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Abstract: Cellulose paper has been functionalized by nanoparticles such as Ag nanoparticles, TiO2,
and BaTiO3 for versatile applications including supercapacitor, sensors, photoactivity, and packaging.
Herein, zinc oxide (ZnO) nanosheet-modified paper (ZnO@paper) with excellent antibacterial prop-
erties was fabricated via a mild ZnCl2-urea eutectic solvent. In this proposed method, cellulose fibers
as the raw material for ZnO@paper were treated by an aqueous solvent of ZnCl2-urea; the crystalline
region was destroyed and [ZnCl]+-based cations were adsorbed on the surface of cellulose fibers,
facilitating more ZnO growth on ZnO@paper. A flexible paper-based triboelectric nanogenerator
(P-TENG) was made of ZnO@paper paired with a PTFE film. The P-TENG presents high triboelectric
output performance and antibacterial activity. For instance, the output voltage and current of the
P-TENG were 77 V and 0.17 µA, respectively. ZnO@paper showed excellent antibacterial activity
against E. coli and S. aureus, suggesting that a P-TENG can restrain and kill the bacteria during
the working process. The results also indicated that ZnO could improve the surface roughness of
cellulose paper, enhancing the output performance of a flexible P-TENG. In addition, the potential
application of a P-TENG-based pressure sensor for determining human motion information was
also reported. This study not only produced a high-performance P-TENG for fabricating green and
sustainable electronics, but also provides an effective and novel method for ZnO@paper preparation.

Keywords: cellulose paper; zinc oxide; triboelectric nanogenerator; antibacterial activity; pres-
sure sensor

1. Introduction

Cellulose paper, a common commodity in daily life, has been extensively used in the
fields of food package, supercapacitors, lithium-ion batteries, and solar cells because it is
abundant, biodegradable, lightweight, recyclable, and environmentally friendly [1–7]. In
recent years, the applications of cellulose paper in nanogenerators such as triboelectric
nanogenerators and piezoelectric nanogenerators have also been reported [8,9].

Triboelectric nanogenerator (TENG) is a novel technology for harvesting mechanical
energy from human motions, sounds, and structure vibrations, and has attracted much
attention due to its wide availability [10,11]. It is a device that utilizes electrostaticity and
triboelectricity to convert mechanical energy into electricity, and its fundamental theoretical
origin is Maxwell’s displacement current [12–15]. It also has been intensely followed with
interest among researchers because TENG has the advantages of low cost, high energy
conversion, abundant material choices, and a simple fabrication process.

As an electron-donating material, cellulose paper has already been employed to
construct TENG, which has the advantages of being cheap, lightweight, flexible, eco-
friendly, and disposable [8,16,17]. However, traditional papers used to prepare TENG,
such as hard paper, print paper, paper cards, rice paper, and crepe paper, are commercial
and non-antibacterial, limiting the application of a P-TENG due to the low flexibility
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and incapability against bacteria of these papers [8,18–22]. Besides, in the fabrication
process of P-TENG, the surface modification of cellulose fibers to prepare cellulose paper is
always neglected. Therefore, it is vital to prepare a P-TENG using composite paper that is
composed of surface-modified cellulose fibers.

On the other hand, ZnO is a semiconductor that possesses a wide bandgap (3.37 eV)
and high exciton binding energy (60 meV) [23]. It has been widely used in the field of
piezoelectric devices, optical devices, solar cells, transparent electrodes, sensors, photo-
catalysts, and antiseptics due to the unique characteristics of ZnO [24–30]. To prepare a
ZnO-modified cellulose composite, one method is to disperse ZnO nanoparticles into a
cellulose suspension [31–33]. However, due to the low bonding strength between ZnO
and cellulose fibers, ZnO would detach from the cellulose fibers, causing environmental
pollution during the application of a ZnO-modified cellulose composite. Another method
is to immerse the paper or cellulose fibers of which the paper is made into the solutions
containing Zn2+ (ZnO precursor) such as zinc chloride (ZnCl2), zinc nitrate (Zn(NO3)2),
zinc acetate (Zn(CH3COO)2), or zinc sulfate (ZnSO4), and the paper is treated with sodium
hydroxide (NaOH), potassium hydroxide (KOH), or ammonium hydroxide (NH4OH),
inducing the nucleation and growth of a ZnO crystal on cellulose fibers [34–38]. In spite
of the successful preparation of a ZnO-modified cellulose composite by the latter method,
the fabrication process was complicated, and the ZnO deposited on paper or cellulose
fibers was low due to the poor accessibility between the ZnO precursor and cellulose
fibers (namely, the ZnO precursor is difficult to get to the hydroxyl groups on cellulose),
limiting the ZnO-modified cellulose paper to industrial production. In consequence, it
is significant to develop a new route for preparing ZnO-functionalized cellulose paper.
Furthermore, as mentioned, ZnO@paper has versatile applications, for example, as sensors
and packaging [7,39], but there are few reports concerning ZnO@paper used as a friction
layer for a P-TENG.

