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Background: Acute myeloid leukemia (AML) is a highly aggressive

hematological malignancy characterized by extensive genetic abnormalities

that might affect the prognosis and provide potential drug targets for

treatment. Reprogramming of lipid metabolism plays important roles in

tumorigenesis and progression and has been newly recognized a new

hallmark of malignancy, and some related molecules in the signal pathways

could be prognostic biomarkers and potential therapeutic targets for cancer

treatment. However, the clinical value of lipid metabolism reprogramming in

AML has not been systematically explored. In this study, we aim to explore the

clinical value of lipid metabolism reprogramming and develop a prognostic risk

signature for AML.

Methods: We implemented univariate Cox regression analysis to identify the

prognosis-related lipid metabolism genes, and then performed LASSO analysis

to develop the risk signature with six lipid metabolism-related genes (LDLRAP1,

PNPLA6, DGKA, PLA2G4A, CBR1, and EBP). The risk scores of samples were

calculated and divided into low- and high-risk groups by the median risk score.

Results: Survival analysis showed the high-risk group hold the significantly

poorer outcomes than the low-risk group. The signature was validated in the

GEO datasets and displayed a robust prognostic value in the stratification

analysis. Multivariate analysis revealed the signature was an independent

prognostic factor for AML patients and could serve as a potential prognostic

biomarker in clinical evaluation. Furthermore, the risk signature was also found

to be closely related to immune landscape and immunotherapy response

in AML.

Conclusions: Overall, we conducted a comprehensive analysis of lipid

metabolism in AML and constructed a risk signature with six genes related to

lipid metabolism for themalignancy, prognosis, and immune landscape of AML,

and our study might contribute to better understanding in the use of
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metabolites and metabolic pathways as the potential prognostic biomarkers

and therapeutic targets for AML.
KEYWORDS

acute myeloid leukemia, prognosis, l ipid metabolism, risk signature,
immune landscape
Background

Acute myeloid leukemia (AML) is a group of morphologically

or genetically defined hematological malignancies with a poor

prognosis (1). Relying on large scale mutational analysis in the

genomic landscape, the treatment of AML improved significantly as

the development of targeted therapies, such as targeting the FMS-

like tyrosine kinase 3 (FLT3) and Isocitrate dehydrogenase (IDH)

mutations, in the past several years (2). However, as a result of

primary resistance to cytotoxic chemotherapy and high relapse rate,

AML patients still face a dismal prognosis. AML is characterized by

large-scale genomic changes andmolecular mutations that affect the

outcomes and provide potential therapeutic targets. And the risk

stratification generating accurate prognosis and personalized

therapeutic strategies are extremely important for cancer

treatment. It is essential to identify new biomarkers to improve

the risk stratification of AML, including those without cytogenetic

alterations (3, 4).

Accumulating data has suggested that lipid metabolism is

markedly reprogrammed in cancer cells, and lipid metabolism

reprogramming plays critical roles in tumorigenesis and

progression, including invasion, metastasis, and abnormal

signaling (5). Moreover, lipid metabolism reprogramming show

prognostic potential in clinical practice (6). Fatty acid synthase

(FASN) which catalyzes the condensation of acetyl coenzyme A

produces excess fatty acids to meet the demand for enough

plasma membrane lipids in cell proliferation of cancer (7).
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And, high level of FASN expression is related to a poor

outcome in patients with ovarian cancer (8). As a regulator of

lipid metabolism, tumor protein D52 (TPD52) plays crucial roles

in the formation of fatty acid storage and lipid droplets, and is a

potential biomarker with prognostic value in various cancer

types, including AML (9–11). Remarkably, as the key metabolic

enzyme, IDHmutations are common genetic alterations found in

more than 20% of AML patients and diversely affect the

prognosis (12).

