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Abstract

Background: A mechanism to predict graft failure before the actual kidney
transplantation occurs is crucial to clinical management of chronic kidney
disease patients. Several kidney graft outcome prediction models,
developed using machine learning methods, are available in the literature.
However, most of those models used small datasets and none of the
machine learning-based prediction models available in the medical
literature modelled time-to-event (survival) information, but instead used the
binary outcome of failure or not. The objective of this study is to develop two
separate machine learning-based predictive models to predict graft failure
following live and deceased donor kidney transplant, using time-to-event
data in a large national dataset from Australia.

Methods: The dataset provided by the Australia and New Zealand Dialysis
and Transplant Registry will be used for the analysis. This retrospective
dataset contains the cohort of patients who underwent a kidney transplant
in Australia from January 1 St, 2007, to December 31 St, 2017. This included
3,758 live donor transplants and 7,365 deceased donor transplants. Three
machine learning methods (survival tree, random survival forest and
survival support vector machine) and one traditional regression method,
Cox proportional regression, will be used to develop the two predictive
models (for live donor and deceased donor transplants). The best
predictive model will be selected based on the model’s performance.
Discussion: This protocol describes the development of two separate
machine learning-based predictive models to predict graft failure following
live and deceased donor kidney transplant, using a large national dataset
from Australia. Furthermore, these two models will be the most
comprehensive kidney graft failure predictive models that have used
survival data to model using machine learning techniques. Thus, these
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models are expected to provide valuable insight into the complex
interactions between graft failure and donor and recipient characteristics.

Keywords
Machine learning, Risk prediction models, Kidney transplant, Graft failure

Corresponding author: Sameera Senanayake (sameerajayan.senanayake@hdr.qut.edu.au)

Author roles: Senanayake S: Conceptualization, Data Curation, Formal Analysis, Writing — Original Draft Preparation; Barnett A:
Conceptualization, Formal Analysis, Software, Supervision, Writing — Review & Editing; Graves N: Conceptualization, Formal Analysis,
Supervision, Writing — Review & Editing; Healy H: Conceptualization, Formal Analysis, Supervision, Writing — Review & Editing; Baboolal K:
Conceptualization, Formal Analysis, Supervision, Writing — Review & Editing; Kularatna S: Conceptualization, Formal Analysis, Supervision,
Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Sameera Senanayake is a recipient of Australian Government Research Training Program (RTP) for Postgraduate Research
(PhD) Scholarship and Queensland University of Technology International Postgraduate Research (PhD) Scholarship (2018 -2021).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Senanayake S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Senanayake S, Barnett A, Graves N et al. Using machine learning techniques to develop risk prediction models to
predict graft failure following kidney transplantation: protocol for a retrospective cohort study [version 2; peer review: 2 approved, 1
approved with reservations] F1000Research 2020, 8:1810 https://doi.org/10.12688/f1000research.20661.2

First published: 29 Oct 2019, 8:1810 https://doi.org/10.12688/f1000research.20661.1

Page 2 of 16


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.20661.2
https://doi.org/10.12688/f1000research.20661.1

(i/3757:) Amendments from Version 1

The revised version of the manuscript includes changes as per
the reviewers’ recommendation. The rationale of using survival
models and how it is different from conventional regression

or classification-based machine learning methods have been
included in this version. Additionally, as per the reviewer
recommendation, a supplementary file has been included,
indicating all the input variables that will be used as independent
variables in the models.

Any further responses from the reviewers can be found at the
end of the article

Introduction

The prevalence of chronic kidney disease is increasing
globally. Along with this increment, the number of patients in
end-stage of renal disease (ESRD) and the demand for kidney
transplantation, along with other renal replacement therapies,
have increased over recent years'’. Compared with available
renal replacement therapies, renal transplantation has dra-
matically improved the quality of life and the survival rate of
patients with ESRD. However, evidence indicate that the health
systems around the world, have failed to meet the increas-
ing demand for kidney grafts. This is evident from the growing
prevalence of ESRD in the world®. Further, kidney transplants
pose a significant cost burden to health systems compared with
other treatment modalities, as they consume a large amount of
resources.