In this work, we report a novel method for the preparation of ZnO@paper. The
preparation mechanism of ZnO@paper is investigated. Furthermore, the potential appli-
cation of ZnO@paper in a P-TENG for energy harvesting and as a pressure sensor is also
demonstrated.

2. Materials and Methods
2.1. Materials

Dissolving pulp with cellulose content of 91.9 wt.% and hemicellulose content of
8.1 wt.% prepared from softwood was provided by Qingshan Paper Co., Ltd. (Sanming,
China). Zinc chloride (ZnCl2, 96%) and urea (CO(NH2)2, 99%) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and Aladdin (Shanghai, China),
respectively. Agar, Escherichia coli, and Staphylococcus aureus were provided by Qingdao
Haibo Biological Technology Co., Ltd. (Qingdao, China).

2.2. Preparation of ZnO@paper
2.2.1. ZnO@paper Preparation Process

Dissolving pulp was dispersed using a homogenizing and defibration device (ZQS4,
Xianyang Tongda Light Industrial Equipment Co., Ltd., Xianyang, China). The eutectic
solvent composed of ZnCl2 and CO(NH2)2 was fabricated at 110 ◦C with an amount of
substance ratio of 1:3 by magnetic stirring. After melting the ZnCl2 and CO(NH2)2, the
eutectic solvent was cooled to 55 ◦C. Then 500 mL distilled water and 10 g pulp were
added into the eutectic solvents and stirred 10 min to form suspension at 55 ◦C. Later, the
temperature was increased to 85◦C for the nucleation and growth of ZnO. After 2 h, the
reaction product was filtered and washed with distilled water until the Cl− was no longer
present in the filter. Finally, ZnO@paper with a grammage of 60 g/m2 was fabricated
using a papermaking device equipped with a filter device of 10 cm radius (FRANK-PTI,
S958540014, Birkenau, Germany). The grammage of the ZnO@paper is expressed as the
mass of ZnO-modified cellulose fibers divided by the filter area of the papermaking device.
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Then the ZnO@paper was dried by squeezing, using the drying device of the papermaking
device under pressure from a heavy plate. Meanwhile, blank paper was also prepared
from cellulose fibers without ZnO modification. To control the mass of ZnO deposited
on the ZnO@paper and according to the mass ratio of ZnO by fully formed Zn2+ to the
cellulose fibers, the amount of ZnCl2 was set at 0.01 mol, 0.03 mol, 0.05 mol, 0.07 mol,
and 0.1mol, respectively. The amount of CO(NH2)2 was also adjusted with the amount of
ZnCl2 to maintain the 1:3 ratio. The samples were marked as ZnO@paper-1, ZnO@paper-2,
ZnO@paper-3, ZnO@paper-4, and ZnO@paper-5.

