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Abstract

Robust, real-time event detection from physiological signals acquired during long-term

ambulatory monitoring still represents a major challenge for highly-artifacted signals. In this

paper, we propose an original and generic multi-feature probabilistic detector (MFPD) and

apply it to real-time QRS complex detection under noisy conditions. The MFPD method cal-

culates a binary Bayesian probability for each derived feature and makes a centralized

fusion, using the Kullback-Leibler divergence. The method is evaluated on two ECG data-

bases: 1) the MIT-BIH arrhythmia database from Physionet containing clean ECG signals,

2) a benchmark noisy database created by adding noise recordings of the MIT-BIH noise

stress test database, also from Physionet, to the MIT-BIH arrhythmia database. Results are

compared with a well-known wavelet-based detector, and two recently published detectors:

one based on spatiotemporal characteristic of the QRS complex and the second, as the

MFDP, based on feature calculations from the University of New South Wales detector

(UNSW). For both benchmark Physionet databases, the proposed MFPD method achieves

the lowest standard deviation in sensitivity and positive predictivity (+P) despite its online

algorithm architecture. While the statistics are comparable for low-to mildly artifactual ECG

signals, the MFPD outperforms reference methods for artifacted ECG with low SNR levels

reaching 87.48 ± 14.21% in sensitivity and 89.39 ± 14.67% in +P as compared to 88.30 ±
17.66% and 86.06 ± 19.67% respectively from UNSW, the best performing reference

method. With demonstrations on the extensively studied QRS detection problem, we con-

sider that the proposed generic structure of the multi-feature probabilistic detector should

offer promising perspectives for long-term monitoring applications for highly-artifacted

signals.

1 Introduction

Event detections from physiological signals are often faced with important noise perturbations,

especially in clinical monitoring context. Main strategies are focused on finding an efficient

feature reliable in most cases. Generally, these methods such as [1] get interesting results

under low- to mid-level noise conditions, but performances decrease significantly with the
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signal-to-noise ratio (SNR) diminution or with a change in the noise type since all features

have vulnerabilities to specific distortions. To circumvent this weakness, multi-feature detec-

tors were proposed [2] but the decentralized fusion method does not fully exploit feature infor-

mations using statistical learning strategies. The main objective of this paper is to propose a

generic event detection method with centralized fusion, in which the final decision is made by

a weighted sum of posterior detection probabilities derived from each feature’s statistical prop-

erties. The power of the method is illustrated by its application to real-time QRS complex

detection from electrocardiogram (ECG) signals.

QRS complex is the most prominent deflection in ECG signal and corresponds to the elec-

trical depolarization of ventricles. The detection is often the first analysis performed on ECG

signal processing, in order to estimate basic cardiac markers, such as heart rate or to perform

further ECG segmentation and analysis. The QRS complex detection has been investigated

for many decades [1] and yet remains a challenge [3] as an event detection problem from

physiological signals. Many different methods have been proposed and a number of review

publications have been dedicated to this subject [4] [5]. The main proposed methods are

based on filtering and non linear transformations [1], fuzzy hybrid neural networks [6],

S-Transform [7] or wavelet analysis [8–11]. Although these QRS detection methods perform

well in low- to mid-level noise conditions, their applications on long-term periods of ECG

recordings under noisy conditions such as in ambulatory care and intensive care units still

pose a significant challenge as evidenced by the large number of RR correction methods

reported in [12]. Indeed, these ECG recordings are often prone to episodes of strong signal

non-stationarity, sudden modifications of beat morphologies and most importantly the pres-

ence of several types of noise (baseline drift, saturation, power-line pickup, muscular contrac-

tions and motion artifacts [13]). Recently in [14], the authors explained that QRS detection

has not been completely assessed in terms of robustness to noise. As a consequence, recent

publications [15] [16] [17] and a recent PhysioNet challenge [3] have been focused on the

specific problem of robust QRS detection. Furthermore, the emergence of wearable cardiac

monitors, with a limited number of leads [18] [19] for long-term daily-life recordings

[20] further revives the research interests on robust QRS detection for low-quality

electrocardiograms.

In our previous works, we have proposed different methods to improve the robustness of

QRS detection, through multisensor fusion [2], adaptive selection of QRS detectors as a func-

tion of the signal context [21] or through optimal detector parameter configuration, using evo-

lutionary methods [22] [23]. More recently, we revisited this optimization process in order to

identify optimal parameter configurations with respect to changes in signal noise [24].

In this paper, we propose and evaluate a novel, generic event detector, that provides

improved robustness through the probabilistic combination of a set of signal features. Section

2 presents the general architecture of the proposed Multi-Feature Probabilistic Detector

(MFPD) and a specific implementation adapted to robust QRS detection. Section 4 evaluates

its performances on two ECG databases: 1) the benchmark MIT-BIH [25] to validate the pro-

posed method on clean ECG signals with consensus annotations, 2) the benchmark noisy data-

base (created by adding noise recordings to the MIT-BIH) with known artifact types and

levels, to validate the proposed method on highly artifactual ECG signals including various

artifacts.

2 Methods

2.1 General architecture of the detector

The general architecture of the MFPD depicted in Fig 1 is based on the following steps:

Robust, real-time generic detector based on a multi-feature probabilistic method
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1. Pre-processing: Raw signals are processed in order to improve the SNR and to pre-select

potential candidates (to be validated by the detector) of the events of interest at instants t.

2. Feature extraction: For every event candidate selected at instant t, a vector

CðtÞ ¼ fCiðtÞji 2 Ig is created, where I is a set of complementary features extracted

from the preprocessed signals.

3. Probability density estimation: The probability density functions (pdf), noted as

PiðCiðtÞ;Yi0=1;H 0=1Þ are used to model feature i on the observed candidate C(t), with the

two hypotheses:

H 0 : DðtÞ ¼ 0;

H 1 : DðtÞ ¼ 1;

where D(t) is the final detection decision (D(t) = 1 for detection and D(t) = 0 otherwise)

and Θi0/1 the parameter set for each hypothesis. Note that for each feature, the two pdf

belong to the same distribution family, whose parameters Θi0/1 are initialized at the begin-

ning of the recording and updated throughout the detection process (see Section 2.2.3 for

more details).

