162 3245 92 6

15 811 803 3257 92 6

16 596 588 9755 95 6

17 498 996 10 898 96 6

18 838 635 3500 93 6

19 680 392 6696 96 6

20 813 734 4877 93 6

21 773 629 5459 95 6

22 659 410 7030 95 6

23 671996 6599 96 6

24 668 839 6314 95 6

25 873 444 3630 94 6

https://doi.org/10.1371/journal.pcbi.1007977.t001
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Focusing on CDR3 improves performance of the recombination-based

model

The original recombination-based model for identification of B cell clones used by SCOPer

measures distance using the junction region of the BCR [26]. The junction includes the CDR3

along with the two flanking amino acids (one 50 that is encoded by IGHV, and one 30 that is

encoded by IGHJ) [50]. As the two flanking positions are highly conserved, we sought to deter-

mine whether they were necessary to include in the distance measure. Indeed, we hypothesized

that including these positions could even lead to decreased performance, as they are likely to

be identical across independent clones and will have increasing influence on the distance for

clones with shorter junction lengths. To test this hypothesis, we compare the performance of

the recombination-based model using either the junction-targeted (termed as ham-junc) or

CDR3-targeted (termed as ham-cdr3) approaches. Using simulated data, performance was

quantified using the measures of sensitivity, specificity, and precision [25]:

• True positive (TP) is defined by the number of clonally-related sequence pairs that are cor-

rectly identified.

• False positive (FP) is defined by the number of unrelated sequence pairs that are incorrectly

identified as clonally-related.

• True negative (TN) is defined by the number of unrelated sequence pairs that are correctly

identified as unrelated.

• False negative (FN) is defined by the number of clonally-related sequence pairs that are

incorrectly identified as unrelated.

The sensitivity (true positive rate) of each model is defined as the fraction of all sequence

pairs from the same clone that were correctly inferred by the model (TP/(TP+FN)), while spec-

ificity (true negative rate) is defined as the fraction of pairs of unrelated sequences that were

successfully inferred by the model to be in different clones (TN/(TN+FP)). Finally, the preci-

sion (positive predictive value) of each model is defined by measuring how often inferred

clonal relative sequence pairs are truly clonally related (TP/(TP+FP)).

We found that both approaches inferred the clonal relationships with high sensitivity,

specificity, and precision with values of >94.0% on average across all simulated datasets.

However, each of the measures of accuracy were significantly (p< 0.001) improved when

distance was based on the CDR3 region, rather than the junction region (Fig 5). Thus, the

conserved positions flanking the junction should not be used to define the distance between

sequences.

Shared mutations should be integrated with CDR3 distance to identify

clones

We next asked whether incorporating shared SHMs of V and J segments into the procedure

leads to even better performance. We thus characterized the performance of integrated model

using CDR3-targeted (termed as ham-shm-cdr3) approach. Including shared SHM with

the integrated model improved measures of sensitivity, specificity, and precision to>96% on

average across all simulated datasets. For the sake of completeness, we also characterized the

performance of integrated model using junction-targeted (termed as ham-shm-junc)

approach. Consistent with our analysis of the recombination-based model, we found that

using the junction rather than the CDR3 region led to a significant (p< 0.001) decrease in per-

formance (Fig 5).
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These results indicate that the best performance within the spectral clustering-based

framework is achieved when the integrated model was accompanied with a CDR3-targeted

approach. Overall, when the original SCOPer model (ham-junc) is compared to the new

integrated model (ham-shm-cdr3), a�2.5% improvement in the sensitivity,�1% improve-

ment in the specificity, and<1% improvement in the precision was achieved on average across

all simulated datasets (p< 0.001) (Fig 5). We further note that the improvement in both mea-

sures of sensitivity and specificity was observed in�2% of independent clonal lineages on

average across all simulated datasets.

To better understand how the integrated model improves the performance of clonal rela-

tionship inference, we examined its operation in detail using one of the identified VJ(ℓ)-groups

with 53 unique sequences. As these are simulated data, we know that these sequences are com-

prised of three clones, one consisting of 27 sequences, one consisting of 25 sequences, and the

last one consisting of only one sequence (singleton). Comparing the clonal relationships using

the CDR3-targeted recombination-based model (ham-cdr3) and the CDR3-targeted inte-

grated model (ham-shm-cdr3), we find that both models inferred three clones. However,

ham-cdr3 model failed to accurately infer the clonal relationships, which resulted in

multiple false positives and false negatives (Fig 6A). On the other hand, when the SHM among

sequences was expressed using the pair-wise SHMs (on average�42 ± 7 mutations were

counted per pair, from which�10 ± 6 mutations were shared), the clonally-related sequences

were pulled toward each other (on average�20 ± 9 mutations per pair were counted for the

clone of size 27 and�14 ± 4 mutations per pair were counted for the clone of size 25) whereas

the singleton (with at least 5-fold fewer shared pair-wise mutation than other clone members)

remained separated, thereby the performance of the local scaling procedure was improved

(Fig 6B). Hence, the ham-shm-cdr3 model resulted in no false relationships in this particu-

lar case (Fig 6C).