2.2.2. The Mechanism of ZnO@paper Preparation

It has been reported that the high degree of crystallinity of cellulose is a barrier for suffi-
cient ZnO assembling on cellulose fibers [34,37,40]. Thus, destroying the crystallinity region
is beneficial for more ZnO growing on cellulose fibers. The ZnCl2-urea eutectic solvent
consists of [ZnCl]+-based cations including [ZnCl (urea)]+, [ZnCl (urea)2]+, [ZnCl(urea)3]+,
and anion [ZnCl3]− [41,42]. When water is added into the ZnCl2-urea eutectic solvent,
the urea composition is dissolved and the hydrogen bonds are destroyed; resulting in the
disruption of the structure of the above cations and, therefore, ZnO precipitation. The
chemical reaction is shown as follows:

CO(NH2)2 + H2O ∆→ 2NH3 ↑ + CO2 ↑ (1)

NH3 + H2O→ NH4
+ + OH− (2)

[ZnCl]+ + 4OH− → Zn(OH)4
2− + Cl− (3)

[ZnCl3]− + 4OH− → Zn(OH)4
2− + 3Cl− (4)

Zn(OH)4
2− → ZnO + H2O + OH− (5)

Inspired by the above reaction sequence, we designed a route for ZnO@paper prepara-
tion. In the first step, ZnCl2 and CO(NH2)2 were mixed at 110 ◦C until they were completely
melted. Next, distilled water and cellulose fibers were added subsequently into the above
ZnCl2-urea eutectic solvent; in this instance, the [ZnCl]+-based cations and anion [ZnCl3]−

reacted with the OH− from urea dissolving in water by thermal treatment, and the [ZnCl]+

and [ZnCl3]− transforming into Zn(OH)4
2−. The Zn(OH)4

2− further converted into ZnO
owing to the dehydration reaction. Hence, ZnO was deposited on the surface of cellulose
fibers by hydrogen bonding with hydroxyl groups of cellulose. Finally, the paper was
modified by ZnO with the aid of the hydrogen bonding between hydroxyl groups on
cellulose fibers and ZnO, as illustrated in Figure 1. The [ZnCl]+-based cations would be
adsorbed on their surface because of the negative charges of cellulose fibers. Besides, the
crystalline region would be destroyed by the OH−. Thus, ZnCl2-urea could facilitate more
ZnO growing on the surface of cellulose fibers.

2.3. Integration of the Arch-Shaped P-TENG

To fabricate the P-TENG, at first, ZnO@paper (thickness of 125 µm) and polytetrafluo-
roethylene (PTFE) (thickness of 50 µm) with an area of 6 × 6 cm2 were coated with a thin
gold film as the electrode by using sputtering (MC1000, Japan Hitachi Nake high-tech en-
terprise, Tokyo, Japan) in a vacuum and a current of 40 mA for 5 min, making their surface
resistance below10 Ω. Secondly, the gold film sputtered onto the ZnO@paper was affixed at
the center of print paper (A4 paper used for printing ) (7 cm × 8 cm) using 3M tape, while
the PTFE film was also pasted onto print paper with an area of 7 cm × 10 cm adopting
3M tape. Finally, the edges of these two print papers were jointed together using Kapton
tape for the reutilization of PTFE because Kapton tape was easy to be peel off, forming
an arch-shaped device. The arch-shaped P-TENG could maintain a proper restoring force
when it was subjected to an external force, which was beneficial for contact-separation of
the P-TENG, as showing in Figure 2a.
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The fabrication of the pressure sensor was similar to that of the P-TENG except that
the effective size of the ZnO@paper and PTFE was 3 cm× 3 cm. The ZnO@paper and PTFE
were pasted onto print paper with an area of 4 cm × 5 cm and 4 cm × 7 cm, respectively.

The operating principle of the P-TENG is shown in Figure 2b [43,44]. When the
ZnO@paper and PTFE film are brought into contact with each other, electrons are injected
from the ZnO@paper to the PTFE film, leading to the surface of the ZnO@paper obtain-
ing positive charges while the PTFE film obtains negative charges, which are named as
triboelectric charges. When the gap between ZnO@paper-4 and PTFE became zero, the
triboelectric charges on the surfaces of the ZnO@paper and PTFE film are in electrical
equilibrium (Stage II). At the disconnecting stage, the surfaces of the ZnO@paper and
PTFE film would automatically diverge, and the triboelectric charges would generate an
electrical field between the surfaces of the ZnO@paper and PTFE film, creating an elec-
tric potential difference between Au electrodes (Stage III). When the separating distance
reaches the biggest value in a full contact-separation cycle, it will achieve a new electrical
equilibrium (Stage IV). Subsequently, once the ZnO@paper is compressed toward the PTFE
surface again, the induced charges in two Au electrodes become unbalanced (Stage V). As
a result, the electrons flow between Au electrodes through an external circuit, producing
an alternating signal voltage and current as the periodic mechanical force, as illustrated in
Figure 2c,d).