Fig 1. Global architecture of the MFPD. In the first two steps, data coming from ECG are filtered then converted into features Ci(t). Pið:jH 1Þ and Pið:jH 0Þ are

parametric probability models of feature i, representing valid and invalid detections.

https://doi.org/10.1371/journal.pone.0223785.g001
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4. Probabilistic characterization: The posterior probability PiðH 1jCiðtÞÞ is calculated by

applying the Bayes law. Moreover, the Kullback-Leibler divergence (KLD) between each

pdf pair characterizing feature i, Di
KL, is calculated.

5. Decision fusion: The posterior probabilities, weighted by their respective KLD, are com-

bined to build a binary decision D(t) on whether candidate C(t) is a valid event (D(t) = 1)

or not (D(t) = 0). According to the decision for the current candidate, distribution parame-

ters are updated to complete the real-time learning process.

2.2 Real-time QRS detection implementation

In this section, we detail the realization of the above-mentioned MFPD, adapted for real-time

detection of QRS complexes. From the generic approach of Fig 1, the specific adaptions to

QRS complex detection include mainly the pre-processing (step 1) and the feature extraction

(step 2), they are depicted in Fig 2.

2.2.1 Pre-processing. As in many other QRS detection methods, the first step consists in

applying to the raw ECG signal different transformations. Typically, a band-pass filter, a deriv-

ative filter, a non-linear transformation and a final smoothing filter are applied. We adopt here

the pre-processing method used in [1, 26]: Fig 2 represents a diagram of these steps. In the fol-

lowing, the band-pass filtered ECG signal, computed using finite impulse response (FIR) low

pass (fcutoff = 19 Hz, order = 256) and high pass (fcutoff = 8 Hz, order = 256) filters, will be

denoted SAecg; and the output of a squared transformation followed by a derivative FIR filter

(fcutoff = 30 Hz, order = 129) then a smoothing filter (length = 101 ms) on signal SAecg will be

denoted SFecg (cf Fig 2). FIR filters were designed using Remez exchange algorithm. Each

local maximum detected at an instant t on SFecg is considered as a potential QRS candidate.

2.2.2 Feature extraction. In this paper, a set of 3 features CðtÞ ¼ fCiðtÞ; i 2 Ig; I ¼
fs; a; cg is extracted for each QRS candidate. These features are the input to the probability

Fig 2. Specification of signal pre-processing and feature extraction (steps 1 and 2 in Fig 1). For the application of

robust QRS detection, a set of 3 features CðtÞ ¼ fCiðtÞ; i 2 Ig; I ¼ fs; a; cg is extracted.

https://doi.org/10.1371/journal.pone.0223785.g002
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density estimation step (step 3 in Section 2.1 and Fig 1). The squared slope (s), the raw ampli-

tude (a) and the absolute correlation with a beat template (c) constitute the most common fea-

tures used in the literature for QRS detection. In the current study, we prove the concept of

decision fusion with adaptive weights to track the relative importance of each feature while the

optimization of feature selection lies beyond the scope of our investigation.

2.2.3 Feature probability density.

1. Feature probability models: in the proposed QRS detection application, each candidate is

characterized by a set of 3 features I ¼ fs; a; cg. The probability distribution function (pdf)

of features are chosen with several conditions: 1) distributions should have the same support

as the calculated feature, e.g. (0,1) for the squared slope, (−1, +1) for the amplitude and

[0, 1] for the absolute correlation, 2) pdf parameter estimations should be easy to calculate,

with low complexity in the updating methods, 3) the distance measures on these pdfs should

also be easy to compute and tractable, without numerical integrations. In this paper, we

implemented three different pdfs: (i) a Beta distribution with closed support, (ii) a Gamma

distribution with one-sided open support, and (iii) a generalized normal distribution

(GND) with two-side open support. Thus, pdf parameter update and distance calculation

methods in this paper can be generalized to include most continuous features in the future.

• The squared slope of the peak (s) is the value of SFecg signal at instant t. This feature is rep-

resented with the Gamma distribution with two degrees of freedom:

Psðx; k; yÞ ¼
xk� 1e� xy
GðkÞyk

11x>0; ð1Þ

where k 2 Rþ is the shape parameter, and y 2 Rþ the scale parameter. The indicator func-

tion 11x>0 typically limits the function support toRþ.

• The peak amplitude (a) is the value of SAecg signal at instant t. We characterized it using

the GND defined as:

Paðx; a;b; mÞ ¼
b

2aGð1=bÞ
e�

jx� mj
að Þ

b

ð2Þ

where GðtÞ ¼
R1

0
xt� 1e� xdx is the gamma function and m2R the position parameter, a2Rþ

the scale parameter and b2Rþ the shape parameter. Note that both positive and negative

peak values can be fitted with the GND model.

• The absolute Bravais-Pearson correlation (c) is calculated between the candidate peak (rep-

resented by 50 ms of raw ECG signal centered 20 ms before the peak) at instant t and an

adaptive template. The template duration was chosen in order to extract mainly the infor-

mation around the peak, where the information is most characteristic of the QRS complex

in our opinion. With a longer template duration, QRS complexes affected by noise can

obtain a lower correlation, this weakness is less present with a short template duration.

With an even shorter duration, high-frequency artifacts can be very similar to QRS com-

plexes. In order to model this feature, we have chosen the Beta distribution, defined as:

Pcðx; a; bÞ ¼
Gðaþ bÞ

GðaÞGðbÞ
xa� 1ð1 � xÞb� 1

11½0;1�ðxÞ: ð3Þ

This can also be considered as a special case of the Dirichlet distribution, with two positive

shape parameters α and β. Parameters are estimated using maximum a posteriori (MAP)

method, further details are reported in section 4.2.
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Note again that the same pdf family is proposed for bothH 0 andH 1 considering the

numerical tractability of the KLD calculations (see discussion in 2.2.4).

2. Initialization: As in step 3) in section 2.1, the model parameters—{k, θ} for the Gamma dis-

tribution, {α, β, μ} for the GND, and {α, β} for the Beta distribution—are initialized during

the heating-up period (cf block distribution initialization in Fig 1) using the Pan-Tompkins

detector [1] for the 40 first validated QRS detections (note that these detections are consid-

ered in the performance evaluation step). At the end of the heating-up period, all QRS can-

didates are labelled as either validated (H 1) or invalidated (H 0) and the model parameters

are estimated for each distribution, using the maximum likelihood estimator (MLE) for the

s and a feature, and MAP estimator for the c feature. Beat templates (for bothH 1 andH 0)

are also initialized (aligned and averaged) using the validated and invalidated candidates of

the heating-up.

