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Cortical neuron loss is a pathological hallmark of late-onset Alzheimer’s disease (AD).
However, it remains unclear which neuronal subtypes beyond broad excitatory and
inhibitory classes are most vulnerable. Here, we analyzed cell subtype proportion
differences in AD compared to non-AD controls using 1037 post-mortem brain samples
from six neocortical regions. We identified the strongest associations of AD with fewer
somatostatin (SST) inhibitory neurons (β = −0.48, pbonf = 8.98 × 10−9) and intra-
telencephalic (IT) excitatory neurons (β = -0.45, pbonf = 4.32 × 10−7). Replication
in three AD case-control single-nucleus RNAseq datasets most strongly supported
the bulk tissue association of fewer SST neurons in AD. In depth analyses of cell
type proportions with specific AD-related neuropathological and cognitive phenotypes
revealed fewer SST neurons with greater brain-wide post-mortem tau and beta amyloid,
as well as a faster rate of antemortem cognitive decline. In contrast, greater IT
neuron proportions were associated with a slower rate of cognitive decline as well
as greater residual cognition–a measure of cognitive resilience–but not canonical AD
neuropathology. Our findings implicate somatostatin inhibitory and intra-telencephalic
excitatory neuron subclasses in the pathogenesis of AD and in cognitive resilience to
AD pathology, respectively.

Keywords: cell type proportions, Alzheimer’s disease, somatostatin, RNA sequencing, post-mortem brain,
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INTRODUCTION

Late-onset Alzheimer’s disease (AD) is a neurodegenerative
disease characterized by the gradual accumulation of
specific neuropathologies, including beta amyloid and
hyperphosphorylated tau proteins, followed by widespread
brain atrophy and cognitive decline (Rombouts et al., 2000; Lerch
et al., 2005, 2008). While these pathological hallmarks of AD are
well established, a lack of clarity over which specific brain cell
types are lost over the course of neurodegeneration and cognitive
decline remains.

Recent advances in single-cell and cell type-specific gene
expression profiling has revolutionized our knowledge of cell-
type specific changes in neuropsychiatric disease (Mancarci et al.,
2017; Gandal et al., 2018; Toker et al., 2018; Wang D. et al.,
2018; Jew et al., 2020). By combining these datasets with bulk
tissue gene expression data sampled from large numbers of
well-characterized individuals, cellular deconvolution analyses
have revealed important differences in AD, including fewer
neurons and more astrocytes (Li et al., 2018; Patrick et al.,
2020; Park et al., 2021). However, the majority of these analyses
have focused on cellular differences at the level of broad
cell types and comparatively less focus has been placed on
resolving cellular differences among finer-resolution cell types
such as subtypes of neurons (Cain et al., 2020). While emerging
AD case/control single-nucleus RNA sequencing (snRNAseq)
datasets offer an exciting opportunity to better resolve such
cellular differences (Mathys et al., 2019; Cain et al., 2020;
Zhou et al., 2020; Leng et al., 2021), technical constraints have
limited the size of such datasets in terms of total numbers
of cells and individuals sampled (Park et al., 2021), making it
difficult to determine robust cellular differences in a disorder as
heterogeneous as AD.

Here we performed a comprehensive analysis of brain bulk-
and single-nucleus RNAseq datasets to quantify changes in
cell-type proportions in AD. We quantified excitatory and
inhibitory neuronal subpopulations and non-neuronal cell
types by estimating relative cell-type proportions across three
studies and six neocortical brain regions. We corroborated
our bulk tissue-based findings by directly estimating cell-
type proportions in three snRNAseq datasets collected
from AD cases and controls. Finally, we explored how cell-
type proportion differences relate to specific age-related
neuropathologies, longitudinal cognitive decline, and an

Abbreviations: AD, late-onset Alzheimer’s disease; AIBS, Allen Institute for Brain
Sciences; AMP-AD, Accelerating Medicines Partnership–Alzheimer’s Disease;
CDR, clinical dementia rating; CERAD, Consortium to Establish a Registry for
Alzheimer’s Disease; DLPFC, dorsolateral prefrontal cortex; FDR, false discovery
rate; FP, frontal pole; GABA, gamma aminobutyric acid; IFG, inferior frontal gyrus;
IT, intra-telencephalic; LAMP5, lysosomal associated membrane protein family
member 5; MAP, Rush Memory and Aging Project; MGP, MarkerGeneProfile;
MSBB, Mount Sinai Brain Bank; PHG, parahippocampal gyrus; PMI, post-
mortem interval; QC, quality control; rCTP, relative cell-type proportion; RIN,
RNA integrity number; ROS, Religious Orders Study; SD, standard deviation;
snCTP, single-nucleus cell type proportion; snRNAseq, single-nucleus RNA
sequencing; SST, somatostatin; STG, superior temporal gyrus; TCX, temporal
cortex; TDP43, transactive response DNA binding protein 43 kDa; TMM, trimmed
mean of m-values; VIP, vasoactive intestinal peptide-expressing; VLMC, vascular
lepotomeningeal cell.

established measure of cognitive resilience. Together, our
findings suggest a robust and specific loss of excitatory intra-
telencephalic neurons and inhibitory somatostatin-expressing
interneurons in AD.