2.4. Structure Characterization of ZnO@paper

X-ray diffraction patterns (XRD) was performed to show that the product formed on
the ZnO@paper was ZnO rather than other zinc compounds by using an X-ray diffractome-
ter (Ultima IV, Japan) with Cu Kα radiation (λ = 0.1542 nm) at 40 kV and 40 mA in the
diffraction angle (2θ) range of 5–80◦. The morphologies of the samples were recorded on
a scanning electron microscope (SEM) (Verios G4 UC, FEI, Hillsboro, OR, USA) with ele-
mental analysis observed by energy-dispersive X-ray spectroscopy (EDS) operating at 2 kV,
and the samples were coated with a thin layer of gold using sputtering (MC1000, Japan
Hitachi Nake high-tech enterprise, Tokyo, Japan) prior to the observation. The chemical
bonding states of both cellulose fibers and the ZnO-forming ZnO@paper were determined
by an X-ray photoelectron spectrometer (XPS) (ESCALAB 250; Thermo Scientific, Waltham,
MA, USA).

2.5. Antibacterial Determination of ZnO@paper

In our study, Escherichia coli (typical gram-negative bacteria) and Staphylococcus au-
reus (a type of gram-positive bacteria) were used to assess the antibacterial properties of
ZnO@paper. The culture medium was prepared by agar. In brief, 33 g of agar was dis-
solved in 1000 mL distilled water, and the solution was heated until it became transparent.
Before the experiment, LB broth (lysogeny broth), the medium, and apparatus (including
beaker, pipette tips, test tube, test tube holder, and so on) were sterilized using an autoclave
(SYQ-DSX-2808, Shanghai Shenan Medical Instrument Factory, Shanghai, China) under
a pressure of 0.1 MPa and the temperature was maintained at 121 ◦C for 15 min. Then
E. coli and S. aureus with concentrations of 105 CFU were added into 10 mL LB broth,
respectively. Next, a 0.1 g sample cut into small pieces was added to the LB broth. Finally,
the LB broth was cultivated for 24 h at 37 ◦C with shaking at 140 rpm. After cultivation,
the bacterial suspensions were diluted by 10 to 107 times by using 0.5 wt.% NaCl, and then
0.1 mL different dilutions were spread on the agar plates, and the dishes were placed in
an incubator for 24 h at 37 ◦C. The antibacterial activity was evaluated by counting the
number of colony-forming units (CFU) from the culture medium distributed uniformly by
the bacterial suspensions diluted 100 times using the plate colony-counting method. To
further show intuitively the antibacterial properties of ZnO@paper, the culture medium
was also recorded by a camera. The antibacterial ratio was expressed as follows:

Antibacterial ratio(%) =
CFUblank paper − CFUZnO@paper

CFUblank paper
× 100% (6)



Nanomaterials 2021, 11, 1111 6 of 16

2.6. Measurements of the P-TENG as a Pressure Sensor

The open-circuit voltage (VOC) of the P-TENG was measured by an electrometer
with an input resistance of 200 TΩ (6517B, Keithley). The short-circuit current (ISC) was
observed using a low noise current preamplifier (SR570, Stanford Research Systems). A
mechanical linear motor (HF01-37, Linmot) was employed to provide different external
forces for driving the P-TENG. All measurements for the P-TENG were observed using
a contact-separation frequency of 1 Hz. The response signal of the pressure sensor was
carried out by an LCR meter (TH2832, Changzhou, China).

3. Results and Discussion
3.1. Characterizations of ZnO@paper

To prove the successful formation of ZnO nanosheets in ZnO@paper, ZnO@paper-4
was used as the typical example for analysis.