Consequently, given the biological role and therapeutic

potential of lipid metabolism in AML, there is an urgent need

to better understand the underlying molecular mechanisms of

AML malignancy and to explore potential therapeutic targets for

AML treatment using metabolic analysis. Here, we obtained the

gene expression profile and corresponding clinical information of

AML cohort from The Cancer Genome Atlas (TCGA) database

to conduct a comprehensive analysis on the biological roles and

prognostic value of the lipid metabolism-related genes in AML.
Methods

Data collection

The RNA-seq data and the relevant clinical information of

AML patients are extracted from University of California, Santa

Cruz (UCSC) Xena Browser (https://xenabrowser.net/).

Subsequently, after excluding the samples with overall survival

(OS) less than 30 days or missing clinical information, we

included 144 samples for the analysis. Three other

independent AML cohorts, GSE71014, GSE12417, and

GSE37642, were extracted from Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/) to validate the signature.

Moreover, 26 lipid metabolism-related pathways including 1045

genes were extracted from the Molecular Signatures Database

(MSigDB) (http://www.broad.mit.edu/gsea/msigdb/).
Gene set variation analysis

GSVA was used to calculate the enrichment scores of AML

patients in each lipid metabolism-related pathway, and then the
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samples were assigned into high-and low-score groups based on

the median score. The correlation between the prognosis and

enrichment score of each pathway in AML samples was analyzed

to explore whether the identified pathways related to lipid

metabolism was significantly associated with the prognosis.
Generation of the prognostic signature
using least absolute shrinkage and
selection operator regularization

Survival analysis with the 1045 genes were performed to

identify the potential prognosis-related genes for construction of

the prognostic signature (P <0.05). Then, we performed LASSO

analysis in the 163 candidate genes to compress variables with R

package “glmnet”. As a type of linear regression, LASSO is a

form of compression estimation that can emerge a more refined

signature by setting up a penalty function, which could compress

certain coefficients by defining others as zero, retaining the

advantage of subset shrinkage. This is a type of processing

used for bias estimation with complex collinearity data, and

variables can be selected while estimating parameter, thereby

solving the multicollinearity problem in regression analysis to a

great extent. Finally, six lipid metabolism-related genes were

included to construct the prognosis signature for AML.

Risk   Score =   0:148491223769356 ∗EBP + 0:100012929390467 ∗CBR1
+0:0974602543406011 ∗PLA2G4A þ  0:0500714298035648

∗DGKA + 0:0278077820212605 ∗ PNPLA6
+0:00542436424230988 ∗ LDLRAP1
Enrichment of functions and signaling
pathways analysis

The samples were divided into high-risk group or the low-

risk group by the median value of risk scores. Subsequently, R

package “limma” was performed to identify differentially

expressed genes (DEGs) with log2 (fold change)>1 and P<0.05

between the two risk groups. Functional enrichment analysis for

the DEGs was based on Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases using

R package “clusterPofolier” and determined which GO term or

KEGG pathway is over-represented for specific gene set in which

genes are dysregulated under certain conditions. P < 0.05 was

considered as the significant pathways.
Correlations of the signature and
immune cell infiltration in AML

R package “GSVA” was used to perform GSVA which is

designed to carry out a non-parametric unsupervised method to
Frontiers in Oncology 03
estimate the underlying molecule pathway activity based on

RNA-seq data and gene expression microarray. The gene marker

set, consisting of 782 genes that represent 28 immune cell types,

is acquired from the previous research, and used to assess the

infiltration of different immune cell types in the tumor

microenvironment (TME). Then, the ssGSEA algorithm was

executed to calculate the immune cell infiltration level in AML

according to the gene expression profiles.
Prediction of immunotherapy response

Tumor immune dysfunction and exclusion (TIDE) algorithm

was performed to evaluate the response to immunotherapy of

each sample using the gene expression profiles.
Construction and evaluation of
nomogram