MATERIALS AND METHODS

Studies Used for Bulk Tissue RNA
Sequencing Analyses
Post-mortem bulk-brain RNAseq data were processed from 1373
different individuals across three independent studies from the
Accelerating Medicines Partnership–Alzheimer’s Disease (AMP-
AD) consortium (summarized in Table 1), encompassing six
brain regions:

1. The Religious Orders Study and Rush Memory and Aging
Project (herein ROS/MAP) cohort provided bulk RNAseq
data for dorsolateral prefrontal cortex (DLPFC) from 1092
individuals. The mean age at death was 89.6 (standard
deviation, SD = 6.6).

2. The Mayo Clinic study (herein Mayo) provided temporal
cortex (TCX) samples from 147 individuals. The mean age
at death was 82.6 (SD = 8.0).

3. The Mount Sinai Brain Bank study (herein MSBB)
provided samples from the same individuals across
multiple brain regions. The mean age at death was 83.3
(SD = 7.4). 134 individuals had bulk-tissue RNAseq data
sampled from Frontal Pole (FP), Brodmann area 10; 112
from Inferior Frontal Gyrus (IFG), Brodmann area 44; 104
from Parahippocampal Gyrus (PHG), Brodmann area 36;
and 117 from Superior Temporal Gyrus (STG), Brodmann
area 22.

Tissue Preparation and Bulk Tissue RNA
Sequencing
Details pertaining to the handling and processing of post-
mortem samples in ROS/MAP (De Jager et al., 2018), Mayo
(Allen et al., 2016), and MSBB (Wang M. et al., 2018) have
been previously published (Wan et al., 2020). RNA sequencing
procedures differed between studies:

1. For ROS/MAP, RNA sequencing on DLPFC tissue was
carried out in 13 batches within three distinct library
preparation and sequencing pipelines (see Supplementary
Methods). Sequencing was carried out using the Illumina
HiSeq (pipeline #1: 50M 101 bp paired end reads) and
NovaSeq6000 (pipeline #2: 30M 100 bp paired end; pipeline
#3: 40–50M 150 bp paired end reads). Full details on RNA
extraction and sequencing are available on the Synapse
AMP-AD Knowledge Portal (syn3219045).

2. For Mayo, sequencing was carried out on the Illumina
HiSeq 2000 (101 bp paired end reads). Details available on
the AMP-AD Knowledge Portal (syn5550404).

3. For MSBB, sequencing was carried out on the Illumina
HiSeq 2500 (100 bp single end reads). Details available on
the AMP-AD Knowledge Portal (syn3159438).
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TABLE 1 | Summary of RNAseq datasets used in this study.

Dataset name Study Data type Brain region Total individuals Controls AD cases Other

DLPFC ROS/MAP Bulk RNAseq Dorsolateral Prefrontal Cortex 1092 138 285 669

FP MSBB Bulk RNAseq Frontal Pole 134 44 90 0

IFG MSBB Bulk RNAseq Inferior Frontal Gyrus 112 34 78 0

PHG MSBB Bulk RNAseq Parahippocampal Gyrus 104 38 66 0

STG MSBB Bulk RNAseq Superior Temporal Gyrus 117 35 82 0

TCX Mayo Clinic Bulk RNAseq Temporal Cortex 147 67 80 0

Mathys ROS/MAP snRNAseq Dorsolateral Prefrontal Cortex 47 9 16 22

Zhou ROS/MAP snRNAseq Dorsolateral Prefrontal Cortex 32 8 8 16

Cain ROS/MAP snRNAseq Dorsolateral Prefrontal Cortex 24 5 5 14

AIBS snRNAseq Allen Institute snRNAseq Cingulate Gyrus and Medial Temporal Gyrus 3 3 0 0

Counts of individuals include only samples passing Quality Control.Column of individuals denoted as “Other” indicate individuals from the ROS/MAP cohort not meeting
either of the defined control or AD case criteria used in mega-analyses of all cohorts.Note that some individuals from the Mount Sinai Brain Bank, MSBB, were sampled
multiple times from different brain regions; therefore, not all samples are independent.

Processing of Bulk Tissue RNA
Sequencing Datasets
Bulk-tissue based RNA-seq read counts from all three studies
underwent uniform quality control (QC) and filtering protocols,
using the same approach as described previously (Felsky et al.,
2020). Briefly, genes with a median expected count less than
or equal to 15 were removed and multidimensional scaling
was performed. Subjects were deemed outliers and removed
if they differed from the sample median of any of the first
5 latent components by more than 3 interquartile ranges.
Gene counts were log2 transformed with an offset of 0.5,
to coerce any log2(expected count) value differing from the
sample median by 3 interquartile ranges to its nearest most
extreme value within that range. After sample- and gene-level
filtering, the log2(expected counts) were transformed back to
the expected count scale. Trimmed mean of m-values (TMM)
normalization (using edgeR calcNormFactors) and mean-
variance derived observational-level weights were calculated.
Variance related to technical factors, including sequencing
batch, percent of mapped bases, percent usable bases, RNA
integrity number (RIN), and post-mortem interval, were
removed using the removeBatchEffect function in limma
(Ritchie et al., 2015).