The XRD spectra of blank paper and ZnO@paper-4 are given in Figure 3. As shown in
Figure 3a, the spectrum of ZnO@paper-4 presents peaks at 15.6◦, 22.6◦, and 34.5◦, assigning
to (101), (002), and (004) crystallographic plane, respectively; it has a similar diffraction
pattern to blank paper which is cellulose I [45]. Additionally, the crystalline index (CrI)
of the ZnO@paper-4 is lower than blank paper becauseZnCl2 with a concentration lower
than 65 wt.% can penetrate into the crystalline region of cellulose, swelling cellulose and
decreasing the crystallinity of cellulose due to the high polarity [46,47]. Cellulose has many
hydroxyl groups which can promote the formation of ZnO. However, the high CrI is a
barrier for Zn2+ (ZnO precursor) to penetrate into crystallinity regions of cellulose, so
that hydroxyl groups on cellulose cannot be fully utilized leading to it is very difficult
to assemble much more ZnO on cellulose fibers [34,37,47]. Therefore, decreasing the CrI
could facilitate more ZnO deposited on ZnO@paper.
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Furthermore, compared with blank paper, the XRD spectra of ZnO@paper-4 shows
new characteristic peaks at 2θ value of 31.8◦ (100), 33.5◦ (002), 38.1◦ (101), 45.7◦ (102), 54.5◦

(110), 61.5◦ (103), 66.5◦ (200), 67.9◦ (112) and 69.7◦ (201), as illustrated in Figure 3b. The
results suggest that ZnO in paper has a hexagonal structure [35,40]. However, the peaks
of the ZnO@paper at 30–80◦ of 2θ value are weak. Therefore, further demonstration was
completed using EDS and XPS.

It is apparent that ZnO@paper-4 is composed of C, O, and Zn elements while blank
paper just contains C and O elements (Figure 4). The EDS results further suggests the
successful preparation of ZnO@paper.
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As a comparison, Table 1 lists the content of the Zn element in the ZnO/cellulose
composite prepared by reported methods and our method. Zn content is in a range of
2.1–7.02% by using a precipitation and blending method. In our work, the Zn content is
much higher than that of the other methods, which is up to 13.67%. The results confirmed
that more ZnO assembled on cellulose fibers since the hydroxyl groups in cellulose could
be fully utilized owing to the decrease of cellulose CrI [34,37,40].

Table 1. Summary of studies investigating various preparation methods of ZnO/cellulose composite.

Materials Preparation
Method C/(wt.%) O/(wt.%) Zn/(wt.%) Ref.

Filter paper, ZnCl2,
NaOH Precipitation 60.17 37.47 2.1 [36]

Cotton pulp, ZnO
nanoparticles Blending 42.57 48.97 6.72 [32]