To evaluate the clinically applicable potential of the signature to

predict the OS of AML patients, we constructed a nomogram with

clinical variables and signature score by through “rms” package. To

evaluate the predictive performance of the nomogram, the

“ROCsurvival” package was implemented to construct time-

dependent ROC curves to estimate the 1-year, 3-year, and 5-year

survival rate by the nomogram. Subsequently, “rms” package was

executed to draw calibration curves to verify whether the predicted

outcome showed good consistent with the practical.
Survival analysis

Univariate analysis was performed to assess the correlation

between the prognosis of AML patients and expression levels of

lipid metabolic DEGs. The correlation between the prognosis of

AML patients and risk score was also evaluated. The log-rank

test and survival analysis were all performed using R package

“survival”, while Kaplan-Meier curve was plotted using R

package “surviminer”.
Statistical analysis

Statistical analysis was carried out using the log-rank test for

univariate Cox regression analysis. Pearson’s correlation analysis

was performed to evaluate the association between the risk score

and immune checkpoints, immune cell infiltration score and

characteristic gene expression, respectively. Student’s t test was

performed to assess the statistical significance among variables.

And, P<0.05 was set as statistically significant. All statistical

analysis were carried out in R version 4.0.2.
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Results

Correlation between the prognosis and
enrichment score of each pathway

First, we explored the correlation between the lipid metabolism

and the prognosis of AML patients. As shown in Supplemental

Figure 1, survival analysis indicated that the high-score group

tended to be associated with a poor outcome compared with the

low-score group, which revealed that the lipid metabolism-related

pathways could be related to the prognosis.
Construction of lipid metabolism-related
gene prognostic signature

Among the 1045 genes involved in the 26-lipid metabolism-

related pathways, 163 lipid metabolism-related genes

significantly related to prognosis (P<0.05) were identified from

the 1045 genes through Pearson’s correlation analysis

(Figures 1A, B). Then, six genes were finally identified through

LASSO analysis. Subsequently, the lipid metabolism-related

gene signature was constructed based on the expression levels

of six genes LDLRAP1 (low-density lipoprotein receptor adaptor

protein 1), PNPLA6 (patatin-like phospholipase domain

containing 6), DGKA (diacylglycerol kinase alpha), PLA2G4A

(phospholipase A2 group IVA), CBR1 (carbonyl reductase 1),

and EBP (Emopamyl-binding protein) (Figure 1C).
Frontiers in Oncology 04
The risk score of each sample in the training dataset was

subsequently calculated with LASSO regression coefficients and

expression levels of these six genes using formula mentioned

above. Afterwards, the samples were assigned into high-risk and

low-risk groups by the median risk score. Scatter plot showed the

high-risk group was correlated with a higher mortality rate than

the low-risk group (P<0.05) (Figure 1D).

Kaplan–Meier curves indicated that the samples in high-risk

group have significantly poorer outcomes than those in low-risk

group (P<0.05) (Figure 1E). Then we conducted a time-

dependent receiver operating characteristic (ROC) analysis to

assess the predictive ability of the signature. The area under the

curves (AUCs) of the 1-, 3-, and 5-year OS were 0.772, 0.778, and

0.824, respectively (Figure 1F). The results indicated the

signature showed great sensitivity and specificity in predicting

prognosis of AML patients.
Validation of the prognostic signature
using the GSE71014, GSE12417,
and GSE37642

To verify the predictive reliability and applicability of the

signature, we then calculated the risk score of each sample in the

other three AML cohorts (GSE37642, GSE71014, and GSE12417)

based on the same formula and assigned the samples into low-risk

and high-risk groups by the median risk score in each cohort. As

expected, in the three validation cohorts, the high-risk groups were
frontiersin.org
B C