Consensus Definition of Alzheimer’s
Disease for Mega-Analysis
We applied a harmonized definition of AD case/control
diagnosis as defined previously in the same studies (Wan
et al., 2020). This definition combined clinical and post-mortem
neuropathological data for categorization, where controls were
defined as individuals with a low burden of plaques and tangles,
as well as no evidence of cognitive impairment (if available).
To define AD case status, Braak stage, global cognitive status at
time of death, and CERAD (Consortium to Establish a Registry
for Alzheimer’s Disease) scores were used in ROS/MAP, with
Clinical Dementia Rating (CDR) scores being used instead of
global cognitive status in MSBB. For the Mayo dataset, only
neuropathological criteria were used to define case/control status,

with details previously published (Allen et al., 2018). In total, 704
individuals across the three studies met the established AD case
or control criteria.

Cognitive and Neuropathological
Measures in Religious Orders
Study/Rush Memory and Aging Project
All subjects in ROS/MAP were administered 17 cognitive
tests annually spanning five cognitive domains. Raw scores
for tests within each domain were z-scored (using the mean
and standard deviation of the entire ROS/MAP combined
study population at baseline) and averaged to form the
composites. The list of individual cognitive tasks and their
corresponding domains has been published (Felsky et al.,
2019). Prior to autopsy, the average post-mortem interval was
9.3 h (SD = 8.1). All brains were examined by a board-
certified neuropathologist blinded to clinical data. We analyzed
11 neuropathologies measured brain-wide: total amyloid β

peptides, neuritic and diffuse plaques, paired helical filament
tau protein, neurofibrillary tangles, Braak stage (tau), gross
cerebral infarcts, cerebral atherosclerosis, degree of alpha-
synucleinopathy, transactive response DNA binding protein
43 kDa (TDP43) proteinopathy, and hippocampal sclerosis.
Detailed descriptions of all neuropathological variables have been
previously published (Felsky et al., 2019).

Single-Nucleus RNA Sequencing
Datasets
In total, we used expression data from four human cortical
single-nucleus RNA sequencing (snRNAseq) datasets for this
study. First, we used an ultra high-depth SMART-seq based
snRNAseq dataset from the human neocortex provided by
the Allen Institute for Brain Sciences (AIBS) (Hodge et al.,
2019) to define our reference cell type taxonomy and derive
cell type specific marker genes (see Supplementary Methods).
We used all nuclei sampled from the cingulate gyrus (5,939
nuclei) and medial temporal cortex (15,519), as these correspond
most closely with the bulk expression samples described above.
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Given that nuclei from non-neuronal cell types were relatively
undersampled in this dataset, we supplemented this dataset
with 2,620 nuclei corresponding to non-neurons sampled from
other cortical regions, including visual, auditory, somatosensory
and motor cortex (502, 742, 595, and 781 nuclei, respectively).
We further used three AD case/control snRNAseq datasets
collected from subjects sampled from the ROS/MAP cohort
(Mathys et al., 2019; Cain et al., 2020; Zhou et al., 2020). Cells
from each of the three ROS/MAP snRNAseq datasets were
bioinformatically mapped onto the AIBS snRNAseq dataset (see
Supplementary Methods).

Estimation of Relative Cell Type
Proportions From Bulk RNA Sequencing
Samples
Relative cell type proportions were estimated with the
MarkerGeneProfile (MGP) R package, as described previously
(Mancarci et al., 2017; Toker et al., 2018), using our derived
cell type-specific marker genes with default parameters. The
output of the mgpEstimate function was taken as the relative
cell-type proportion estimates (rCTPs), providing an indirect
measure of cell type abundance in each sample. To ensure
consistency in rCTP definitions across individual bulk datasets,
rCTPs were estimated using only cell type-specific marker genes
passing QC in each of the six bulk-tissue datasets. rCTPs were
converted to standardized z-scores within each dataset prior to
downstream analysis.

Estimation of Single-Nucleus RNA
Sequencing-Derived Cell Type
Proportions
Cell type proportions from snRNAseq datasets (snCTPs) were
directly estimated from snRNAseq datasets by counting nuclei
annotated to each cell type and normalizing by the total count
of all QC-passing nuclei per individual subject. We note that
such calculations were only performed on nuclei passing quality
control and also met our mapping criteria to our reference cell
type taxonomy. Direct comparisons between bulk and snRNAseq
derived cell type proportions for subjects from the ROS/MAP
cohort were performed by identifying subjects in common
between both datasets and correlating rCTPs with snCTPs values
across subjects.