It is important that the donor kidneys are transplanted to the
most suitable recipients in order to minimise the number of graft
failures, and thus minimise the number of patients returning to
the already-burdened waiting list’. However, evidence indicates
that the incidence of graft failure following kidney transplanta-
tion has increased over the years, possibly owing to increased
transplantation of kidneys from expanded-criteria donors
and donors after cardiac death, who are more prone to graft
failure’. Graft failure is associated with prolonged hospital stay
and higher health system costs®’. A mechanism to predict graft
failure before the actual transplantation occurs is crucial in
this regard. Similar predictive models have been increasingly
used in the recent past, and these have assisted clinicians with
evidence-based medical decision-making™*'°. Numerous conven-
tional predictive models are available in the literature to predict
the graft loss among kidney transplant patients''~'*. Interestingly,
novel techniques based on machine learning methods provide
the potential to produce more favourable results'”.

Machine learning techniques have been used to develop kidney
graft outcome-prediction models**'*!°. With the exception of
the prediction models developed in the United States®'®'’-"",
most of the other prediction models have been developed
using datasets with less than 1,000 records. However, evidence
indicates that large sample sizes lead to better prediction
accuracy in machine learning-based prediction models”. The
model developed by Akl er al. (2008)%, using 1,900 live donor
transplant records from a single urology centre in Egypt, is the
only machine learning predictive model available that is based
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exclusively on live donor transplants, while most of the other
models are based either exclusively on deceased donor trans-
plants, or both deceased and living donor transplants. However,
evidence indicates that the graft failure rate and the predictors
of graft failure significantly differ between live and deceased
donor transplants’. Therefore, from a clinical perspective, two
separate valid and reliable prediction models, ie. live and
deceased donor transplants, would give superior clinical utility.

Time-to-event (survival) information had not been modelled in
any of the machine learning based prediction models available
in the medical literature. Instead, most have used the binary
outcome of failure or not as the outcome variable. However,
presence of censored observations makes predictions done
using this type of prediction models less accurate. Therefore,
incorporating the timing of the event to the prediction model,
could lead to better prediction models”'.

In this background. the objective of this study is to develop two
separate machine learning-based predictive models to predict
graft failure following live and deceased donor kidney transplant,
using time-to-event (survival) data in a large national dataset from
Australia.

Protocol
This study will evaluate different machine learning methods in
predicting kidney graft failure.

Study cohort

The dataset was provided by the Australia and New Zealand
Dialysis and Transplant Registry (ANZDATA). ANZDATA
collects and reports the incidence, prevalence and outcome of
dialysis treatment and kidney transplantation for patients with
end-stage kidney disease across Australia and New Zealand.
The retrospective dataset contains the cohort of patients who
underwent a kidney transplant in Australia from January 1%,
2007, to December 31%, 2017. This included 3,758 live donor
transplants and 7,365 deceased donor transplants.

Two separate predictive models will be developed for live
donor and deceased donor transplants using separate datasets for
live and deceased donor transplants.

Outcome

Graft survival of the most recent kidney transplants will be
converted to a binary variable and will be the primary outcome.
Patients who died with a functioning graft will not be considered
positive for graft failure, but will be included in all models
and censored at their death date. The time to the graft failure
will be calculated in days from the date of transplantation. If
the outcome of interest has not happened within the time period
the data is available (2007 to 2017), it will be considered as
right-censored with a time from the date of transplantation to the
censoring date. In total, n=65 (0.9%) patients in the deceased
donor dataset (n=7,365) and n=73 (1.9%) patients in the
living donor dataset (n=3,758) have been lost to follow-up.
Their records will be right-censored from the last date where the
follow-up information is available.
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Independent variables

The data consist of de-identified recipient and donor charac-
teristics of the transplants. In all, 83 possible variables were
identified as potential risk factors for graft failure (Supplementary
material)”’.

Model development

Three machine learning methods and one traditional regres-
sion method, Cox proportional regression, will be used to
develop the two separate predictive models, i.e. one for live
donor and one for deceased donor transplants. The machine
learning methods that will be used are: survival tree”’, random
survival forest” and survival support vector machine”. Thus,
each prediction model will be developed using four methods,
and the best predictive model will be selected based on the
model’s performance, as described in a later section.

Model development is a systematic process which involves five
steps, as indicated in Figure 1.

Data preparation. Data preparation involves several steps, such as
data cleaning, handling text and categorical attributes, and feature
scaling.