3. Learning: Once initialized, the MFPD detector shifts to the decision fusion mode (step 3-5

in section 2.1 and Fig 1) whose final detection results (of step 5) feed the pdf parameter

updating (step 3) in the same manner as during the initialization. KLDs are updated as a

direct consequence (step 4). In a similar manner, the beat templates are updated after each

decision using 80% of the previous template and 20% of the current candidate. If no detec-

tion occurs during 3.5 sec, all parameters are reset and a new initialization starts.

2.2.4 Probabilistic characterization. Based on the pdf model for each feature in 2.2.3,

two probabilistic markers are calculated for each feature: the posterior probability and the

KLD. The posterior probability of validatingH 1 for feature Ci(t) is given by

PiðH 1jCiðtÞÞ ¼
PiðCiðtÞjH 1ÞPiðH 1Þ

PiðCiðtÞjH 1ÞPiðH 1Þ þ PiðCiðtÞjH 0ÞPiðH 0Þ
ð4Þ

using the Bayes rule. A binary decision can typically be made by thresholding this probability

as in most single feature-based QRS detectors.

We propose in this paper a centralized fusion by making a weighted sum of these posterior

probabilities. The key here is to update dynamically a metric to measure the pertinence of each

feature, or the power of separating two classes in the detection context by measuring the dis-

tance between the two antagonist pdfs. The KLD is such a non-negative measure defined by:

DKLðpkqÞ ¼
Z 1

� 1

pðxÞ log
pðxÞ
qðxÞ

dx: ð5Þ

It is particularly well-suited to assess the distance between the distribution pair

PiðCiðtÞ;Yi0=1;H 0=1Þ. Analytic expressions can be found in the literature in the case of Beta

[27] and Gamma distributions [28]. However for the GND case and to our best knowledge, no

analytic expression can be found in the general case when μp 6¼ μq. One theoretical contribu-

tion of this paper is to efficiently calculate the KLD between two GND distributions in the case

of general settings. While detailed derivation is reported in the appendix B, here we give a sum-

mary of the main results:

1. Analytic expressions for bq2N
þ
[f0g have been derived;

2. Eq (5) is monotonously increasing with βq;

3. The computational complexity requires 2 × (βq + 1) gamma function evaluations.

Robust, real-time generic detector based on a multi-feature probabilistic method
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Thus without numerical integration of Eq (5), we are able to obtain a close approximation

of the KLD value for all bq 2 R
þ

. Note that the other parameters (αp, αq, βp, μp, μq) have no

effect on the calculation complexity.

Finally, and without loss of generality, the KLD is one of the f-divergence functions that

measures the difference between two probability distributions. They are non-negative, monot-

onous and jointly convex. For example, the reverse KLD DR
KLðpkqÞ ¼ DKLðqkpÞ is another f-

divergence and can be easily calculated by reversing the role of the two distributions. However,

it is less evident to derive tractable numerical methods for the Hellinger distance, or the χ2-

divergence for the exponential pdf family.

2.2.5 Decision fusion. Based on the probabilistic markers, the following decision rule is

applied

DðtÞ ¼ 1 if and only if
X

i2I

�Di
KL:PiðH 1jCiðtÞÞ
P

j2I
�Dj

KL

> l
ð6Þ

where λ is the decision threshold. The modified �Di
KL is calculated by letting i� ¼ argmaxfDi

KLg

and:

�Di
KL ¼

min Di
KL; 2

X

h6¼i�
Dh

KL

( )

; i ¼ i�

Di
KL; i 6¼ i�

8
>><

>>:

ð7Þ

Such that the most significant KLD should not exceed 2/3 after normalization. Intuitively, the

decision rule represents the sum of all posterior probabilities, weighted by their normalized

KLD, such that features that are better separated in distributions (betweenH 0 andH 1) have

more weight in the final decision making.

3 Performance evaluation for QRS detection

3.1 Databases

Two databases were used:

• Benchmark database: we first performed a comparative study using the first lead of the

MIT-BIH Arrhythmia Database with consensus annotations to show the detection perfor-

mances on clean ECG signals even though the main objective of the paper is to evaluate

detector’s robustness under artifact conditions.

• Benchmark noisy database: we then created a benchmark simulated database by adding to

the MIT-BIH Arrhythmia Database three noise sources (baseline wander, muscle and elec-

trode motion artifact) extracted from the MIT-BIH noise stress test database. Noises were

recorded from physically active volunteers [25] and with SNR levels from −6dB to 24dB by

6dB increments. It is composed of 864 noisy signals for which the reference annotations are

simply copies of those for the MIT-BIH Arrhythmia Database. The purpose of this database

test is to provide a ground truth for detection performance comparison with different levels

and types of noises. A quick access to this benchmark database is available at: https://github.

com/dge996/MIT_NoiseStress/ though it can also be constructed using the method

described in [25].
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We choose to report results on two databases to prove the design concept of the MFPD

robustness for clean and noisy databases with consensus annotations. For the second one,

both artifact type and level classification annotations are provided, they allow differentiated

comparisons.

3.2 Comparison methods

As in recent publications [29] [15], performance of the proposed MFPD was compared with

the following state of the art QRS detection methods:

• University of New South Wales detector (UNSW): a feature-based (ECG amplitude and

derivative) detector, with adaptive thresholding, suitable for both clinical and poorer quality

tele-health ECG [15].

• Spatiotemporal Characteristics Detector (SCD): a simple and robust realtime QRS detection

algorithm based on spatiotemporal characteristics [30], with state-of-the-art performances

reported for noisy signals.

• Wavelet-Based Detector (WBD): a wavelet-based QRS detector [31], with implementation

provided in the ECG-toolkit [32] [33].

WBD was chosen because it is a reference in QRS detection. The other two methods were

selected because their objectives are the same as MFDP, which is not the case for many detec-

tors from the literature focused on clean ECG signals. SCD is described by their authors as

robust and real-time, UNSW detector is described as suitable for poorer quality ECG signals.

Moreover, both were recently published (2016) with open access toolbox. We underline how-

ever that contrary to UNSW and WBD methods, the MFPD is an online algorithm designed

for monitoring applications which forbids typically bi-directional filtering and beat by beat

corrections in post-treatment. We thus further included detection delay statistics, that cannot

be obtained for classical detectors.