Statistical Analyses
Mega-Analysis of Bulk RNA Sequencing Cell Type
Proportions With Alzheimer’s Disease
The lme4 package in R (Bates et al., 2015) was used to perform a
set of mega-analyses, one per cell type, across all bulk RNAseq
datasets. Linear mixed effect models were fitted as follows, for
each cell type (i), including a random effect of sample to account
for correlation structure between brain samples taken from
multiple regions of the same individuals in the MSBB study:

rCTPi ∼ AD diagnosis + (1|subject id) + study+

age at death + sex (1)

Adjustment of two-sided p-values to account for multiple
cell types was performed. The Bonferroni method and false
discovery-rate (FDR) method (Benjamini and Hochberg, 1995)
were applied separately to identify highly stringent and more
relaxed thresholds for statistical significance. Corrected p-values
are labeled specifically within results (i.e., pBonf , pFDR).

Analysis of Single-Nucleus Cell Type Proportions in
Alzheimer’s Disease and Controls
For snCTPs, AD association analyses were performed as for
rCTPs, with an additional covariate added for post-mortem
interval (PMI; for bulk analyses, variation in gene expression due
to PMI was removed during the preprocessing phase) and using
a linear model due to the limited overlap in individuals sampled
between snRNAseq datasets.

Association of Bulk Tissue Relative Cell-Type
Proportions With Neuropathology, Cognitive Decline,
and Residual Cognition in Religious Orders
Study/Rush Memory and Aging Project
In ROS/MAP we performed detailed analyses associating
each rCTP to measures of individual brain pathologies,
global cognitive decline, and cognitive status proximal to
death. We specifically utilized the full set of individuals
in ROS/MAP with bulk expression and other measures
available, as opposed to the more limited set of individuals
in our cross-cohort mega-analysis of AD case/control criteria
described above. “Residual cognition” was calculated per
individual as in White et al. (2017); the measure corresponds
to residuals of a linear model regressing global cognition
proximal to death on observed neuropathological variables
and demographic factors. Associations between rCTPs for
each cell type and cognitive and neuropathological phenotypes
were assessed using linear models covarying for age at
death, sex, and PMI. For models of cognitive outcomes,
we covaried for sex, educational attainment, and age at
time of baseline study assessment. Correction for multiple
testing across all cell types and outcomes (19 × 14 = 266
tests) was performed using the FDR method. To estimate
variance explained (R2) by rCTPs over and above covariates
and measured neuropathologies, we built a series of nested
linear models and compared them using likelihood ratio
tests. To improve the generalizability of our estimates, models
were bootstrapped (100 iterations) using the 0.632 + method
(Efron and Tibshirani, 1997).

Causal Mediation Modeling of Intra-Telencephalic
and Somatostatin Relative Cell-Type Proportions,
Alzheimer’s Disease Neuropathology, and Cognitive
Performance in Religious Orders Study/Rush
Memory and Aging Project
The R mediation package (v4.5.0) was used for causal
mediation modeling. To model pathological burden, we used an
established measure of global post-mortem AD neuropathology:
the mean of brain-wide diffuse plaques, neuritic plaques,
and neurofibrillary tangles. Four models were tested with
SST and IT rCTPs as either predictor or mediator, AD
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pathology the other role and global cognitive performance
at last study visit was always the outcome measure. To
estimate confidence intervals for average indirect, direct, and
total effects, 1000 Monte Carlo draws were used for non-
parametric bootstrapping.

RESULTS

Deriving Cell Type-Enriched Marker
Genes for the Major Neuron Subclasses
of the Human Neocortex
To build a high-quality foundation for investigating cell subtype
proportions–focusing on subclasses of neocortical neurons–
in AD, we first established representative marker gene sets
using ultra-high depth single-nucleus data RNA sequencing
(snRNAseq) data from multiple regions of human cortex
collected by the Allen Institute for Brain Sciences (Hodge et al.,
2019). In these datasets, nuclei were annotated to an established
cell type reference taxonomy where transcriptomically defined
cell clusters are linked to orthologous multi-modal taxonomies
established in other species and neocortical regions (Tasic et al.,
2018; Gouwens et al., 2020; Berg et al., 2021). This annotation
enables the inference of additional aspects of cellular identity
for these human snRNAseq-based cell clusters that include
axonal projection patterns and cell morphology (Hodge et al.,
2019).

We used these snRNAseq reference data to derive cell
type-specific “marker genes” (illustrated in Supplementary
Table 1), focusing our analyses primarily on the subclass
cell type resolution. This taxonomic grouping serves as
an intermediate resolution (e.g., somatostatin-expressing
GABAergic interneurons) between more coarse-grained (e.g.,
inhibitory neurons) and fine-grained cell taxonomic divisions
(e.g., Martinotti neurons). A key benefit of these markers is
their specificity and good cross-dataset replicability, including
in snRNAseq datasets specific to aging and AD samples
(Supplementary Figures 1, 2).