Retrospective datasets have the inherent property of having
missing values, and most machine learning algorithms do not
work well with missing values. Depending on the extent the
missing values in each of the variables, the decision will be made
to either exclude the particular variable, categorise the missing
values as a separate category, or use an imputation method to
impute the missing values.

Machine learning algorithms work well with numerical arrays
compared with text (e.g. the donor’s cause of death: traumatic
brain injury, cerebral infarct and intracranial haemorrhage).

Data preparahon

Feature selection

Evaluating the
model

[ Trammgthe model

]
)
!

[ Final model ]

Figure 1. Model development process.
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Thus, text variables will be categorised appropriately; each
category will be assigned a numerical variable (e.g., traumatic
brain injury will be assigned a ‘1°, cerebral infarct a ‘2’, and
intracranial haemorrhage a ‘3’). However, when text variables
are converted to numeric categories, the machine learning
algorithms assume that two nearby values are more similar
than two distant values (e.g. ‘1’ is more similar to ‘2’ than ‘3°).
To overcome this, the categorical variables will be dummy
coded into nominal categories.

With a few exceptions, machine learning algorithms do not
perform well when numerical input variables are not in the
same scale (e.g., donor age ranges from 9 to 87, while the
donor serum creatinine value ranges from 3 to 857). The
numerical input variables will be standardised to convert them all
to the same scale before applying the different machine learning
methods™. Parameter estimates and plots will be transformed
back to the original scale as this will be the most useful scale for
clinicians.

Collinearity in the independent variables will be assessed
using variance inflation factor (VIF)”. VIF of more than four
will be considered as presence of collinearity and one of the
correlated variables will be excluded from the analysis and the
models re-run and re-validated.

Feature selection. Feature (variable) selection is the process
of selecting the most relevant variables that should be included
in the model. We will carefully select a potentially large set
variables to be used by the feature selection methods in
discussion with clinical colleagues. We will use variable selec-
tion methods that aim to create a parsimonious set of predictor
variables from the larger set using cross-validation. We will
reflect on the variables selected with our clinical colleagues to
verify that the model makes clinical sense. Since the predictive
models might potentially be used in pre-transplant decision
making, only variables available before transplantation will
be used in developing prediction models.

Three methods will be used for feature selection:

1. Medical literature and expert opinion. Studies done on
kidney transplant graft survival will be reviewed to
identify the significant predictors of graft survival. The
identified list will be validated by clinical experts. The
variables identified as potentially important in this step
will be included in the predictive models.

2. Principal component analysis®. This method of fea-
ture selection will be performed using exploratory factor
analysis using principal component analysis. Bartlett’s
test of sphericity and the Kaiser-Meyer-Olkin measure
will be performed to assess the factorability of the data.
Factor structure and factor loadings after varimax
rotation will be assessed. The selection of factors will
be done, depending on the eigenvalues. The factors are
considered relevant if the eigenvalues are more than
one. The input variables will be observed for their factor
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coefficients, and more than 0.4 will be considered as
well loaded and will be used for the model development.
However, variables that have factor coefficients of less
than 0.4 for all the factors will be excluded from the
model development.

3. Elastic net. Elastic net uses both Lasso and Ridge
regression to select features”. These two regularisation
methods minimise the sum of squared residuals using
L1 and L2 norms to limit the size of coefficients in the
model™. The ideal size of the penalty will be selected using
cross-validation. A stronger penalty is a tighter “lasso”
that means fewer independent variables are selected. We
will examine the plot of variable estimates against the
penalty term to understand how the independent variables
interact.

Possible combinations of the three sets of selected features from
the three different feature selection mechanisms (i.e., medical
literature and expert opinion, principal component analysis and
elastic net) will be considered as input variables for the four
methods of predictive models and the four methods of machine
learning algorithms. Seven possible combinations are indicated in
Table 1. The best set of input variables for each of the predictive
models will be selected based on the model’s performance.