3.3 Performance criterion

In this study, we used the bxb program (as part of the WFDB applications available on physi-

onet) to obtain the beat-by-beat performance statistics for QRS complex detection according

to the American national standard for ambulatory ECG analyzers (ANSI/AAMI EC38). We

report for the two databases the total number of TP, FP and FN as well as the sensitivity (Se)

and positive predictivity (+P) metrics calculated per record and a mean and standard deviation

alongside the overall result. As in recent publications [24] [34], we chose a match window of

50 ms. Only one detection is considered as true positive (TP) inside the match window cen-

tered at each QRS annotation while the rest are considered as false positive (FP) detections. A

false negative (FN) is counted when no detection is found inside the match window. Due to

their direct influences on heart rate variability analysis, we also report the mean and standard

deviation of jitters: the difference in time between a TP and its associated annotation. To easily

observe the increase in detection performance as a whole, the detection error rate DER =

(FN+FP)/(TP+FN) is also reported. Furthermore, computational complexity and detection

delay of the MFPD are also given since they are key implementation issues in realtime moni-

toring applications.

4 Results

In addition to the global performance evaluation and comparison summarized in 4.4, we also

provide here some intermediate results to illustrate the multi-feature complementarity in 4.1,

Robust, real-time generic detector based on a multi-feature probabilistic method
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their distribution estimation results in 4.2, and the importance of KLD weighting in the cen-

tralized decision making in 4.3.

4.1 Multi-feature complementarity

Fig 3 shows an example of the processed ECG signals and the features extracted in this paper.

Panel (a) shows an ECG segment from record MIT-101, with added electrode movement noise

at 6 dB. Panels (b) (c) and (d) represent, respectively, the SAecg (feature a), the SFecg (feature

s) signals and the Bravais-Pearson correlation (feature c) related to each QRS complex candi-

dates in panel (a). Candidates with the × symbol are not validated, while those with the ⚬ sym-

bol are validated as QRS by the MFPD method. In this example, all validated detections were

TP and all invalidated candidates were true negatives (TN), not belonging to any annotation’s

match window. The vertical box pinpoints a segment that, if analyzed individually with thresh-

olding, would have produced a false positive. The weighted fusion by Eq (6) however takes the

opposite decision. This example shows the power of the multi-feature complementarity in such

complex signal context.

4.2 Distribution estimation

Estimated parametric distributions (in dashed line) and normalized histogram (in vertical

boxes) for each feature are illustrated in Fig 4. The x-axis stands for the dimensionless feature

values while y-axis the probability density (also dimensionless). Generally speaking, the pdf

type associated with updated parameters can reasonably fit the feature histograms. Kolmogo-

rov–Smirnov tests were realized at each pdf parameter update, with the current candidates

Fig 3. Illustration of the multi-feature complementarity in fusion decision. a) Raw ECG segment from record MIT-

101 (SNR = 6 dB with electrode noise) b), c), d) represents the feature a, s, c respectively. The × and ⚬ indicate

invalidated and validated QRS respectively by the fusion.

https://doi.org/10.1371/journal.pone.0223785.g003
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history. Of the 10678 tests performed for the MIT-101 signal, all were positive at the 0.05 sig-

nificance level.

For mildly-artifacted ECG signals, due to the stability of the QRS complex morphology, the

correlation features Cc(t) can be close to 1 for most valid candidates. Thus large α values are

estimated for the beta distribution PcðCcðtÞ;Yc1;H 1Þ yielding a rapid convergence towards a

dirac-like distribution around 1, and a large Dc
KL value (cf the net separation in the two distri-

butions of the third column in Fig 4). As a consequence, future candidates must have a very

high correlation to be validated, giving a decision with a high +P, but with a low sensitivity in

the case of sudden noise artifacts or even mild morphology change. In order to obtain a better

trade-off between +P and sensitivity, we propose to limit the estimated α parameter of the beta

distribution by imposing a conjugate prior law:

Pða; bÞ / Bða; bÞKe� aae� bb

for K; a; b 2 Nþ. The exp−aα term indeed forbids large values in estimating α to control the dis-

tribution shape ofH 1. Numerical implementation is detailed in appendix A for the MAP

estimator.

4.3 KLD weighting

In this section, we show the importance of the KLD measure in comparison with both Single

Featured Probabilistic Detector (SFPD) and reference methods in Fig 5. SFPD is implemented

as MFPD but with only one feature (s, a or c). Note that the evolution of KLD values during

the successive (in)-validation process is a direct consequence of the parameter-fitting process

since Eq (5) is a function of the updated pdf parameters (cf [27, 28], Appendix B). Indeed, the

relative importance of the KLD of the a-feature during artifactual period suggests a better sepa-

rability between the two antagonist distributions (H 0 vsH 1) and consequently highlights the

decision from the a-feature in the centralized fusion (see Eq (6)). Interestingly, the KLD values

tend to approach each other once the artifact period ends (near 50s), from which point all fea-

ture decisions participate more equally in the fusion. On the other hand, that the SFPD using

the s-feature performs the worst (with multiple FP detections) is inline with its lowest KLD

Fig 4. Estimated distributions (dashed line) vs normalized histograms (vertical boxes) for the three features and

for bothH 0 andH 1. Record MIT-101 is used with added baseline noise (SNR = 12dB).

https://doi.org/10.1371/journal.pone.0223785.g004
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measure, or the smallest distances between the relatedH 0 andH 1 pdfs. Therefore, depending

on the noise onset, the KLD measure of the distribution distances evolve dynamically to quan-

tify the pertinence of each feature and to adapt their relative weights in the decision fusion.

The power of the proposed method lies on this engineered flexibility since KLD are not learned

from a particular database, but from the past observations of the features labelled by the detec-

tion results.

Furthermore, the detection statistics of the whole record MIT-231 are given in Fig 5: the

MFPD outperforms the SCD method in both sensitivity and +P, has lower sensitivity than

UNSW and WBD but highest in +P (see Table 1), which is consistant with the illustration of

the 60s segment detection results in Fig 5.