D E F

A

FIGURE 1

Construction of the lipid metabolism-related risk signature in the TCGA cohort. (A) Tuning parameters of OS-related genes to cross-verify the
error curve. (B) Perpendicular imaginary lines to calculate the minimum criteria. (C) LASSO regression coefficient for each of six signature genes.
(D) Distribution of the risk score and survival status of each sample. (E) Survival status of patients in the two risk groups classified by the
signature. (F) ROC curves to predict the 1-, 3-, and 5-year survival.
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associated with a high mortality rate compared with the low-risk

groups (Figures 2A–C). And the high-risk groups demonstrated

lower survival time than the low-risk groups (Figures 2D–F). The

ROC curves in the three testing cohorts demonstrated the signature

present a robust and stable predictive ability in the prognosis ofAML

patients, and the AUCs to predict 1-, 3-, and 5-year OS were 0.654,

0.635, and 0.607 (GSE37642 cohort), 0.612, 0.602, and 0.619

(GSE71014 cohort), and 0.703, 0.604, and 0.618 (GSE12417

cohort), respectively (Figures 2G–I). Overall, the results

demonstrated that the six-gene signature had a stable and robust

predictive power in AML.
Correlation of the risk signature with
clinical variables

To explore whether the risk signature is an independent

prognostic factor in AML, we carried out a stratification
Frontiers in Oncology 05
analysis to assess the efficiency of the signature in various

subgroups with different clinical variables, including age,

gender, chromosomal abnormality or not, FLT3, IDH1,

NPM1 and RAS mutation status (Supplemental Table 1).

The results of survival analysis that the low-risk group hold

longer OS than the high-risk group in the aged<60 or≥60

years subgroup (P<0.05) (Figures 3A, B), female or male

subgroup (P<0.05) (Figures 3C, D) , chromosomal

abnormality or not subgroup (P<0.05) (Figures 3E, F),

mutant or wildtype NPM1 subgroup (P<0.05) (Figures 3G,

H), mutant or wildtype FLT3 subgroup (P<0.05) (Figures 3I,

J), and mutant or wildtype RAS subgroup (P<0.05)

(F igures 3K, L) . Whi le the low-r isk group had a

significantly longer OS in wildtype IDH1 subgroup, there

was no significant difference in OS between the two risk

groups with IDH1 mutation (Figures 3M, N). Stratification

analysis showed that signature had great efficiency and keep

stable in diverse situations.
B C

D E F

G H I

A

FIGURE 2

Validation of the signature in the GEO datasets. (A–C) Distribution of the risk score and survival status of each sample in the three validation
cohorts. (D–F) Survival analysis of the two risk groups classified by the signature in the three testing datasets. (G–I) ROC curves to predict the
1-, 3-, and 5-year survival in the three testing datasets.
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Construction and validation of the
signature based on nomogram

To evaluate the potential clinical application of the risk

signature, we constructed a nomogram to predict the 1-, 2-,

and 3-year survival. The univariate analysis showed that the risk

score and age were closely correlated with survival outcome of

AML patients (P<0.05) (Figure 4A). Multivariate analysis

revealed that the risk score presented an independent
Frontiers in Oncology 06
prognostic factor after adjusting for these clinical variables,

although age was also independent (P<0.05) (Figure 4B).

Then, we developed a nomogram based on the age and risk

score with clinical accessibility and independent prognostic

ability (Figure 4C). The Calibration plots showed that the

nomogram had ideal concordance between the predictive and

practical survival rates at 1-, 2-, and 3-year (Figures 4D–F). In

addition, the ROC curves showed the nomogram hold favorable

accuracy in estimating the 1-, 2-, and 3-year survival of AML
B C D

E F G H

I J K L

M N

A

FIGURE 3

The signature retained great prognostic value in different subgroups of AML patients. Survival analysis in the two risk groups under diverse
situations classified by several clinical features including age (A, B), gender (C, D), status of chromosome (E, F), status of NPM1 (G, H), status of
FLT3 (I, J), status of RAS (K, L) and status of IDH1 (M, N).
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patients. And, the AUCs were 0.768, 0.808, and 0.804, which

revealed that the nomogram had a favorable capability to

estimate the survival for AML patients (Figure 4G).
Functional enrichment analysis