Model training. During model training the dataset is randomly
divided in to two parts: a training dataset and validation
dataset. This prevents over-fitting and provides models that
are more robust and give more realistic predictions of their
prediction accuracy. Several spilt proportions have been used
in models in relevant literature, such as 90:10% and 80:20%,
with 70:30% being the most common’. Thus, in the present
study dataset will be split in to two parts, with 70% of the
data to train the model and 30% to validate the developed
models. Given our large sample size we expect that this
approach would produce similar results to multiple cross-
validations. However, in live donor transplant sample of around
3,758 we will use use cross-validation to estimate the vari-
ability in our model evaluation statistics, and if the variability

Table 1. Possible combinations of input
variable groups.

Combination No. Selected input
variable group

Combination 1 ML & EO

Combination 2 PCA

Combination 3 EN

ML & EO and PCA

ML & EO and EN

PCA and EN

ML & EO, PCA and EN

Combination 4
Combination 5
Combination 6
Combination 7

ML & EO: Medical literature and expert opinion; PCA :
Principal component analysis; EN : Elastic net
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is large (more than 10% of the mean accuracy) then we will use
cross-validation for this sample.

Since the outcome of interest is a survival function, the train-
ing dataset will be fitted to following models; Cox proportional
regression method, survival tree, random survival forest and
survival support vector machine. The R programming package,
specifically the packages Survivalsvm, Ranger, Survival and
LTRCtrees, will be used to develop all the predictive models®.

1. Cox proportional regression™
Cox proportional regression method is a semi-
parametric model which is often used to explore the
relationship between time-to-event data and several
explanatory variables. This method assumes that effects
of the different variables on survival are constant over
time and are additive in a particular scale.

2. Survival Tree*

A survival tree is a tree-like structure, where leaves
represent outcome variables, i.e. graft failure (1) or no
graft failure (0), and branches represent conjunctions
of input variables that produced the outcome. Based on
the chosen split criterion (survival statistic), a survival
tree divides the data (parent node) into two groups (child
nodes). The two resulting groups become the new
parent nodes and are subsequently divided further into
two child nodes based on the characteristics of the input
variables.

Hyper-parameters will be regularised until the optimal
decision tree is created. The hyper-parameters include
maximum depth of the decision tree, minimum number of
samples a node must have before it can be split, and the
minimum number of samples a node must have.

Trees are often wuseful for identifying important
interactions between independent variables. If strong
interactions are found by the tree, then these may be
added as additional independent variables to the other
approaches as this could increase the models’ predictive
ability.

3. Random survival forest™

Random forest is an ensemble method in machine learning
where multiple unpruned survival trees are constructed
via bootstrap aggregation’-”. Each tree predicts a
classification independently and the final prediction
is made based on the class (i.e. graft failure versus no
graft failure) that gets the most “votes™**. This method of
aggregation of multiple survival trees has several
advantages: the prediction is resistant to outliers, less noisy
and suitable for small datasets™.

The following hyper-parameters will be regularised until
the optimal prediction is made: number of survival tree
classifiers and maximum number of nodes.

4. Survival support vector machine”
Survival support vector machine is a well-suited method
to classify complex but small or medium-sized datasets.
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Survival support vector machine uses hyperplanes to
classify different classes and achieves high predictive
accuracy when the data is linearly separable (linear
kernel function). However, kernel functions (i.e. Gaussian,
sigmoid and polynomial) can be used to separate even the
non-linearly separable data, linearly***".

Initially, the algorithm will be applied using a linear
kernel function, and model performance will be assessed
using other kernel functions (i.e. Gaussian, sigmoid and
polynomial). Depending on the model’s performance, the
best kernel function will be selected. Depending on the
kernel function selected, the following hyper-parameters
will be regularised until the optimal prediction is made: ‘C’
value, Gamma value, degree and coefficient.

Evaluating the model. Performance of each model will be
evaluated using model diagnostics, and the best model will be
recommended depending on the results. The trained models, as
described in the previous step, will be applied to the validation
dataset (30% of the data). The prediction performance of each of
the models will be assessed using three methods:

1. Concordance index''. The concordance index, or C-index,
measures the discriminative ability of a survival model.
It is defined as the fraction of pairs of patients that the
patient who has a longer survival time is also predicted
with lower risk score by the model. The range of
concordance is between zero and one, with a larger
value indicating better performance (and 0.5 indicating
discrimination by chance).