CNC, ZnCl2, NaOH Precipitation 57.97 35 7.02 [48]
Dissolving pulp, ZnCl2,

CO(NH2)2
47.28 39.05 13.67 Our work

The XPS analysis of blank paper and ZnO@paper-4 demonstrates the chemical bonding
states to confirm the presence of ZnO in ZnO@paper. The survey spectra (Figure 5a) of blank
paper and ZnO@paper-4 show that there is an adventitious Zn element in ZnO@paper-4,
which is consistent with EDS results. The Zn2p regions of the XPS spectra (Figure 5b)
indicate that ZnO@paper-4 has two peaks at 1020.7 eV and 1043.8 eV, which are attributed
to Zn2p3/2 and Zn2p1/2 respectively, suggesting that Zn2+ exists in ZnO@paper-4 [49,50].
Furthermore, the binding energy gap between Zn2p3/2 and Zn2p1/2 is 23.15 eV, showing
that the Zn atoms are in a completely oxidized state [51]. In addition, the O1s spectra of
blank paper (Figure 5c) only consist of a peak centered at 531.3 eV, attributed to the C-O of
cellulose, while the O1s spectra of ZnO@paper-4 deconvolution leads to two new signals
at a binding energy of 529.4 eV corresponding to lattice oxygen and 532.5 eV attributed
to vacancy oxygen [52–54]. For the C1s, the two samples can be deconvoluted into three
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peaks at ~284.5 eV, ~286.3 eV, and 287.5 eV, which are ascribed to the C-C, C-O, and C=O
of cellulose, respectively [53].
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SEM analysis of blank paper and ZnO@paper-4 was performed to investigate the
morphology of ZnO, as illustrated in Figure 6a–d. As clearly seen from Figure 6b,d,
the surface of cellulose fibers forming the paper was covered by the ZnO nanosheet.
Additionally, in comparison with blank paper, the cellulose fibers of ZnO@paper-4 became
rougher due to the presence of ZnO nanosheet, which may enhance the output properties
of the P-TENG, as illustrated in Figure S1. Besides, the EDX elemental mapping was
investigated to further confirm that the ZnO nanosheet had adhered to cellulose paper.
As shown in Figure 6e–g, C, O, and Zn were uniformly distributed on the surface of
cellulose fibers. The C element was assigned to cellulose composed of C, O, and H. The
O element resulted from both cellulose and ZnO. The presence of Zn indicated that ZnO
had successfully attached to the cellulose fibers of the paper. It also further showed the
uniform distribution of ZnO on the ZnO@paper because the Zn element is homogeneously
distributed.
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As discussed above, the results proved that ZnO@paper could be prepared using a
ZnCl2-urea eutectic solvent.

3.2. Antibacterial Activity

To monitor the human movement state, from hand, arm, foot, etc., the P-TENG must
be in contact with human skin for a long time and exposed to the air environment, which
will lead to bacterial germination. Thus, the antibacterial property of cellulose paper is an
important prerequisite for a TENG used as a pressure sensor fixed on the human body to
detect human motion. Furthermore, it was also reported that the bacteria in the friction
material may decrease the electrical output of a TENG, impacting the effectiveness of the
TENG for monitoring human motion [55,56]. Therefore, it is very important to investigate
the antibacterial activity of ZnO@paper.

ZnO is an efficient antibacterial agent that could kill Gram-positive and Gram-negative
bacterial [55,57,58]. It can be seen from Table 2 that the antibacterial ratio of all ZnO@papers
against E. coli and S. aureus was above 99.99%, indicating that ZnO@paper prepared in the
proposed method had excellent antibacterial efficiency. As shown in Figure 7, compared to
blank paper, the surviving colonies number of both E. coli and S. aureus are almost absent
in the culture medium of all ZnO@papers. Therefore, it can be concluded that both E. coli
and S. aureus were killed under the action of ZnO@paper. Due to the excellent antibacterial
activity of ZnO@paper, the P-TENG prepared by our ZnO@paper could restrain and kill
the microorganisms during the operating time.

Table 2. The CFU of the control group, blank paper, and ZnO@paper, and antibacterial ratio of
ZnO@paper tested against E. coli and S. aureus.

E. coli (Gram−) S. aureus (Gram+)

CFU Antibacterial
Ratio (%) CFU Antibacterial

Ratio (%)

Control group 103 × 107 0 109 × 106 0
Blank paper 160 × 107 0 102 × 106 0

ZnO@paper-1 1 × 102 100 1 × 102 99.99
ZnO@paper-2 0 100 0 100
ZnO@paper-3 0 100 0 100
ZnO@paper-4 0 100 0 100
ZnO@paper-5 0 100 0 100
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3.3. Electrical Output Performance of the P-TENG