To further investigate underlying mechanism of this prognosis

relevance, we performed GO and KEGG analysis based on the

DEGs between the two risk groups. The GO analysis revealed these

DEGs were primarily enriched in these terms, including positive

regulation of cytokine production, neutrophil activation, T cell

activation, neutrophil degranulation, neutrophil mediated

immunity, leukocyte cell-cell adhesion (Figure 5A). The KEGG

analysis revealed that these genes were involved in cytokine-

cytokine receptor interaction, phagosome, cell adhesion

molecules, antigen processing and presentation and

hematopoietic cell lineage pathways, which might provide us

with insights into cancer progression and potential molecular

mechanisms (Figure 5B).
Immune cell infiltration of high-risk and
low-risk groups with AML

Since the neutrophil activation and T cell activation were

enriched in GO analysis, we next explore the potential

relationship between the signature and TME as well as immune

response. CIBERSORT algorithm was performed to assess the
Frontiers in Oncology 07
immune cell infiltrating level in TME involved in the signature.

The results demonstrated that high-risk AML patients

had significantly high fractions in dendritic cell, memory CD4+,

CD8+ T cell, immature B cells, macrophages, MDSC, monocyte,

NK cells, and regulatory T cells compared with low-risk ones.

However, no significant difference was observed in the activated

CD4+, CD8+ T cell, and CD56 bright NK cell between the two risk

groups, suggesting this lipid metabolism signature might be highly

associated with an immunosuppressive TME (Figure 6A).

Therefore, the expression levels of immunosuppressive genes

between the two risk groups were further explored. As shown in

Figures 6B–F, the common immune checkpoints, including PDL1,

PDL2, CTLA4, and LAG3, were significantly upregulated in the

high-risk group. Then, we compared the difference in the immune

evasion and immunotherapy response. And the results revealed the

low-risk group has a lower immune evasion score and higher

immunotherapy response rate than the high-risk group

(Figures 6G–H).
Discussion

AML is an uncommon but potentially catastrophic

heterogeneous hematologic malignancy characterized by the

malignant proliferations of myeloid blasts or progranulocytes

instead of normal differentiation (1). Despite advances in

understanding mutational heterogeneity in leukemogenesis

and disease progression have led to novel targeted agents

developed for AML, the prognosis of AML patients remains
B C

D E F G

A

FIGURE 4

Construction and validation of the nomogram. (A, B) Univariate and multivariate analyses showed that risk score was an independent prognostic
factor in the TCGA cohort. (C) Nomogram consisting of risk score and age. (D-F) Calibration plots of the nomogram to predict the probability of
survival and actual survival rates at 1-, 2-, and 3-year in the TCGA cohort. (G) ROC curve to predict 1-, 2-, and 3-year survival for the nomogram
in the TCGA dataset.
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unsatisfied. The identification of new molecular biomarkers

contributes to new understanding of the molecular basis of

AML, and is significantly useful in diagnostic and disease

classifications, new target agent development, as well as

predicting response to treatment (4).

The transformation from normal cells into malignant cells

accompanies multiple biological characteristics, among which

metabolic reprogramming is one of the most prominent, and

contributes to promote tumorigenesis and tumor progression

(13). Despite AML has been studied thoroughly at the cellular

and molecular level, including genetic, epigenetic, and protein, a

comprehensive and systematic metabolic signature for this group of

disease have been less studied. In this study, we aimed to construct a

risk signature to stratify AML patients based on the lipid metabolic

landscape. The six-gene signature with stable predictive

performance was constructed by univariate Cox regression

analysis and LASSO, and was significantly related to clinical

outcomes and immune cell infiltration.