2. Discriminative ability using the C-statistics for the
censored function. This is the area under the receiver
operating characteristics curve (ROC). The ROC curve
is plotted with a sensitivity against 1—specificity, where
sensitivity is on the y-axis and 1-specificity on the x-axis.
The AUC ranges from O to 1, and a higher AUC indicates
that the model is capable of distinguishing the cases
(i.e. graft failure) with non-case (i.e. no graft failure).

The best performing model will be selected based on the
results of the above-mentioned indicators. In an event of a
discrepancy between the performance indicators, the results of
concordance index will be considered as the main evaluator.
We will also use other model checks such as residuals plots
and testing for influential values, which may help to guide
decision making about the “best” model.

Furthermore, the outputs of different machine leaning predic-
tive models will be compared with Kidney Donor Risk Index
(KDPI), a commonly used index which quantify graft failure
risk before transplantation.

Data that will be used to develop the predictive models will be
made available under restricted access with the permission from
ANZDATA.
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Ethics

Activities of the ANZDATA registry have been granted full
ethics approval by the Royal Adelaide Hospital Human Research
Ethics Committee (reference number: HREC/17/RAH/408
R20170927, approval date: 28/11/2017). Even though the
data is at the individual-level in the registry, only de-identified
records are requested for the analysis. All electronic data will be
saved with password protection on Queensland University of
Technology’s secure server in encrypted folders only accessible
to the nominated research staff.

Discussion

This protocol describes the development of two separate
machine learning-based predictive models to predict graft failure
following live and deceased donor kidney transplant, using
a large national dataset from Australia. The live donor risk
prediction model will be the first machine learning based
predictive model developed using a large national dataset,
and the deceased donor risk prediction model will be the only
machine learning based predictive model that used more than
7,000 patient records outside the United States. Furthermore,
these two models will be the only two predictive models which
used post kidney transplant graft survival data to model using
machine learning techniques. Thus, the two predictive models
are expected to provide valuable insight into the complex
interactions between graft failure and donor and recipient
characteristics.

The dataset necessary for the study was provided by
ANZDATA. ANZDATA collects and reports the incidence,
prevalence and outcome of dialysis treatment and kidney
transplantation for patients with end-stage kidney disease across
Australia and New Zealand. This registry started in 1977 and
since then all the kidney transplant activities in Australia and
New Zealand have been captured in the registry, including the
transplants in the private sector. The inclusion of all kidney
transplants in Australia and New Zealand, and the availability
and longevity of follow-up information have been the strength of
this registry*”. Thus, this registry has been the source of informa-
tion for numerous high-impact publications**.

The current study proposes to use four methods, namely:
Cox proportional regression, survival support vector machine,
random survival forest and survival tree. The best machine
learning technique available to develop a predictive model is
currently being discussed widely*. Most are of the view that
no single technique fits all datasets, and it depends on the
complexity of the data’. Thus, it is imperative that different
machine learning methods are used to develop predictive
models on a single dataset, so that the best could be chosen
using validation parameters.

This project will have some limitations. According to medical
literature, there are an abundance of risk factors for graft
failure following a kidney transplant. However, the proposed
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predictive models will be only based on the variables which
have already collected by ANZDATA, thus a complete risk
factor profile may not be captured. The graft failure is linked
to genetic® and socio-economic factors® of the transplant
population. Thus, generalisability of the proposed models to
other settings outside Australia, needs to be assessed further
after they have been developed.

Data availability

Underlying data

There were no underlying data associated with this article.
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Supplementary material : Independent variables that will be
used in the models (donor and recipient characteristics)* https://
doi.org/10.6084/m9.figshare.11923446.v1
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v

Slade Matthews
Pharmacoinformatics Laboratory, Discipline of Pharmacology, School of Medical Sciences, Faculty of
Medicine and Health, The University of Sydney, Sydney, NSW, Australia

The authors present a clear account of their approach to creating a predictive model for failure of renal
transplants. The statistical and machine learning descriptions are very clear and nicely laid out. | have a
few comments for the authors below:

1. In the introduction you mention that previous studies lumped together data considering live and

post-mortem renal donor transplants. And that you anticipate there to be such a large difference
between these two conditions that you will build two separate models for these two situations. The
point is made by reviewer Chenxi Huang that you could use all the data and have an indicator
variable which shows whether living or deceased donors were the organ source. Is it that the
variable will be so predictive that you fear it will swamp otherwise important sources of variability in
the model? Either way it is actually a testable hypothesis since you could build three models, the
last one being a combined model and then answer the questions as to the deleterious contribution
of this data.