4.4 Performance evaluation

4.4.1 Benchmark MIT-BIH arrhythmia database. In Table 2, we first present the perfor-

mance comparison on the MIT-BIH database, containing mainly clean ECG recordings, and

high Se and +P results for all tested methods. We simply note that the MFPD has the lowest

Fig 5. KLD variations for successive QRS candidates in 60 s from record MIT-231 with baseline noise and -6dB SNR. Upper panel: raw ECG signal

with annotations (marked by �), MFPD fusion results (+), single feature (SFPD) results (4, ⊲ and⊳), and results of the reference methods (⚬ for UNSW,

^ for SCD and□ for WBD). Lower panel: KLD evolution for three features in the same period.

https://doi.org/10.1371/journal.pone.0223785.g005

Table 1. Performances of the whole record MIT-231 of Fig 5.

record MIT-231 with baseline noise (−6dB)

# TP #FN #FP Se (%) +P(%) DER(%)

MFPD 1468 103 63 93.44 95.89 10.57

UNSW 1524 47 170 97.01 89.96 12.81

SCD 1038 533 74 66.07 93.34 38.63

WBD 1510 61 223 96.12 87.13 18.08

https://doi.org/10.1371/journal.pone.0223785.t001
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standard deviation for both Se and +P statistics, a phenomenon also observed in the next tests

to illustrate its stability. On the whole, the results indicate a trade-off in favor of the +P as com-

pared with the reference methods while the overall score DER also shows high detection accu-

racy in both mean and standard deviation terms. To illustrate the method’s inter-subject

stability, 2.08% of signals had a DER higher than 60% with MFPD versus 6.25% for UNSW,

2.08% for SCD and 8.33% for WBD. This test validates the MFPD on a clean ECG database

with consensus annotations and peer methods.

4.4.2 MIT-BIH noise stress database. A second performance analysis was done using the

MIT-BIH noise stress database. Fig 6 compares Se and +P (in %) for different noise types.

Firstly, for +P the MFPD outperforms almost all reference methods except in the case of mus-

cle artifact with SNR lower than 0dB. As for Se, the MFPD has slightly lower performances in

Table 2. Performance comparison on the benchmark MIT-BIH arrhythmia database.

Benchmark MIT-BIH DB

# TP #FN #FP Se (%) +P(%) DER(%) Jitter (ms)

MFPD 101799 7695 3195 93.16±11.46 96.81±9.03 9.86 ± 18.96 7.91±4.62

UNSW 103010 6484 6439 94.01±16.44 94.01±16.45 11.97 ± 32.86 7.04±4.77

SCD 104942 4552 4631 95.88±13.62 95.79±13.60 8.32 ± 27.20 5.46±3.69

WBD 103125 6369 5684 93.88±13.77 94.33±13.77 11.77 ± 27.45 3.08±3.33

Performances on the benchmark MIT-BIH arrhythmia database including: total number of TP, FN, FP, Se and +P (mean and standard deviation in %) and detection

jitter (mean and std in ms) for 48 recordings.

https://doi.org/10.1371/journal.pone.0223785.t002

Fig 6. Se and +P (in %) of MFPD, UNSW, SCD and WBD on the benchmark noisy database, with different noise types and SNR levels.

https://doi.org/10.1371/journal.pone.0223785.g006
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the high SNR region for all artifact types, but higher performances in the low SNR regions. In

general the MFPD has better Se scores in comparison with the SCD and WBD method as

reported by Table 3. The UNSW, on the other hand, has shown comparable performances in

most cases, but suffers from FP detections in the presence of electrode motion artifacts. The

MFPD also achieves the lowest overall DER score in terms of mean and standard deviation. To

illustrate the method’s inter-subject stability, 11.81% of signals had a DER higher than 60%

with MFPD versus 16.78% for UNSW, 17.82% for SCD and 16.90% for WBD. These results

demonstrate the MFPD viability and highlight its efficiency in noisy context.

Finally, we can notice that performances with baseline wander artifacts are generally higher

than with other noise types for all tested methods, which can be attributed to the preprocessing

filtering steps that attenuate baseline wanders.

4.5 Complexity and realtime detection delay

For the computation complexity, the MFPD algorithm implemented in the C++ language

costs 19.32 ± 4.75 s to analyze an hour of ECG signal resampled at 1000 Hz using a MacBook

Pro laptop (2017, 3,1 GHz Intel Core i7) without multi-threading or graphic parallel comput-

ing. The resampling at 1000 Hz was done because, according to us, this frequency is more rep-

resentative of actual ECG acquisition devices and easier to interpret for readers.

In realtime monitoring applications, event detection delay is also part of the performance

that can be used to trade-off for more accuracy for example. It is different from the jitter

reported in Tables 2 and 3 that measures the time distance between annotation and detection.

The delay reported in Table 4 measures the time distance between the annotation and the sam-

ple time at which the MFPD fusion decision validates the corresponding QRS and is typically

influenced by lengths of the filters and the templates to calculate the correlation feature.

Table 4 shows that this delay in the monitoring is rather stable across the two databases. These

results confirm the feasibility of the MFPD in realtime monitoring of ECG signals, even for

multi-lead recordings.

5 Discussion

In this paper, a novel, generic and robust detector combining different features extracted from

the signal of interest has been proposed. The original aspects of this method concern

Table 3. Performance comparison on the benchmark noisy database.

Benchmark Noisy DB

# TP #FN #FP Se (%) +P (%) DER (%) Jitter (ms)

MFPD 1723 247 208 87.48±14.21 89.39±14.67 23.45 ± 28.46 8.15±4.24

UNSW 1743 227 287 88.30±17.66 86.06±19.27 26.82 ± 38.47 7.23±4.38

SCD 1679 291 257 85.21±18.63 86.64±16.71 28.43 ± 33.54 5.60±3.24

WBD 1724 246 250 87.25±16.41 86.68±16.67 26.38 ± 33.09 3.32±3.25

Performances on the benchmark noisy database including: total number of TP, FN, FP (in ×103), Se and +P (mean and standard deviation in %) and detection jitter

(mean and std in ms) for all 864 recordings.

https://doi.org/10.1371/journal.pone.0223785.t003

Table 4. MFPD detection delay (mean and std in ms).

Detection delay in ms

MIT-BIH arrhythmia MIT-BIH noise stress

612±84 648±78

https://doi.org/10.1371/journal.pone.0223785.t004
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particularly i) the probabilistic approach with online learning ii) the multi-feature design iii)

the centralized fusion method based on KLD.