Bulk Tissue Analysis Implicates Fewer
Inhibitory and Excitatory Neurons in
Alzheimer’s Disease, With Most Robust
Associations With Somatostatin
Interneurons and Intra-Telencephalic
Pyramidal Cells
We first sought to understand how the abundance of specific
cell types are different in brains of individuals with a
pathologically confirmed AD diagnosis compared to controls.
We estimated the relative cell type proportions (rCTPs) of each
post-mortem bulk tissue RNAseq sample across all six bulk
expression datasets separately using the Marker Gene Profile
(MGP) method (Mancarci et al., 2017; Toker et al., 2018)
and our novel cell type-enriched marker gene sets described
above. We then performed mega-analysis for AD case/control
status with rCTPs across each of the major cell subclasses

and all six datasets using a linear mixed effects model. In
aggregate, we found lower rCTPs in most GABAergic subclasses,
mostly fewer but some greater rCTPs among glutamatergic
subclasses, and higher rCTPs for most non-neuronal subclasses
(Figure 1A).

Specifically, at a stringent Bonferroni correction threshold
of pbonf < 0.05, our analysis identified lower rCTPs for SST
(β = −0.48, pbonf = 8.98 × 10−9) and PVALB (β = −0.28,
pbonf = 0.0072) GABAergic interneurons, as well as IT (β =−0.45,
pbonf = 4.32 × 10−7), L4 IT (β = −0.24, pbonf = 0.023), L5
6 NP (β = −0.23, pbonf = 0.039), and L6 CT (β = −0.25,
pbonf = 0.023) glutamatergic neurons in AD. At the same
threshold, we observed greater rCTPs for L5 6 IT Car3
glutamatergic neurons (β = 0.023, pbonf = 0.034) and VLMC
cells (β = 0.24, pbonf = 0.041). At a less stringent threshold
(FDR < 0.1), we also observed lower rCTPs for lysosomal
associated membrane protein family member 5 (LAMP5)
and vasoactive intestinal peptide-expressing (VIP) GABAergic
interneurons, and greater rCTPs for L6b glutamatergic cells
and most non-neuronal cells, except endothelial cells. One
important caveat of these analyses is the focus on relative
proportions, which are not absolute cell counts (Mancarci et al.,
2017; Toker et al., 2018); therefore, potentially paradoxical
reported differences in some rCTPs here, such as greater L5
6 IT Car3 and L6b glutamatergic cell rCTPs in AD, may not
necessarily indicate that these cell types are actually increasing
in their absolute cell counts. These results are consistent with
prior observations that AD is characterized by relatively fewer
neuronal cells and corresponding relatively more non-neuronal
cells (Patrick et al., 2020).

The strongest AD-associated cell type in mega-analysis was the
somatostatin (SST) interneuron (β =−0.48, pbonf = 8.98× 10−9);
in each individual dataset, SST rCTPs were lower in AD cases
relative to controls (Figure 1B), though the differences were
not significant in all regions. Our findings mirror those of
Cain et al. (2020) highlighting SST interneurons as particularly
associated with AD phenotypes among ROS/MAP participants
and further generalizes this finding to additional studies and
brain regions. Importantly, in addition to the SST gene mRNA
transcript itself, we also observed lower mRNA expression of
other SST interneuron marker genes, including GRIK1 and
COL25A1 across most brain regions (Figure 1C). Moreover,
the SST rCTP signal is robust, albeit attenuated, to the
removal of the SST mRNA as a marker gene (β = −0.39,
pbonf = 6.02 × 10−6), suggesting the relevance of fewer SST-
expressing neurons rather than a lower expression of the SST
gene specifically.

Among excitatory cell types, rCTPs for intratelencephalic-
projecting (IT) pyramidal cells showed the greatest difference