The integrated model performs with high confidence on experimental data

Along with simulated data, we also evaluated the performance of the CDR3-targeted integrated

model (ham-shm-cdr3) by estimating specificity using experimental BCR sequencing data

from 58 individuals with acute dengue infection (note that two individuals with total reads

<1k sequences were excluded) [51]. These samples contained�1 − 9k (4056[mean] ± 964

Fig 5. Integrating information from CDR3 similarity (recombination-based distance) and shared mutations in the V and J

segments (SHM-based distance) improves clonal relationship inference. The spectral clustering-based framework was applied to

identify clonally-related sequences in 25 simulated datasets (diamonds) generated via AbSim R package [46] (Table 1). Performance was

assessed by calculating (A) sensitivity, (B) specificity, and (C) precision via applying the recombination-based model on the junction

(ham-junc) and CDR3 (ham-cdr3) regions, as well as the integrated model on the junction (ham-shm-junc) and CDR3 (ham-
shm-cdr3) regions. Mean performance is indicated by the solid bars, while the error bars define one standard deviation. For the

comparisons of interest the asterisks (���) indicate p< 0.001 by paired t-test.

https://doi.org/10.1371/journal.pcbi.1007977.g005
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[standard deviation]) unique reads and in total�235k unique reads (S1 Table). In experimen-

tal data, the truth clonal relationships are unknown. However, we do know that, by definition,

sequences derived from two different individuals can not be part of the same clone (i.e. clones

cannot span different individuals). Thus, if our method assigns sequences from different indi-

viduals to the same clone, then this is a false positive. We used the procedure proposed in [52]

to estimate specificity using ham-shm-cdr3 model. First, one of the individuals (the dataset

with largest number of unique sequences = 8773) was chosen as the “base”. Next, a single

sequence was chosen randomly from each of the remaining individuals and added to the

sequencing data from the base individual. Specificity was then defined by how often the

sequences from non-base individuals were correctly determined to be singletons. Any group-

ing of these sequences into larger clones must be a false positive (see Fig 7). This procedure

Fig 6. The integrated model improves clonal inference by pulling clonally-related sequences toward each other. The spectral

clustering-based model was applied to infer the clonal relationships among 53 sequences from a given VJ(ℓ)-group. These sequences

belong to three clones, one consisting of 27 sequences (circles), one consisting of 25 sequences (diamonds), and the last one consisting of

only one sequence (triangle). Clonal relationships were inferred (indicated by filled colors) via the CDR3-targeted recombination-based

model (ham-cdr3) leading to three clones (Inferred-1, Inferred-2, and Inferred-3) (A), and CDR3-targeted integrated model (ham-
shm-cdr3) leading to two clones (Inferred-1, Inferred-2, and Inferred-3) (C). For visualization, the sequences were embedded in 2D

space using the qgraph function from the qgraph R package, where the thickness of each edge indicates the inverse of the pair-wise

ham-cdr3 (A) and ham-shm-cdr3 distances (C). Pair-wise distances were normalized by the CDR3 length and compared in log

scale (B).

https://doi.org/10.1371/journal.pcbi.1007977.g006

Fig 7. Schematic overview of specificity estimation using experimental data. (A) BCR repertoires from 58 individuals with acute

dengue infection are used to evaluate the performance of the clonal inference process. One of the individuals is chosen as the “base”

(white plane). (B) Single sequences (gray-circles) are chosen randomly from each of the remaining individuals (gray planes) and added

to the sequencing data from the base individual (white-circles). After clonal assignments, sequences from non-base individuals which are

correctly determined to be singletons will be counted as true negatives (TN, check mark), while any grouping of these sequences into

larger clones will be counted as false positives (FP, cross mark). Specificity is calculated as TN/(TN+FP).

https://doi.org/10.1371/journal.pcbi.1007977.g007
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was then repeated for 100 cycles. The results indicated that the ham-shm-cdr3 model has a

high specificity with a value of�96.0% on average across all cycles. Thus, combining shared

SHMs in the V and J segments of the BCR can be leveraged along with the CDR3 sequence to

identify clonally related sequences with high specificity in experimental data.