In the proposed method, the pdf of each feature is patient, device and even experience spe-

cific. Parametric probability models are designed with regard to the real-time constraints of

our application to avoid the tuning of the number of bins and widths as in histogram based

approaches, and the increasing evaluation costs, inherent to variable-bandwith kernel density

estimation approaches [35]. Our proposed online learning method requires a small data sam-

ple (40 validated candidates) to initialize the probabilistic model for each recording. No man-

ual annotations are needed since the Pan-Tompkins detector [1] results are used for feature

extraction and classification labeling (H 0/H 1). Prior laws of the Beta distribution for the cor-

relation feature are fixed and not database dependent. Among the wide variety of pdf families,

the GND seems well-suited for uncentered features with long tail distributions, but to our best

knowledge, no analytic expression of the KLD can be found in the general case. Existing solu-

tions [36] are limited to cases of equal means (see 2.2.4). We proposed in this paper an innova-

tive estimation method of the KLD in the general case. With a reasonable computational cost,

it can be used in real-time context.

The proposed MFPD QRS detector has been evaluated using two different databases and

compared with two most recent state of the art detectors and one reference detector from the

literature. Results show that the features provide complementary information to improve

detection performance compared with single featured based QRS detectors (see Fig 5), particu-

larly under noisy conditions. This is essentially due to the fact that different types of noise or

uncommon pathological artifacts might influence features in different manners while MFPD

makes a centralized decision using the KLD as weight to measure the relative pertinence of

each feature. In a way, the MFPD is capable of neglecting features (that yield low KLD between

the antagonist distributions) that are mostly corrupted by artefacts. Previously proposed meth-

ods based on decentralized fusion [2] and algorithm-switching [21] also prove the relevance of

multi-feature approaches. To our knowledge, this is the first real-time QRS detection method

integrating such an adaptive, multi-feature, centralized decision fusion. Furthermore, MFPD

method is more compact and easy to implement than [2] or [21]. Quantitative comparisons

results are particularly encouraging for challenging monitoring situations, in which the hetero-

geneity and levels of noise may be particularly high. For the two databases under evaluation,

the ms-level jitter for all tested methods should be acceptable for further HRV parameter anal-

ysis and is thus not regarded as a distinguishing factor for comparison.

Even though this method was implemented for single-lead ECG signals, it can be extended

to the multi-lead and multi-source cases. Indeed, further improvements in detection robust-

ness are expected by combining multiple ECG leads, but also by integrating other physiological

signals (pulse oximetry, phonocardiography, etc) or other sensors sensitive to noise (acceler-

ometers for movement noise, etc). Future works will be directed towards the extension and

evaluation of the method in these multi-channel, multi-source contexts. Finally, in addition to

the qualitative results of the selected features’ relevance shown in Fig 3 and in Fig 5 through

KLD evolution, integrating the amplitude and derivative features as used by UNSW [15] into

the MFPD architecture should lead to higher sensitivity in QRS detection.

6 Conclusion

We proposed an original multi-feature probabilistic detector working in real-time and applica-

ble to different physiological signal applications. The method, illustrated on QRS complex

detection, has been compared to two latest detectors in the literature, using the MIT-BIH

arrhythmia benchmark database and a benchmark noisy database by adding noise recordings

Robust, real-time generic detector based on a multi-feature probabilistic method
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[25] to the MIT-BIH database. The proposed MFPD has achieved significant performance

improvements on artifacted signals and comparable (in mean) but more stable (in std) perfor-

mances for low-to mildly artifacted signals. These performance improvements are mainly due

to the multi-feature probabilistic model and the KLD-based decision fusion that adaptively

adjust the relative contribution of each feature’s decision in real-time.

The following contributions and originalities can be highlighted. The MFPD uses a proba-

bilistic approach with online learning and an original adaptive, multi-feature, centralized deci-

sion fusion based on KLD. Its application on QRS detection achieved notable performance

gains on artifacted ECG signals in comparison with one classical and two recent methods. The

proposed method can also be easily extended to the multi-lead and multi-source cases, or to

other physiological event detection applications. Besides the theoretical contribution and

experimental validation, this new approach boasts a reasonable computational cost and thus

can be embedded into low-power devices offering interesting possibilities in the current con-

text of connected health applications.

A Application of the Karush-Kuhn-Tucker on the MAP of Beta

distribution

A.1 About the KKT

Consider the non-linear optimization problem: maximize f ðxÞ;Rn
! R (the cost function)

subject to m inequality and l equality constraints:

giðxÞ � 0; i ¼ 1; . . . ;m; and hjðxÞ ¼ 0; j ¼ 1; . . . ; l:

Suppose further that both f(x) and the constraint functions gi(x), hj(x) are continuously differ-

entiable at a point ~x. If ~x is a local maximum of f(x) satisfying some regularity conditions, then

there exist the KKT multipliers: mi 2 R; i ¼ 1; . . . ;m and lj 2 R; j ¼ 1; . . . ; l such that:

rf ð~xÞ ¼
P
mirgið~xÞ þ

P
ljrhjð~xÞ; ð8Þ

gið~xÞ � 0; mi � 0; migið~xÞ ¼ 0 for all i ¼ 1; . . . ;m ð9Þ

hjð~xÞ ¼ 0 for all j ¼ 1; . . . ; l ð10Þ

We note that in the particular case of m = 0, the KKT conditions are reduced to the Lagrange

conditions. If gi and hj are affine functions (MAP of beta distribution), then no regularity con-

dition is needed.

A.2 MAP for the Beta distribution

We derive here the numerical method to calculate the maximum-likelihood estimator (MLE)

and MAP estimator given N independent samples of the Beta distribution. Recall the Beta den-

sity function:

Pðx; a; bÞ ¼
1

Bða;bÞ
xa� 1ð1 � xÞb� 110�x�1

where B(α, β) is the normalization constant. For the MLE, the function to maximize is the

joint log-likelihood function:

f ða; bÞ¼
XN

i¼1

log Pðxi; a; bÞ¼ða � 1ÞXþðb � 1ÞY � NlogBða;bÞ;
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with ðX¼
PN

i¼1
log xi;Y¼

PN
i¼1

logð1 � xiÞÞ. In a Bayesian setting typically to avoid the dirac-

like shape of the beta distribution (see discussion in Sect. 4.2), a prior law can be added:

Pða;bÞ/Bða; bÞKe� aae� bb for K < N; a; b 2 Rþ:

The objective function of the MAP estimator becomes:

f �ða; bÞ ¼ aðX� aÞþbðY� bÞ� ðN� KÞlog Bða;bÞ ð11Þ

with inequality constraints g1 = � − α� 0 and g2 = � − β� 0. � > 0 is close to zero to form a

closed space. Note that these constraints are affine functions and satisfy the regularity condi-

tions. We thus search the solution of:

F1ðzÞ ¼ ðX � aÞ � ðN � KÞðcð~aÞ � cð~a þ ~bÞÞ þ ~m1 ¼ 0;

F2ðzÞ ¼ ðY � bÞ � ðN � KÞðcð~bÞ � cð~a þ ~bÞÞ þ ~m2 ¼ 0;

� � ~a � 0; ~m1 � 0; F3ðzÞ ¼ ~m1ð� � ~aÞ ¼ 0; ð12Þ

� � ~b � 0; ~m2 � 0; F4ðzÞ ¼ ~m2ð� �
~bÞ ¼ 0; ð13Þ

where ψ(�) represents the di-gamma function.

We apply the Newton Raphson method on F(z) = [F1, F2, F3, F4]t with:

zðnþ1Þ � zðnÞ ¼ � JðzðnÞÞ� 1FðzðnÞÞ; ð14Þ

and checking the inequality constraints in (12) and (13).

We next show that J(z) is always invertible given the inequality constraints. The

JðzÞ ¼ ½@Fi
@zj
� writes:

where B(α, β) is the normalization constant. For the MLE, the function to maximize is
the joint log-likelihood function:

f(α, β)=
N∑
i=1

logP (xi;α, β)=(α− 1)X+(β − 1)Y −N logB(α, β),

with (X=
∑N
i=1 log xi, Y =

∑N
i=1 log(1− xi)). In a Bayesian setting typically to avoid

the dirac-like shape of the beta distribution (see discussion in Sect. 4.2) , a prior law
can be added:

P (α, β)∝B(α, β)Ke−aαe−bβ for K < N, a, b ∈ R+.

The objective function of the MAP estimator becomes:

f∗(α, β) = α(X−a)+β(Y−b)−(N−K)logB(α, β) (11)

with inequality constraints g1 = ε− α ≤ 0 and g2 = ε− β ≤ 0. ε > 0 is close to zero to
form a closed space. Note that these constraints are affine functions and satisfy the
regularity conditions. We thus search the solution of:

F1(z) = (X − a)− (N −K)
(
ψ(α̃)− ψ(α̃+ β̃)

)
+ µ̃1 = 0,

F2(z) = (Y − b)− (N −K)
(
ψ(β̃)− ψ(α̃+ β̃)

)
+ µ̃2 = 0,

ε− α̃ ≤ 0, µ̃1 ≥ 0, F3(z) = µ̃1(ε− α̃) = 0, (12)
ε− β̃ ≤ 0, µ̃2 ≥ 0, F4(z) = µ̃2(ε− β̃) = 0, (13)

where ψ(·) represents the di-gamma function.
We apply the Newton Raphson method on F (z) = [F1, F2, F3, F4]t with:

z(n+1) − z(n) = −J(z(n))−1F (z(n)), (14)

and checking the inequality constraints in (12) and (13).
We next show that J(z) is always invertible given the inequality constraints. The

J(z) = [∂Fi∂zj
] writes:

J(z) =

 (N −K)

[
ψ(1)(α+ β)− ψ(1)(α) ψ(1)(α+ β)

ψ(1)(α+ β) ψ(1)(α+ β)− ψ(1)(β)

]
I2

−µ1 0
0 −µ2

−α 0
0 −β


where ψ(1)(·) is the tri-gamma function (second derivative of the log-gamma). Its
determinant is:

det J(z) = det
[
A B
C D

]
= detAD −BC = (N −K)2αβ(

ψ(1)(α)ψ(1)(β)− (ψ(1)(α) + ψ(1)(β))ψ(1)(α+ β)
)

+ (N −K)µ1β(ψ(1)(β)− ψ(1)(α+ β))
+ (N −K)µ2α(ψ(1)(α)− ψ(1)(α+ β))

The second equality is due to the fact that C and D commute (i.e. CD = DC). From
the relation

ψ(1)(α)ψ(1)(β) > (ψ(1)(α) + ψ(1)(β))ψ(1)(α+ β)

it can be verified that det J(z) > 0. Thus the Jacobian matrix is always invertible.
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c
ð1Þ
ðaÞc

ð1Þ
ðbÞ > ðc

ð1Þ
ðaÞ þ c

ð1Þ
ðbÞÞc

ð1Þ
ðaþ bÞ
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B Kulback-Leiber divergence for generalized normal distributions

The probability density of the generalized normal distribution writes:

Pðx; a; b;mÞ ¼
b

2aGð1=bÞ
e� ðjx� mj=aÞ

b

for a;b > 0

Thus, the Kullback-Leibler divergence is:

DKLðPkQÞ ¼
Z

R

bp

2apGð1=bpÞ
e� ðjx� mp j=apÞ

bp
� log

bp
2apGð1=bpÞ

e� ðjx� mpj=apÞ
bp

bq
2aqGð1=bqÞ

e� ðjx� mqj=aqÞ
bq

0

@

1

A dx

¼ log
bpaqGð1=bqÞ

bqapGð1=bpÞ

 !

þ

Z

R

bp

2Gð1=bpÞ
e� ð

jx� mp j
ap
Þ
bp
� ð
jx � mpj
ap
Þ
bp þ ð

jx � mqj
aq
Þ
bq

 !
dx
ap
:

Let t ¼ x� mp
ap
, dx ¼ apdt. Since αp> 0, we have:

DKLðPkQÞ ¼ log
bpaqGð1=bqÞ

bqapGð1=bpÞ

 !