between AD and controls (β = −0.45, pbonf = 4.32 × 10−7).
Like SST rCTPs, proportionally fewer IT neurons were observed
in AD cases relative to controls in each of the six bulk
expression datasets (Figure 1D), albeit not significantly in all
regions. The IT cell subclass includes both superficial layer
pyramidal cells, such as CUX2-positive cells, as well as more
infragranular cells, including RORB- and THEMIS-positive
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FIGURE 1 | Differences in relative cell type proportions of neuronal and non-neuronal subclasses in Alzheimer’s disease. (A) Consensus associations of Alzheimer’s
disease (“AD”) vs. control (“C”) status and cell type-specific relative cell type proportions (rCTPs) across six bulk RNAseq datasets. Y-axis shows standardized beta
coefficients estimated using a mixed effects model to pool associations across datasets. Positive (negative) standardized beta coefficients indicate an increase
(decrease) in the cell type-specific rCTP in AD. Error bars indicate one standard deviation. Asterisks (dots) above each cell type indicate two-sided pbonf < 0.05 (or
less stringent FDR < 0.1). (B) Comparisons between rCTPs between controls and AD cases in each of the six bulk gene expression datasets, ROS/MAP, sampling
the dorsolateral prefrontal cortex (DLPFC), MSSB, sampling the Frontal Pole (FP), Inferior Frontal Gyrus (IFG), Parahippocampal Gyrus (PHG), and Superior Temporal
Gyrus (STG), and the Mayo cohort, sampling the Temporal Cortex (TCX). Y-axis shows estimates of rCTPs for somatostatin (SST) interneurons from individual
post-mortem samples (each dot reflects one individual), after covarying for age and sex. Numbers show p-values from a statistical model comparing residualized
rCTPs between controls and AD cases, uncorrected for multiple comparisons across datasets and cell types. Subjects with outlier values of rCTPs not shown.
(C) Heatmaps showing AD case/control associations for marker genes for SST inhibitory cells. White dots indicate specific associations where FDR < 0.1. (D,E)
Same as panels (B,C) for intra-telencephalic-projecting (IT) excitatory pyramidal cells (IT cells).
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neurons (Hodge et al., 2019). As expected, we observed lower
expression in many of the individual IT cell marker genes
across each of the datasets in AD, including LINC00507 and
LINC01202 (Figure 1E).

Single-Nucleus Analysis Suggests
Selective Vulnerability of Specific
Inhibitory Subclasses in Alzheimer’s
Disease, Including Lysosomal
Associated Membrane Protein Family
Member 5 and Somatostatin
Interneurons, but Not
Intra-Telencephalic-Projecting Pyramidal
Cells
To complement the indirect estimates of rCTPs from bulk
tissue, we accessed three AD case/control snRNAseq datasets
sampled from subsets of participants from the ROS/MAP
cohort (Table 1; Mathys et al., 2019; Cain et al., 2020; Zhou
et al., 2020). We first harmonized cell type annotations from
these snRNAseq datasets by mapping cells to the same Allen
Institute-based human cortical cell type reference taxonomy
used in our rCTP analyses, finding good qualitative agreement
between the annotated cell type identities provided within
the original publications and those following QC and re-
mapping (Supplementary Figure 3). We then estimated single-
nucleus CTPs (snCTPs) per post-mortem sample by counting
nuclei annotated to each cell type, as a percentage of the
total nuclei sampled in each subject. Correlations between
cell type-specific snCTPs and bulk-tissue derived rCTPs in
subjects with overlapping data types were modest, but overall
positive (Supplementary Figure 4), in agreement with published
deconvolution efforts validated using immuno-histochemistry
(Patrick et al., 2020).

In line with our bulk tissue rCTP analysis, a mega-analysis
across the three snRNAseq datasets indicated that AD samples
showed lower snCTPs in most inhibitory subclasses, both higher
and lower snCTPs among excitatory subclasses, and greater
snCTPs for most non-neuronal subclasses (Figure 2A). At
Bonferroni-corrected pbonf < 0.05, we found only LAMP5
GABAergic interneurons to be lower in AD compared to
controls (β = −0.95, pbonf = 0.011). At a less stringent
threshold (FDR < 0.1), we also observed lower snCTPs
for PAX6 (β = −0.62, FDR = 0.093) and SST (β = −0.74,
FDR = 0.093) interneurons (Figure 2B). We note that we
did not see strong evidence for lower expression of SST
mRNA among SST-annotated nuclei in AD after covarying
for SST cell proportion differences (β = −0.43, p = 0.47;
Supplementary Figure 5), providing additional evidence
for SST cell-specific vulnerability highlighted by bulk tissue
analysis. In contrast to our bulk tissue results, we did not
find any effects for IT pyramidal cells (Figure 2C). To assess
the overall consistency between our bulk tissue rCTP and
single-nucleus approaches, we correlated standardized effect
coefficients for each cell type between analyses (Figure 2D).
Effects were strongly correlated (Spearman rho = 0.65),

illustrating broad concordance between methods, with
some exceptions.

Somatostatin Interneurons and
Intra-Telencephalic-Projecting Pyramidal
Cells Specifically Are Correlated With
Alzheimer’s Disease Neuropathologies
and Residual Cognition
Having identified SST interneurons and possibly IT-projecting
pyramidal cells as especially diminished in AD cases vs. controls,
we explored the associations of rCTPs with specific aging-
related neuropathologies and rates of longitudinal cognitive
decline. We utilized a larger set of individuals from ROS/MAP
with available data (889 subjects), as opposed to only those
meeting the consensus AD case/control criteria. After FDR
correction, we observed a striking pattern of association whereby
only SST rCTPs were negatively associated with each tau
and beta-amyloid-related neuropathology–most strongly with
neuritic plaques (pFDR = 3.1 × 10−4)–and positively associated
with rates of cognitive decline (pFDR = 3.9 × 10−6) and
cognition measured proximal to death (pFDR = 5.7 × 10−5)
(Figure 3). In contrast, IT neurons were also associated with
both cognitive measures (decline: pFDR = 8.3 × 10−5; proximal
to death: pFDR = 1.2 × 10−7) but were not associated with
canonical AD-related neuropathologies. However, an association
with TDP-43 proteinopathy was observed (pFDR = 0.015).
At a relaxed FDR < 0.1 threshold, several other neuronal
and non-neuronal associations were observed for individual
pathologies (Figure 3), though none as strong as those for
SST and IT neurons.