The SCOPer algorithm is efficiently parallelized

Computational efficiency is an important property considering the recent growth in the size of

typical BCR repertoires [53, 54]. Using the recombination-based model we found that clonal

partitioning�685 ± 60k (mean ± standard deviation) simulated sequences (the average reper-

toire size used in this study) took�35 ± 7 min, but when the integrated model was involved

the partitioning took�263 ± 28 min. This assessment was performed using one core on a

Linux computer with a 2.20 GHz Intel processor and 32 GB RAM. There are two main

factors that drive this increased computational cost. In our current implementation, clonal

inference is performed on the set of unique sequences (i.e., sequences with distinct nucleotide

sequences). When using a recombination-based model that considers only the junction or

CDR3, the chance of having identical sequences in each VJ(ℓ)-group is high (on average across

all simulated datasets�60% of CDR3s are unique per each VJ(ℓ)-group). This decreases the

computational cost of the algorithm. In contrast, when using the integrated model, the V and J

segments are also relevant, allowing fewer sequences to be combined into identical groups

(i.e., leading to more unique sequences). The computational cost increases with this increasing

number of sequences n. Specifically, the eigen-decomposition algorithm, which scales by

Oð3n2Þ (we note that the targeted matrix, to be spectrally decomposed, is symmetric which

improves the computational cost significantly). Furthermore, the pair-wise SHM analysis

brings additional computational complexity. For instance, the computational complexity of

generating the pair-wise shared SHM matrix H algorithm is Oðn2Þ. This run time will be

summed up by the pair-wise recombination-based matrix X with the same computational

complexity. However, the SCOPer distributed implementation facilitates the clonal inference

process by parallelizing the computation and greatly reducing the running time. In our current

implementation, the parallelization is achieved by distributing the clonal inference process

from each VJ(ℓ)-group of sequences across processing cores dynamically. The parallelization is

possible on cores from a single workstation or on high-performance computing (HPC) cluster

facilities. For instance, using only five cores in parallel decreased the running time to�67 ± 7

min, a�4-fold improvement, for partitioning�685 ± 60k sequences via integrated model.

Our benchmarks across all simulated datasets demonstrate good scalability resulting in a

speedup, defined as the time it takes the integrated algorithm to execute with one processor

divided by the time it takes to execute in parallel, that is approximately linear to the number of

cores (<10) utilized (Fig 8).

We further evaluated the clonal inference computational cost using the dengue experiential

datasets. Using recombination-based and integrated models we found that it takes about one

minute for a single core to infer clonal relationships of�4056 ± 964 experimental sequences.

Since the performance was fast and efficient, we did not evaluate the algorithm computational

cost in parallel.

Discussion

B cell clonal diversity is introduced through two main mechanisms. The first occurs during

maturation in the bone marrow by stochastic joining of germline-encoded V, D, and J heavy

chain genes (or V and J light chain genes) combined with the action of exonucleases and ter-

minal deoxynucleotidyl transferase, which add diversity at the recombination boundaries.
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This diversity acts as a fingerprint that can be used to separate distinct clones based on the dis-

tance between their junction (or CDR3) nucleotide sequence (inter-clonal diversity). Subse-

quently, upon encountering cognate antigen, B cells can enter a germinal center and undergo

further diversification through SHM and affinity maturation. The accumulation of SHMs has

the effect of spreading out the sequences of B cell clonal variants around their initial points of

creation (intra-clonal diversity). A significant challenge in the clonal relationships inference

problem is to define meaningful metrics which can leverage inter-clonal diversity to recognize

sequences that are part of independent clones (specificity), while also modeling intra-clonal

diversity to recognize the variants that are clonally-related (sensitivity).

We developed an unsupervised learning algorithm based on spectral clustering that pro-

vides a framework for the inference of B cell clonal relationships. This model combines CDR3

similarity with shared SHM profiles in the V and J segments to capture both inter- and intra-

clonal diversification. We showed that the inclusion of pair-wise shared SHM patterns

improves the models ability to identify clonally related sequences. This improvement translates

into substantial additional true relationships (of about 3k) and removal of false relationships

(of about 6k). Overall, the model determines B cell clones by: (1) common IGHV- and IGHJ-

gene calls and identical CDR3 length, (2) identical or similar CDR3 nucleotide sequences, and