. The list of independent variables of which there are 83 includes many that would make prediction

easy such as “graft failure date” and some that could be not directly related to the outcome but
might give a little too much away like “age at death”. Clearly a careful consideration of what these
variables mean must be had when selecting the variables allowed to comprise the model. The
authors mention that “only variables available before transplantation will be used in developing
prediction models” which is great and they then go on to describe feature selection methods ML &
EO, PCA and EN. Then seven possible combinations are outlined in Table 1. Once these sets of
descriptor variables are included in the 4 ML models will further variable selection take place such
as selecting variables with significant beta coefficients in Cox Proportional Hazards Regression?

. The authors say that the model performance evaluation will use 2 methods, the concordance index

and the C-statistic. The concordance index looks at pairs of patients at a time. It compares their
risk of death given by the model with the survival time recorded in the clinical data. Is this correct?
So the model output is a risk of death value? | found this section a tiny bit unclear and it could
benefit from an explicit description of the anticipated numerical output from the model. The 2nd
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method uses the C-statistic or concordance with the ROC curve. Here the risk of graft failure
predicted by the models will be subjected to a series of thresholds and sensitivity is calculated as
the probability that the predicted risk value will be above the threshold for individuals for whom the
graft failed. If | am correct here then | think that a sentence like this should be included because as
it stands the description is somewhat terse like a man page in unix...

4. Validation of predictive machine learning models in medicine has long been a problem with the
lack of clinical data availability in this setting. Have you have considered contacting the
researchers in USA you mention to see if they would be willing to run their clinical data through
your completed model as an external validation set. This would really add a lot of impact to the final
reporting of the model performance.

5. Finally, on the whole | think this is a terrific project and | anticipate that it will achieve some really
useful results. Your approach is very well thought out and with the inclusion of a couple of
additional explanations more people will be able to benefit from reading this work and be inspired
to adopt similar approaches in their own research.

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: | am a computational toxicologist and | have experience in machine learning
applied to biomedical data and survival analysis.

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 April 2020
https://doi.org/10.5256/f1000research.25046.r62013
© 2020 Huang C. This is an open access peer review report distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

? Chenxi Huang
Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
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The authors aimed to develop risk prediction models for graft failure following kidney transplantation using
machine learning techniques. They have provided a lot of details on how the data will be prepared, what
modeling techniques will be implemented and how the derived models will be compared. | have the
following suggestions:

1. The major question | have is that the authors proposed to develop two separate models, one for
live donor and one for deceased. Why couldn't they consider adding an indicator variable for the
source of donor and build a more general model for use? Any interactions that the authors argued
any single model would miss can be captured in this way. Such a model can benefit from a larger
sample size and preventing overfitting. And the authors can test their hypothesis that such
interaction exists.

2. The authors proposed to use a single random split with a backup plan for cross-validation. The
authors should first specify what kind of cross-validation they are considering: 5-fold, 10-fold?
Second, is it possible to do non-random splitting, such as splitting based on region or time of
transplantation? Random data splitting often lead to failure of identifying overfitting and
unrealistically optimal results.

3. The authors proposed to implement several feature selection methods. It is not clear whether they
will be implemented with all modeling techniques and how many final models will be derived and
compared. Also the last two feature selection methods are based on linear modeling, which does
not take into account of potential interactions and linearity that the tree-based methods may be
able to capture. Thus variables that may be important for subgroups may not be identified with
these methods. | would suggest the authors to consider permutation methods paired with the
specific machine learning modeling technique.

4. For comparing models, the summary statistics the authors proposed to use can sometimes be
uninformative. To get a more complete picture of the model performance in discrimination, suggest
the authors to use decision-curve analysis or simply visualizing AUC curve at different decision
points.

5. As an optional point, the authors did not consider any modeling techniques that involves neural

networks. The small sample size may be why. But to be more complete in machine learning
modeling techniques, could consider small networks to see if they provide any improvement.