The properties of a TENG are mainly dependent on the surface charge density of
friction layers, which was affected by the roughness and triboelectricity of friction materi-
als [59]. Herein, the ZnO content (0–20.3 wt.%) of the ZnO@paper added with the increase
of ZnCl2 dosage in eutectic solvents, which may enhance the triboelectricity of ZnO@paper,
as shown in Table S1. In the tested range, the VOC (~35 V) of the P-TENG remained un-
changed when the ZnO content of the ZnO@paper was lower than 10 wt.% (the ZnCl2
dosage ranged from 0 to 0.03 mol); further increasing the ZnO content to 16.3 wt.% (increas-
ing ZnCl2 dosage to 0.07 mol) could significantly increase the VOC, and the maximin VOC
is 77 V, as shown in Figure 8a. However, the VOC decreased to 30 V when the ZnO content
of the ZnO@paper was over 20.3 wt.% (the ZnCl2 dosage was beyond 0.1 mol). The ISC
increased from 0.05 µA to 0.17 µA as the ZnO content was increased from 0 to 8 wt.%, and
it remained at 0.17 µA when the ZnO content ranged from 8 wt.% to 16.3 wt.% (the ZnCl2
dosage increases from 0.01 to 0.07 mol). However, the ISC of the P-TENG declined when
the ZnO content was over 20.3 wt.% (Figure 8c). The change tendency of the VOC and ISC
may be related to the surface roughness of ZnO@paper. The high surface roughness could
increase the contact area of ZnO@paper, resulting in the generation of more triboelectric
charges [12,60,61]. Thus, increasing the ZnO@paper roughness may enhance the output
properties of the P-TENG. The surface roughness of the ZnO@paper increased when the
ZnO content was increased from 0 to 16.3 wt.%, and then decreased as the ZnO content
was up to 20.3 wt.%, as shown in SEM images and Figure S1. Thus, the electrical output
performance of the P-TENG decreased when the ZnO content of ZnO@paper reached
20.3 wt.%. Furthermore, to measure the effect of the external compression force applied by
the linear motor on the performance of the P-TENG (prepared by ZnO@paper-4), the force
was designed from 10 N to 50 N, and the VOC and Isc are shown in Figure 8b,d. Increasing
the external force could reduce local gaps or voids introduced by surface roughness and the
shape deformation, leading to ZnO@paper and PTFE contacted more closely. Thus, the tri-
boelectric charges would change by increasing the external force. It has been also reported
that high enough triboelectric charges generate on the surface of the friction layers under
the corresponding external force [62]. The results indicated clearly that the VOC and ISC
values increased greatly when the external force was below 20 N and remained practically
unchanged with further external force growth (30 N–50 N). Namely, the external force of
20 N is sufficient to produce the maximum VOC and ISCof a P-TENG. It was mainly due to
the high enough triboelectric charges on the surface of the ZnO@paper under the external
force of 20 N due to the close contact of the ZnO@paper and PTFE. Further increasing
the external force, the local gaps or voids introduced by surface roughness and the shape
deformation could be not increased, thus the output performances of the P-TENG remain
unchanged by increasing the external force to 30, 40, and 50 N.
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Figure 8. The electrical output performance of the P-TENG fabricated by ZnO@paper. (a,c) VOC and ISC of the P-TENG;
(b,d) VOC and ISC at variable external force.

However, the VOC and ISC are much lower compared to the related reports despite
the ability to obtain the high output voltage and current for the P-TENG. For instance, Mi
et al. fabricated a type of TENG consisting of polyamide nanofiber mats and polyimide
(PI) aerogel films, which achieved a VOC of 115 V and ISC of 9 µA [63]. Chen et al. also
demonstrated a TENG with a Voc and Isc of 196.8 V and 31.5 µA, respectively. This
TENG was prepared using crepe cellulose paper and nitrocellulose membrane as the
friction layers [8]. On the one hand, the releasing electron ability of paper is much weaker
compared with other materials such as nylon and polyamide, leading to induce less
triboelectric charges. On the other hand, the high contact-separation rate of the friction
layer would produce more triboelectric charges [64]. In our study, the contact-separation
frequency of the P-TENG was 1 Hz; thus, the rate may be too slow to generate less
triboelectric charges, leading to the low output performance. In addition, the thickness of
the friction layer is another important influence factor for the TENG. A friction layer that is
too thick would increase the distance between the friction surface and the electrode; hence,
a greater induction distance would yield fewer induced charges due to the edge effect of
electrostatic induction [65]. The thickness of our ZnO@paper is over 125 µm, thus it may
be too thick for the TENG. Fortunately, our P-TENG has the advantages of flexibility and
biodegradability due to the application of the ZnO@paper made of cellulose fibers, which
are flexible and biodegradable.
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3.4. The P-TENG-Based Pressure Sensor

To show that a P-TENG can be applied in a sensor for monitoring the human motions,
the P-TENG prepared by ZnO@paper-4 was used as the typical example for the pressure
sensor because its output performance is the highest.