�

Z

R
bp=2Gð1=bpÞ � e� jtj

bp
jtjbpdt

þ

Z

R
bp=2Gð1=bpÞ � e

� jtjbp ðjtap þ mp � mqj=aqÞ
bqdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

Since Γ(z + 1) = z Γ(z), the second term can be further simplified:

Z þ1

0

bp

Gð1=bpÞ
e� t

bp tbpdt ¼
Gð1=bp þ 1Þ

Gð1=bpÞ
¼

1

bp

In the following, we treat the term in (�). First define ~u ¼ jmp � mq j

ap
to replace (�) with:

ap

aq

 !bq
bp

2Gð1=bpÞ

Z

R
e� jtj

bp
jt þ ~ujbqdt ¼ k1

Z

R
e� jtj

bp
jt þ ~ujbqdt

¼
t0¼t=~u k1

Z

R
e� ð~ut0Þ

bp
j~uðt0 þ 1Þj

bq~udt0 ¼ k1~ubqþ1

Z

R
e� ~ubp jtjbp jt þ 1j

bqdt

¼ k2

Z

R
e� xjtj

bp
jt þ 1j

bqdt

with k1 ¼
ap
aq

� �bq bp
2Gð1=bpÞ

, x ¼ ~ubp and k2 ¼ k1 ~ubqþ1 > 0.

Since both |t| and |t + 1| exist in the expression, we further decompose (�) into:

k2

Z 1

0

e� xt
bp
½ðt þ 1Þ

bq þ ð1 � tÞbq �dt þ k2

Z þ1

1

e� xt
bp
½ðt þ 1Þ

bq þ ðt � 1Þ
bq �dt

Notice that when βq is even, the two functions inside the integrals are identical since

ðt � 1Þ
bq ¼ ð1 � tÞbq . For instance, if βq = 2:

k2

Z 1

0

e� xt
bp

2½t2 þ 1� dt þ k2

Z þ1

1

e� xt
bp

2½t2 þ 1� dt

¼ 2k2

Z 1

0

e� xt
bp t2 þ 1½ � dt ¼

2k2

bp

Gð3=bpÞ

x
3=bp

þ
Gð1=bpÞ

x
1=bp

� �

;
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by exploiting the relation:

Z þ1

0

e� xt
bp tkdt ¼ G

kþ 1

bp

 !

bp x
kþ1
bp

� �
:

.
ð15Þ

This result can be generalized for all even-valued βq including βq = 0 though it is supposed to

be strictly positive by definition. Let’s then investigate the case of βq = 2n + 1 with n 2 N. First,

for βq = 1,

ð�Þ ¼ k2

Z 1

0

e� xt
bp
ð2Þdt þ k2

Z þ1

1

e� xt
bp
ð2tÞdt ¼ 2k2

Z 1

0

e� xt
bpdt þ

Z þ1

1

e� xt
bp tdt

� �

¼
y¼xtbp 2k2

bp
ð1=xÞ

1
bp

Z x

0

e� yy
1
bp
� 1dyþ ð1=xÞ

2
bp

Z 1

x

e� yy
2
bp
� 1dy

� �

¼ ð2k2=bpÞ ð1=xÞ
1
bpgð1=bp; xÞ þ ð1=xÞ

2
bpGð2=bp; xÞ

h i

in which

gðs; xÞ ¼
Z x

0

ts� 1 e� t dt; Gðs; xÞ ¼
Z 1

x
ts� 1 e� t dt

are the lower and upper incomplete gamma functions respectively. Similarly, for βq = 3, we

develop the (1 + t)3, (1 − t)3 and (t − 1)3 terms:

ð�Þ ¼ k2

Z 1

0

e� xt
bp
ð2þ 6t2Þdt þ

Z þ1

1

e� xt
bp
ð6t þ 2t3Þdt

� �

;

to coerce (�) into a sum of lower and upper incomplete gamma functions. As in (15), we use

the following relations:

Z 1

0

e� xt
bp tkdt ¼ g

kþ 1

bp
; x

 !

bpx
kþ1
bp

� �
;

.
ð16Þ

Z 1

1

e� xt
bp tkdt ¼ G

kþ 1

bp
; x

 !

bpx
kþ1
bp

� �
:

.
ð17Þ

To generalize, (�) is a sum of either weighted gamma functions using (15) if βq is even or a

sum of weighted upper and lower incomplete gamma functions using (16) and (17) if βq is

odd. βq-degree binomial coefficients are used to calculate the weights. Next we show that (�) is

monotonously increasing:

@ð�Þ

@bq
¼ k2

Z

R
e� xjtj

bp
j1þ tjbq log j1þ tjdt > 0

in which k2 and e� xjtj
bp
j1þ tjbq are positive for t 2 R. log|1 + t| is negative for t 2 [−2, 0], and

positive otherwise. A sufficient condition is:

Z 2

� 2

e� xt
bp
j1þ tjbq log j1þ tj dt > 0 ð18Þ

By splitting the integral into 2 parts and letting y = −t in the first part, the integral of the above
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inequality becomes

Z2

0

e� xy
bp
j1 � yjbq logj1 � yjdyþ

Z2

0

e� xy
bp
ð1þ yÞbq logð1þ yÞdy

¼

Z2

0

e� xy
bp
ðj1 � yjbq logj1 � yj þ ð1þ yÞbq logð1þ yÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gbq ðyÞ

dy

Note that the function Gbq
ðyÞ is a continuous function of y, differentiable by piece and

Gbq
ðyÞ � 0 for all y 2 [0, 2], βq> 0, which validates the condition in (18).

C List of acronyms, abbreviations and symbols

a Raw amplitude

c Absolute correlation

C(t) Candidate selected at instant t

Ci(t) Feature i of the candidate selected at instant t

D(t) Final detection decision at instant t

Di
KL Kullback-Leibler divergence of feature i

�Di
KL Modified Kullback-Leibler divergence of feature i

I Set of complementary features

λ Decision threshold

PiðCiðtÞ;Yi0;H 0Þ Probability density function of feature i corresponding to hypothesisH 0 with Θi0 parameter(s)

PiðH 1jCiðtÞÞ Posterior probability of validatingH 1 for feature Ci(t)
s Squared slope

Θ Parameter(s) of the probability density function set for hypothesisH 0

DER Detection error rate

ECG Electrocardiogram

FIR Finite Impulse Response

FN False Negative

FP False Positive

GND Generalized Normal Distribution

KLD Kullback-Leibler Divergence

MAP Maximum A Posterior

MFPD Multi-Feature Probabilistic Detector

MLE Maximum Likelihood Estimator

pdf Probability Density Function

+P Positive predictivity

SAecg Signal use to extract amplitude feature

SCD Spatiotemporal Characteristics Detector

Se Sensitivity

SFecg Signal use to extract slope feature

SFPD Single Featured Probabilistic Detector

SNR Signal-to-Noise Ratio

TN True Negative

TP True Positive

UNSW University of New South Wales detector

WBD Wavelet-Based Detector
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