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Partly

Are sufficient details of the methods provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: biostatistics, machine learning, image analysis and processing
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| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Reviewer Report 14 April 2020

https://doi.org/10.5256/f1000research.25046.r61037

© 2020 Gouripeddi R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Ramkiran Gouripeddi
Department of Biomedical Informatics, Center for Clinical and Translational Sciences (CCTS) Biomedical
Informatics Core, University of Utah, Salt Lake City, UT, USA

| have no further comments to make.

Is the rationale for, and objectives of, the study clearly described?
Not applicable

Is the study design appropriate for the research question?
Not applicable

Are sufficient details of the methods provided to allow replication by others?
Not applicable

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biomedical Informatics, Translational Research Informatics, Machine Learning,
Data Integration, Exposome Informatics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 12 December 2019

https://doi.org/10.5256/f1000research.22723.r55930
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© 2019 Gouripeddi R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?

Ramkiran Gouripeddi
Department of Biomedical Informatics, Center for Clinical and Translational Sciences (CCTS) Biomedical
Informatics Core, University of Utah, Salt Lake City, UT, USA

Congratulations to the authors for submitting this manuscript. Here are some comments for your
consideration:

1.

10.

The authors suggest using model time-to-event modeling instead of binary outcomes. Providing
references to show that this is beneficial over binary outputs would be useful.

Modeling time-to-event would provide continuous output variables, and therefore require
regression methods and not classification methods. It is not clear if the time-to-event is being
model as binary variable, in which case the novelty is reduced, or the authors plan to use only
regression methods. Please clarify.

Regarding “Three machine learning methods (survival tree, random survival forest and survival
support vector machine) and one traditional regression method, Cox proportional regression, will
be used to develop the two predictive models.”, is this one model live and one model for deceased
donors? Changing this here and elsewhere to read as “one model live and one model for deceased
donors, respectively” would make this clear.

. “However, evidence indicate that the health systems around the world, have failed to meet the

increasing demand for kidney grafts. This is evident from the growing prevalence of ESRD in the
world3.” These two sentences do not seem related as suggested by the authors.

Listing or providing the 83 variables as a supplementary material will be helpful in reproducing
methods.

Providing references for many of the methods mentioned (e.g. VIF) would also help.

“Even though having a large number of input variables may potentially produce superior results
with high accuracy, in a practical sense it is important that a manageable number of input variables
are used in the model.” This might not always be true. The goal is to avoid the curse of
dimensionality and have appropriate number of independent variables.

Consider using cross-validation for model evaluation.

How is survival SVM different from any SVM?

The authors could consider evaluating the machine learning models with currently used methods in
clinical settings as mentioned in the introductory remarks.

Is the rationale for, and objectives of, the study clearly described?

Partly
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Is the study design appropriate for the research question?
Partly

Are sufficient details of the methods provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biomedical Informatics, Translational Research Informatics, Machine Learning,
Data Integration, Exposome Informatics,

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Sameera Senanayake, Queensland University of Technology, Kelvin Grove, Australia

We are grateful for the comments made by the reviewer. They have been extremely useful for us in
reviewing our protocol. We have made changes in response to the suggestions of the reviewer
wherever possible and have explained our responses in detail below.

Comment 1 : The authors suggest using model time-to-event modeling instead of binary outcomes.
Providing references to show that this is beneficial over binary outputs would be useful.

Response 1 : The benefit of modelling time-to-event information instead of binary information, has
been included to the introduction.

“Time-to-event (survival) information had not been modelled in any of the machine learning-based
prediction models available in the medical literature, to predict graft failure after kidney transplant.
Instead, most have used the binary outcome of failure or not as the outcome variable. However,
presence of censored observations makes predictions done using this type of prediction models
less accurate. Therefore, incorporating the timing of the event to the prediction model could lead
to better prediction models(21).”

Comment 2 : Modeling time-to-event would provide continuous output variables, and therefore
require regression methods and not classification methods. It is not clear if the time-to-event is
being model as binary variable, in which case the novelty is reduced, or the authors plan to use
only regression methods. Please clarify.

Response 2 : The survival models proposed in this paper will model time-to-event data and so
consider two outcomes, i.e. time and graft failure (yes/no) (1:2). This uses more information than a
simple binary approach, which is statistically better than a simple binary outcome, and it uses more
clinically relevant information, as patients and clinicians would like to know how long the graft will
last.

1Bou-Hamad |, Larocque D, Ben-Ameur H. A review of survival trees. Statistics Surveys.
2011;5:44-71.