Finally, we sought to determine if cell type-cognition
associations were either independent or a reflection of
accumulating brain pathology. Therefore, we calculated a
measure of residual cognition for all individuals, as described
previously (White et al., 2017), which represents global
cognitive performance (proximal to death) after accounting for
variability due to neuropathology and demographics (see Section
“Materials and Methods”). After correction, IT rCTPs were the
only cell type significantly associated with residual cognition
(pFDR = 1.2 × 10−5), though we note SST neurons showed a
marginal association as well (pFDR = 0.069). To quantify the
additional variance in cognition explained by IT rCTPs over and
above measured neuropathology, we first established a baseline
model of cognition, where demographic and neuropathological
variables alone explained 40.3% of total variance (R2 = 0.403).
Adding IT rCTPs to this model increased the variance explained
by 1.9% (likelihood ratio test p = 7.1 × 10−8, R2 = 0.422). By
contrast, SST rCTPs increased the explained variance to a much
lesser extent (additional 0.53%; likelihood ratio test p = 0.0049).
These findings were supported by mediation analyses, including
apolipoprotein E ε4 AD risk variant as a co-variate, which found
bidirectional mediation of SST and AD pathology on cognitive
performance proximal to death (pperm < 0.0001), but no
mediation of the relationship between pathology and cognition
by IT neurons (pperm = 0.31), or of IT neurons and cognition by
pathology (pperm = 0.35) (results in Supplementary Table 2).
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FIGURE 2 | Differences in single-nucleus derived cell type proportions (snCTPs) of neuronal and non-neuronal subclasses in Alzheimer’s disease. (A) Consensus
associations of AD status and snCTPs across three AD snRNAseq case/control datasets. Y-axis shows standardized beta coefficients estimated using a mixed
effects model to pool associations across datasets. Positive (negative) standardized beta coefficients indicate an increase (decrease) in the cell type-specific snCTP
in AD. Error bars indicate one standard deviation. Asterisks (dots) above each cell type indicate two-sided pbonf < 0.05 (or less stringent FDR < 0.1).
(B) Comparisons between snCTPs between controls and AD cases in each of three snRNAseq datasets. Y-axis dots show snCTPs for somatostatin (SST)
interneurons (as a percentage of all nuclei sampled) from individual post-mortem samples. Numbers show p-values from t-test (uncorrected for multiple comparisons
across datasets and cell types) from a statistical model comparing snCTPs between controls and AD cases. Subjects with outlier values of rCTPs not shown.
(C) Same as panel (B) for intratelencephalic-projecting (IT) excitatory pyramidal cells. (D) Consistency of AD standardized effect sizes between bulk rCTPs and
snCTPs based on single-nucleus analyses. X-axis shows point estimates of standardized beta coefficients of AD effects on rCTPs in the ROS/MAP cohort (as in
Figure 1A) and y-axis is the same as point estimates shown in A. Diagonal line denotes the unity line. Inset correlation value denotes overall Spearman correlation
(rho) between rCTP and snCTP estimated effects.

DISCUSSION

Our analysis leveraged three aging and AD studies with multi-
region post-mortem bulk gene expression to determine which
neocortical cell subtypes are most strongly associated with AD.
Based on marker gene expression specific to cellular subclasses,
we observed lower relative proportions of most neuronal types
and greater relative proportions of most non-neuronal types.
In particular, our analyses highlighted fewer somatostatin-
expressing (SST) interneurons and intra-telencephalic projecting
(IT) pyramidal cells in AD that were replicated across studies
and neocortical regions. Cellular proportions directly derived

from three additional AD case/control single-nucleus RNAseq
datasets provided partial corroboration of our bulk-tissue based
results, suggesting that such cellular changes are likely the result
of cellular loss as opposed to a coordinated global change in
cellular identity. The results of our analyses support previous
literature implicating the loss of SST interneurons in AD and
further indicate that the preservation of IT pyramidal cells may
contribute to cognitive resilience despite the presence of AD
neuropathologies.

Our conclusion implicating SST interneurons, a key
subpopulation of cortical GABAergic cells that provide synaptic
inhibition to pyramidal cells by targeting their distal dendrites
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FIGURE 3 | Associations between cell type specific relative proportions and neuropathologies, cognition, and residual cognition. Inset values denote the FDR
statistics of specific associations, where FDR < 0.1. Note that while pathology scores are coded such that greater levels of pathology indicate worsening brain
health, global cognition scores are coded such that higher scores indicate better cognition and less dementia. Std Beta, standardized beta coefficients; PHF, paired
helical filaments; AA, amyloid angiopathy.