The P-TENG operating principle to generate electric energy in an external circuit is
combining the triboelectric effect and electrostatic induction between the ZnO@paper and
PTFE in periodic contact and separation. It has also been reported that the TENG sensor is
based on the triboelectric effect and electrostatic induction, and it can yield capacitance,
voltage, and current in response to external pressure [66,67]. Hence, the P-TENG-based
pressure sensor can be in response to external pressure. It was also reported that the output
signal response of the TENG sensor to pressure could be non-linearity in the whole pressure
region, but it exhibited different linear with pressure in different pressure regions [68]. The
sensitivity of the P-TENG-based pressure sensor was precisely carried out at 1–100 N of
pressure by dropping different counterweights freely from a height of 3 cm to the central
area of the pressure sensor. The peak of the response signal and output signal obtained from
different pressure were given in Figure 9 and Figure S2, respectively. Figure 9 indicates that
the signal response is exhibited in three distinct pressure regions: the tiny-pressure region
(1–5 N) with a pressure sensitivity of 0. 0498 pF N−1, the low-pressure region (5–40 N)
with a pressure sensitivity of 0.1811 pF N−1, and the high-pressure region (40–100 N) with
a pressure sensitivity of 0.0488 pF N−1, indicating that the P-TENG-based pressure sensor
possesses different sensitivity in different pressure regions.
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pressure.

The P-TENG-based pressure sensor has potential applications in the detection of
human motion, as shown in Figure 10. Here, when a hand touched the surface of the
P-TENG prepared by ZnO@paper-4, the gap between the ZnO@paper-4 and PTFE became
narrow, leading to a detectable signal output, as illustrated in Figure 10a. The P-TENG
was also fixed on the arm by medical tape to further demonstrate that it could detect
human motion information. As the arm was repeatedly bent and relaxed, the P-TENG
had contact and separation, generating the responded signal, as presented in Figure 10b.
As shown in the inset of Figure 10c, the P-TENG-based sensor was located on the back
of a t-shirt and further employed to harvest the mechanical energy while a human was
leaning back on a wood chair. Consequently, the P-TENG-based sensor exhibited a good
response signal. This phenomenon also occurs in the process of walking, which is shown
in Figure 10d. The fabricated P-TENG-based sensor was placed on the sole of a foot to
monitor its movement. When the foot stands alone, the response signal generated by
human body pressure reaches the highest value. If the foot is raised, the sensor signal
value returns to the microampere level. The results indicated that not only can our P-TENG
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harvest energy from human motion, but also it can also be applied as a sensor for obtaining
the human motion information.
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4. Conclusions

In the present work, a facile method has been successfully demonstrated to fabricate
ZnO@paper. In the proposed method, ZnCl2-urea eutectic was first introduced to swell
and cleave the hydrogen bonds in the cellulose structure by water destruction; while the
exposed hydroxyl group would be hydroxyl bonded with ZnO that was converted by the
dehydration of Zn(OH)4

2−, which endowed the ZnO@paper with excellent antibacterial
activity. In addition, the ZnO@paper also has potential application in the P-TENG as a
friction layer and in print paper as a substrate, which generates the maximum VOC of 77 V
and ISC of 0.17 µA by harvesting external force. The results indicate that the presence of
nanosheet ZnO in cellulose paper is beneficial for the electrical output performance of a
P-TENG. Furthermore, the P-TENG prepared using ZnO@paper could impede the accu-
mulation of bacteria during the longtime work process owing to the excellent antibacterial
activity of ZnO@paper, which could be applied in a wearable sensor for harvesting energy
from human motion and detecting human motion information.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11051111/s1, Table S1: The ZnO content of different ZnO@paper, Figure S1: AFM image
of (a) blank paper, (b) ZnO@paper-2, (c) ZnO@paper-4, (d) ZnO@paper-5, Figure S2: The output
signal of the pressure sensor in response to applied pressure.
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