Fig 8. The SCOPer algorithm can be run efficiently on multiple cores. The speedup, defined as the time it takes the

algorithm to execute with one processor divided by the time it takes to execute in parallel, was calculated for the

integrated model for different numbers of processing cores. In each case, speedup was calculated as the average across

25 simulated datasets (with error bars showing the standard deviation). Evaluation was carried out on a Linux

computer with a 2.20 GHz Intel processor and 32 GB RAM. The linear fit is shown by a dashed line, while the ideal

speedup is shown by the dot-dash line.

https://doi.org/10.1371/journal.pcbi.1007977.g008
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(3) shared somatic hypermutation patterns in the V and J segments. These criteria result in

a strict definition that will separate B cells carrying different alleles of the same V or J genes

into independent clonal lineages, an important criterion for the clonal relationships inference

problem.

In the absence of gold standard experimental data with known clonal relationship between

sequences, the validation was performed using B cell simulations which offer a mechanism to

generate data where the underlying clonal groups are known. However, using experimental

data we also reported a measure of specificity based on the frequency of clones that are pre-

dicted to be shared across individuals.

A key step in the clonal inference process involves V and J gene assignment. In practice,

gene assignment is performed prior to invoking SCOPer by using current state-of-the-art and

publicly available tools such as IMGT/HighV-QUEST [36] or IgBLAST [37] which match BCR

sequences against a database of known genes. In cases where genes are highly similar, or even

technically indistinguishable, so that the assignment is uncertain, these tools may make multi-

ple assignments to the same BCR. These multiple assignments are taken into account by SCO-

Per in the initial VJ(ℓ)-grouping of sequences into partitions that share same V- and J-gene,

and junction length such that similar or indistinguishable genes are grouped together. That

is, the grouping brings together all sequences that share at least one matching V- or J-gene

among the multiple potential assignments (i.e., a chain VJ(ℓ)-grouping instead of an exact

VJ(ℓ)-grouping).

The influence of SHM hot- and cold-spot biases in the clonal inference process have been

incorporated using an SHM targeting model. The analysis described here uses the S5F target-

ing model for SHM that was previously constructed [44]. However, while hot- and cold-spot

biases are generally conserved across individuals, these intrinsic biases can be altered by age

[13], and may also differ across species [55]. Clonal identification could be improved by using

a data-specific targeting model that can be built using toolkits available in the Immcantation

framework (www.immcantation.org). The S5F model seeks to avoid the biases introduced by

selection, and to capture only the intrinsic biases introduced by the activation-induced cyti-

dine deaminase (AID) binding preferences and error-prone DNA repair in a 5-mer micro-

sequence context [44]. Future improvements to the SHM targeting model, such as including

effects beyond motif-specificity [56], may also improve clonal relationship inference. However,

these must be rigorously tested.

While the model presented here was developed and tested for sequencing data from the H

chain only, cutting-edge technologies, including single-cell sequencing, provide paired IGH-

and IGL-chain data [57–59]. These paired data can be incorporated into the proposed model

by extending the criteria for the initial grouping of sequences (i.e., VJ(ℓ)-groups) to include

the same IGHV-gene, IGHJ-gene, IGH-CDR3 length, IGLV-gene, IGLJ-gene, and IGL-CDR3

length. BCR clonal inference can then be carried out as before on the H chain of these more

refined groups. An alternative approach is to perform clustering on H chain and then simply

splitting clones that have multiple L chains. The low diversity of the IGL-chain junction region

makes it unlikely that including this region in the clustering will provide a significant perfor-

mance improvement [30, 60].

The definition of clone used in this work is based on the assumption that SHM introduces

only point substitutions into the BCR sequence. However, it has been shown that insertions

and deletions (indels) can also be introduced at a low frequency (e.g.,<2- 3% per mutation

event [42]) [39, 61–66]. Distance functions that allow for sequences of different lengths could

be used to identify clonally related sequences that differ by indels (leading, for example, to

sequences with different CDR3 lengths). However, these must be rigorously tested.
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The models described in this study have been implemented in the SCOPer (Spectral Cluster-

ing for clOne Partitioning) R package, which provides a computational framework to explore

multiple approaches to infer clonal relationships in AIRR-seq data. This implementation of

SCOPer is freely available as part of the Immcantation framework (www.immcantation.org)

under the AGPLv3 license. The input and output formats of SCOPer conform to the Change-O

[48] and AIRR [21] file standard, and thus the method can be used seamlessly as part of the

Immcantation tool suite, including methods for B cell clonal lineage reconstruction, lineage

topology analysis, clonal diversity analysis, and other advanced repertoire analyses linked to the

clonal landscape.
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