Interestingly, these six genes involved in the signature had been

reported to contribute to promote pathogenesis and disease

progression in various diseases and cancer types. Previous study

found that the common PLA2G4A upregulation in cancer cells

contributes to their migration and invasion and is significantly

correlated with unfavorable prognosis (14, 15). PLA2G4A

overexpression contributed to the malignant phenotype of AML

cells together with its partners and is correlated to a poor prognosis

in the patients with non-M3/NPM1wildtype or Hoxa9- andMeis1-
Frontiers in Oncology 08
dependent AML (16, 17). DGKA is the familymember of conserved

membrane lipid kinases and has been involved in human cancers

(18–20). DGKA could enhance hepatocellular carcinoma

progression via Ras-Raf-MEK-ERK pathway and promote

platinum resistance by activating c-JUN-WEE1 signaling in

ovarian cancer (21, 22). CBR1 plays a critical role in tumor

metastasis and growth and its expression level is elevated in

cancer tissues compared with paired normal lung tissue (23–25).

Furthermore, inhibition of CBR1 safely improves the efficacy of

doxorubicin in breast cancer treatment (26). EBP is the essential

enzyme required for cholesterol biosynthesis, and inhibition of EBP

led to cancer cell death via depletion of downstream sterols (27).

However, the other two genes, LDLRAP1 and PNPLA6, have

not been found to be related to cancer patients’ prognosis at present.

Previous evidence indicated that LDLRAP1 dysregulation leads to

low-density lipoprotein receptors on the apical surface, and reduce

low-density lipoprotein uptake, thereby decreasing LDL-cholesterol

metabolism, which could cause familial hypercholesterolemia (28).

PNPLA6 mutations play crucial roles in the central nervous system

disorders (29). This study was the first to find that LDLRAP1 and

PNPLA6 could serve as prognostic markers of AML.

Our study suggested that this signature could precisely

stratify AML patients into different risk groups. The Kaplan-

Meier curve showed that risk score divided the patients

independent of present genetic aberrations besides IDH+

mutation (Figure 3). IDH1 is an important enzyme involved

in multiple metabolic (especially the lipid and fatty acid
A

B

FIGURE 5

Cellular biological effects related to the signature. (A) Gene ontology (GO) biological process analysis. (B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis.
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synthesis) and epigenetic cellular processes, which lead to

abnormal DNA and histone methylation, increased cell

proliferation, altered gene expression and leukemogenesis.

IDH1 mutations were associated with worse OS, event-free

survival and complete remission of AML patients. It is

suggested that the AML patients with IDH1 mutation often

suffered a poor outcome, which maybe result in no statistically

significant difference in survival between high and low risk

groups. Moreover, the impact of IDH1 mutation on lipid

metabolism maybe interfere with the predictive value of our

signature related to lipid metabolism, which also verifies the

important role of lipid metabolism on the prognosis of AML

from the side. While, IDH1 mutations exist in only 7~14% of

AML patients, our risk model has great efficiency and keep stable

in the vast majority situations.
Frontiers in Oncology 09
GO and KEGG revealed that the functions of DEGs between

high- and low-risk groups were mainly enriched in immune-

related pathways, such as T cell activation, neutrophil activation,

cytokine production, and cytokine-cytokine receptor interaction

(Figure 5), indicating that lipid metabolism may affect the

outcome of AML patients via some immune mechanisms.

Here, the analysis of immune cell infiltration in TME showed

that this lipid metabolism signature might be highly associated

with an immunosuppressive TME (Figure 6A). Immune

checkpoints play major roles in carcinogenesis and progression

by through enhancing tumor immunosuppression (30). In this

study, the common immune checkpoints, including PDL1/2,

LAG3, and CTLA4, were significantly upregulated in the high-

risk AML population, which indicated an immunosuppressive

TME of bone marrow in the high risk group (Figures 6B–F).
B C D E

F G H

A

FIGURE 6

Immune cell infiltration and immunotherapy response of high-risk and low-risk groups with AML. (A) Correlation of risk score and immune cell
infiltration by ssGSEA algorithm. (B–F) Expression of PD1, PDL1, PDL2, CTLA4, and LAG3 in the two risk groups. (G) TIDE score in the two risk
groups. (H) Immunotherapy response rate in the two risk groups. *P<0.05, ** P<0.01, *** P<0.001, ****P<0.0001, ns, not significant.
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Immunotherapy resistance has been reported in most leukemia

patients, partially due to the immunosuppressive TME in bone

marrow. Furthermore, leukemia cells could generate the

immunosuppressive TME in bone marrow by through

reprogramming the metabolism to produce enough energy and

to escape immune surveillance. In addition, leukemia cells could

also escape immune surveillance by through expressing immune

checkpoint molecules (30). These above evidences support the

results of our study which showed the low-risk group has a lower

immune evasion score and higher immunotherapy response rate

than the high-risk group (Figures 6G–H).