(Urban-Ciecko and Barth, 2016), are consistent with a broad
literature on the role of SST in neurological illness, recently
reviewed (Song et al., 2021). The association of SST with AD is
decades-old, beginning with seminal findings reporting reduced
levels of somatostatin immunoreactivity in AD brain (Davies
et al., 1980), and more recently with cross-study differential
expression analyses finding ubiquitous reductions of SST RNA
in AD brain tissue (with the exception of the cerebellum1).
However, it remains unknown if this association is driven
by a selective loss of SST mRNA or losses of populations of
SST-expressing neurons. Taken as a whole, our bulk and single-
nucleus based findings support the latter conclusion, though
certainly do not provide definitive evidence for it. In agreement,
one study found that SST interneurons were uniquely lost in
AD among neuronal subtypes in prefrontal cortex ROS/MAP
samples (Cain et al., 2020). While the precise role of selective
SST interneuron vulnerability in AD remains to be understood,
a recent publication pointed to a role for a potential direct
biochemical interaction between the SST neuropeptide and
amyloid beta (Solarski et al., 2018).

In addition, we observed negative associations between four
neuronal subtypes (GABAergic: LAMP5, VIP, and PVALB;
glutamatergic: IT) and TDP-43 neuropathology, with the most
consistent effects among GABAergic neurons. We are cautious
to not over-interpret this result given its non-specificity and
relatively weak statistical signal, but note that GABA-specific
involvement in TDP-43 neurodegeneration has been observed
in preclinical (Tsuiji et al., 2017) and human contexts (Lin
et al., 2021). In addition, recent work has shown that gene
expression modules enriched for GABAergic neurons (module

1https://agora.adknowledgeportal.org/

18) are strongly regulated by the TMEM106B genetic locus,
a known risk factor for TDP-43 neurodegenerative conditions
(Yang et al., 2020).

We also observed strong associations between IT pyramidal
cells and AD, and, intriguingly, this was the only cell type
significantly associated with residual cognition. IT cells are
defined by their cortico-cortical and cortico-striatal projections
(Tasic et al., 2018) and encompass supragranular pyramidal cells,
such as CUX2-positive cells, and infragranular cells, including
RORB- and THEMIS-positive pyramidal cells (Hodge et al.,
2019). Immunohistochemical studies corroborate these results in
part, suggesting that SMI32-immunoreactive neurons, labeling
large pyramidal neurons in Layers 3 and 5, are selectively lost
in the frontotemporal cortex in AD (Hof et al., 1990; Bussière
et al., 2003; van de Nes et al., 2008). More recently, evidence from
snRNAseq studies of the entorhinal cortex and superior frontal
gyrus have implicated RORB-expressing excitatory neurons as
selectively vulnerable in AD (Leng et al., 2021). As one caveat,
we note that we saw some, but overall limited replicability
of decreased IT CTPs in our bulk- compared to our single-
nucleus analyses.

Our study has several key limitations and considerations. First,
the backbone of our study is a neocortical cell type taxonomy
derived from deep transcriptomic sequencing of single-nuclei
from normotypic individuals (Hodge et al., 2019); it remains
unclear how comparable these transcriptional profiles are to
those in the elderly and in individuals with AD. In addition,
the fact that our marker gene sets were required to pass quality
control in each dataset means that some biological cell-specific
signals may have been missed, though the observed consistency
in effects between our individual study samples (Figures 1B–E)
is encouraging. Second, the conclusion of our study rely on the
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accurate estimation of relative differences in cell-type proportions
between individuals. Such estimates are highly dependent on
the choice and quality of the constituent marker genes that
serve as representatives of each cell type (Mancarci et al., 2017;
Toker et al., 2018) as well as the particular choice of method for
cellular deconvolution (Jew et al., 2020; Patrick et al., 2020; Park
et al., 2021). However, the relatively high degree of consistency
between our bulk- and single-nucleus based results help partially
mitigate this concern. Third, the focus of this work is the study
of robust changes in cell-type proportions in AD, but does not
tackle the question of within-cell type transcriptional regulation
(Mathys et al., 2019; Wang and Li, 2021). Lastly, all of the results
presented here are associational; further studies are needed to
determine how and when cell type-specific loss occurs relative to
the emergence of AD pathologies and cognitive decline.

CONCLUSION

Overall, our study provides a comprehensive consensus overview
of the vulnerability of neocortical neuronal subpopulations in
AD. Our results demonstrate that losses of SST interneurons and
IT pyramidal cell populations are those most strongly associated
with AD. In addition, IT pyramidal cells are uniquely associated
with residual cognition, suggesting that efforts to preserve
or maintain this key neuronal subpopulation might mitigate
cognitive decline in the face of AD neuropathologies. Our hope is
that these results will inform future studies to further disentangle
the causal progression of AD neuropathological burden, cellular
loss, and cognitive decline.
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