2Banerjee M, Reyes-Gastelum D, Haymart MR. Treatment-Free Survival in Patients With
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Differentiated Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism. 2018
Jul;103(7):2720-7.

Comment 3 : Regarding “Three machine learning methods (survival tree, random survival forest
and survival support vector machine) and one traditional regression method, Cox proportional
regression, will be used to develop the two predictive models.”, is this one model live and one
model for deceased donors? Changing this here and elsewhere to read as “one model live and one
model for deceased donors, respectively” would make this clear.

Response 3 : This point is well noted. Changes have been made to indicate that two separate
models, one for live donors and one for deceased donors, will be developed using different data
sets

Comment 4 : “However, evidence indicates that the health systems around the world, have failed
to meet the increasing demand for kidney grafts. This is evident from the growing prevalence of
ESRD in the world3.” These two sentences do not seem related as suggested by the authors.

Response 4 : Please note that the final stage of chronic kidney disease is called the End Stage
Renal Disease (ESRD) and patients in this stage need to either transplant a kidney or undergo
dialysis to sustain life. Evidence indicates that the incidence (new patients) of ESRD is increasing
around the world and if the supply of donor grafts increases accordingly, the prevalence (all
patients) of ESRD is expected to reduce (as they will not be in ESRD anymore). However, the
prevalence of ESRD has been increasing over recent years, indicating the demand for kidney
grafts has not been met by the health systems.

Therefore, the authors believe that these 2 sentences complement each other.

Comment 5 : Listing or providing the 83 variables as a supplementary material will be helpful in
reproducing methods.
Response 5 : Supplementary material indicating all possible variables has been added.

Comment 6 : Providing references for many of the methods mentioned (e.g. VIF) would also help.
Response 6 : Reference to the methods mentioned in the text has been added.

Comment 7 : Even though having a large number of input variables may potentially produce
superior results with high accuracy, in a practical sense it is important that a manageable number
of input variables are used in the model.” This might not always be true. The goal is to avoid the
curse of dimensionality and have appropriate number of independent variables.

Response 7 : Thank you for highlighting this. The following changes have been made to the
methods section.

“Feature (variable) selection is the process of selecting the most relevant variables that should be
included in the model. We will carefully select a potentially large set of variables to be used by the
feature selection methods in discussion with clinical colleagues. We will use variable selection
methods that aim to create a parsimonious set of predictor variables from the larger set using
cross-validation. We will reflect on the variables selected with our clinical colleagues to verify that
the model makes clinical sense. Since the predictive models might potentially be used in
pre-transplant decision making, only variables available before transplantation will be used in
developing prediction models.”

Comment 8 : Consider using cross-validation for model evaluation.
Response 8 : Thank you for highlighting this. The following changes have been made to the
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methods section.

“During model training, the dataset is randomly divided into two parts: a training dataset and
validation dataset. This prevents over-fitting and provides models that are more robust and give
more realistic predictions of their prediction accuracy. Several spilt proportions have been used in
models in relevant literature, such as 90:10% and 80:20%, with 70:30% being the most common
(30). Thus, in the present study dataset will be split into two parts, with 70% of the data to train the
model and 30% to validate the developed models. Given our large sample size we expect that this
approach would produce similar results to multiple cross-validations. However, in live donor
transplant sample of around 3,758 we will use cross-validation to estimate the variability in our
model evaluation statistics, and if the variability is large (more than 10% of the mean accuracy)
then we will use cross-validation for this sample.”

Comment 9 : How is survival SVM different from any SVM?

Response 9 : Usual SVM can be used only for dichotomous outcomes and does not account to
time-to-event information. However, survival SVM accounts for time-to-event data as it considers
outcomes, i.e. time and event (1).

T Fouodo CJ, Kénig IR, Weihs C, Ziegler A, Wright MN. Support Vector Machines for Survival
Analysis with R. R Journal. 2018 Jul 1;10(1).

Comment 10 : The authors could consider evaluating the machine learning models with currently
used methods in clinical settings as mentioned in the introductory remarks.

Response 10 : Thank you for highlighting this important point. The outputs of different machine
learning predictive models will be compared with Kidney Donor Risk Index (KDPI), commonly used
to quantify graft failure risk before transplantation.
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