We conducted a pan-cancer analysis of the signature to

explore whether the signature had a predictive value in other

cancers. The risk score of each sample in different cancer type

was calculated with the same signature forum and assigned to

high- and low-risk groups. Similarly, the survival analysis

demonstrated that the high-risk group hold a significantly

poor outcome compared with the low-risk group in

adrenocortical carcinoma, colon adenocarcinoma, renal clear

cell carcinoma, head and neck squamous cell carcinoma, lower-

grade glioma, uterine corpus endometrial carcinoma, and uveal

melanoma cohort from TCGA database. However, there are no

significant difference in OS between the two risk groups of other

25 cancer types (Supplemental Figure 2).

Furthermore, we also analyzed the correlation between the

prognosis and each gene in the signature, respectively. The

survival analysis showed that each gene from the signature

was significantly associated with the poor prognosis of AML

patients, and the differential expression analysis demonstrated

all of these six genes were over-expressed in the high-risk

group, which enhance the accuracy of the signature in

predicting the prognosis (Supplemental Figures 3, 4).

Metabolic reprogramming plays important roles in cancer

initiation and progression. However, thorough understanding of

lipid metabolism in AML is still limited. The prognostic

prediction of AML highlights an urgent need for other non-

invasive diagnostics, such as circulating metabolic biomarkers

and molecular test, to enhance the screening efficiency, avoid

over-treatment, decrease costs, and improve clinical outcomes

(31). Strikingly, this study generated a biomarker panel of six

lipid metabolism-related genes was valuable in classifying AML

into different risk groups. Our findings revealed the application

of lipid metabolomics for potential biomarker discovery, thus

serving as the screen for the at-risk subgroups. In addition,

therapeutic agents targeting such key metabolic pathways could

play important roles in the management of AML patients, which

need to be intensively studied in future work.

The strength of this study is that we performed a

systematically analysis based on the public database for the

first time, and explored the clinical application of lipid

metabolism in the AML. Although this experiment is based on

a large sample of omics data, there are some limitations in our

study. Firstly, the RNA-seq data and clinical information are
Frontiers in Oncology 10
extracted from the public database. Secondly, the mechanism

how the included lipid metabolism-related genes modulate

the precise process of AML is unclear. Lastly, the prognostic

signature is based primarily on bioinformatics analysis

and needs to be verified in a large-scale and multicenter

clinical cohort.
Conclusions

We conducted a comprehensive analysis of lipid metabolism in

AML and constructed a risk signature with six genes related to lipid

metabolism for the malignancy, prognosis, and immune landscape

of AML, and our study might contribute to better understanding in

the use of metabolites and metabolic pathways as the potential

prognostic biomarkers and therapeutic targets for AML.
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SUPPLEMENTAL FIGURE 1

Correlation of each lipid metabolism-related pathway and prognosis.
Survival analysis in the two subgroups of patients classified by the

enrichment score of each lipid metabolism-related pathway.

SUPPLEMENTAL FIGURE 2

The predictive value of the signature in other cancers. Survival analysis in

the two risk groups based on the signature in different types of cancers.

SUPPLEMENTAL FIGURE 3

Correlation of each signature gene and prognosis. Survival analysis in the
two subgroups of patients classified by the expression level of each gene

in the signature.

SUPPLEMENTAL FIGURE 4

The expression levels of these six genes in patient samples from TCGA.

SUPPLEMENTAL TABLE 1

The clinical characteristics for AML cases in TCGA.
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