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Objective: We examined the interrater reliability and generalizability of high-frequency

oscillation (HFO) visual evaluations in the ripple (80–250Hz) band, and established a

framework for the transition of HFO analysis to routine clinical care. We were interested

in the interrater reliability or epoch generalizability to describe how similar the evaluations

were between reviewers, and in the reviewer generalizability to represent the consistency

of the internal threshold each individual reviewer.

Methods: We studied 41 adult epilepsy patients (mean age: 35.6 years) who underwent

intracranial electroencephalography. A morphology detector was designed and used

to detect candidate HFO events, lower-threshold events, and distractor events. These

events were subsequently presented to six expert reviewers, who visually evaluated

events for the presence of HFOs. Generalizability theory was used to characterize the

epoch generalizability (interrater reliability) and reviewer generalizability (internal threshold

consistency) of visual evaluations, as well as to project the numbers of epochs, reviewers,

and datasets required to achieve strong generalizability (threshold of 0.8).

Results: The reviewer generalizability was almost perfect (0.983), indicating there were

sufficient evaluations to determine the internal threshold of each reviewer. However, the

interrater reliability for 6 reviewers (0.588) and pairwise interrater reliability (0.322) were

both poor, indicating that the agreement of 6 reviewers is insufficient to reliably establish

the presence or absence of individual HFOs. Strong interrater reliability (≥0.8) was

projected as requiring a minimum of 17 reviewers, while strong reviewer generalizability

could be achieved with <30 epoch evaluations per reviewer.

Significance: This study reaffirms the poor reliability of using small numbers of reviewers

to identify HFOs, and projects the number of reviewers required to overcome this

limitation. It also provides a set of tools which may be used for training reviewers, tracking

changes to interrater reliability, and for constructing a benchmark set of epochs that can

serve as a generalizable gold standard, against which other HFO detection algorithms
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may be compared. This study represents an important step toward the reconciliation

of important but discordant findings from HFO studies undertaken with different sets

of HFOs, and ultimately toward transitioning HFO analysis into a meaningful part of the

clinical epilepsy workup.

Keywords: high frequency oscillations (HFOs), generalizability, generalizability theory, interrater reliability,

interrater variability, epilepsy, intracranial electroencephalography (iEEG)

INTRODUCTION

In the treatment of drug-resistant focal epilepsy, the localization
and removal of the region generating the seizures is critical to the
successful elimination of seizures. It has been proposed that this
region—the so-called epileptogenic zone (EZ)—may be identified
using high frequency oscillations (HFOs) (1, 2), or interictal
epileptiform discharges (IEDs) occurring simultaneously with
HFOs (HFO+IEDs) (3, 4). Extensive research has been
performed with regards to the characteristics of these HFOs and
their correlation with epileptogenicity and the EZ. Nonetheless,
the lack of generalizability and comparability between the various
studies remains an obstacle to the implementation of HFOs
prospectively in clinical practice (5).

There is clear and mounting evidence of a correlation
between the EZ and HFOs. A meta-analysis revealed a significant
correlation between the resection of tissue exhibiting HFOs
and the absence of seizures following surgery (6). However, the
findings of the individual retrospective studies within the meta-
analysis, as well as subsequent studies, have varied substantially.
Some found that the resection of HFOs in the ripple range (∼80–
250Hz) correlated more strongly with positive outcomes than
did the resection of HFOs in the fast ripple range (FR; ∼250–
500Hz) (1), while others found that the opposite was true (7).
There were studies that found a significant effect of resecting
either ripples or FRs (2, 8), and more still that did not find any
significant effect for either (9, 10). One study identified ripples to
be superior at positive prediction, and FRs at negative prediction
(11). More recently, it was shown that in some brain regions, the
amplitudes or rates of HFOs are insufficient to distinguish the EZ
from baseline activity (12).

There is also contradicting data regarding the role of
HFOs occurring in isolation or those co-occurring with IEDs.
There is some evidence that resection of HFO+IEDs are
correlated with positive outcomes, while that of HFOs in
isolation are not (13). There is also evidence that all HFOs
are correlated with the EZ regardless of morphology (14), and
other studies still have aimed to exclude HFOs generated by
filtering IEDs and other sharp transients (15, 16). A recent
study also provided evidence that the co-occurrence of ripples
and FRs would be more useful than either alone in delineating
the EZ (17), though this has yet to be reported in other
studies.

Therefore, while there is overwhelming evidence confirming
that HFOs are correlated with the EZ, it remains unclear which
HFO characteristics would be most useful in prospectively
identifying the EZ for surgical resection. Though prospective

studies are ongoing (9, 18), a Cochrane review recently cited lack
of evidence in concluding that “no reliable conclusions can be
drawn regarding the efficacy of using HFOs in epilepsy surgery
decision making at present” (19). Indeed, the different findings of
all of these studies should first be reconciled.

That the results from the many studies undertaken in this field
differ is not surprising – these studies have been undertaken using
variable definitions of HFOs, methods of detection, and datasets.
Many have relied upon visual review by one (3, 4, 14, 20–27)
or two (1, 15, 16, 28–41) experts, and up to four experts have
been used in rodents (42). However, while it has been shown
that experts have moderate to strong agreement with regards to
classifying candidate events as neural or artefactual in origin (43),
it has also been shown that they have poor interrater reliability for
classifying candidate events as HFOs (44) or gamma oscillations
(45) in the first place.

In an effort to decrease the subjectivity and increase the speed
of HFO identification, several automated or semi-automated
detection algorithms have been developed. Some have been
used in conjunction with expert review to obtain a set of HFO
markings (43, 46–51), but many have been developed for use in
isolation.

Several features have been proposed to quantify high
frequency oscillatory activity, including amplitude threshold (52)
or envelope (53), line length (33, 45), instantaneous frequency
(33), conventional energy (45, 54), wavelet transforms (32),
Stockwell entropy (11), non-harmonicity (50) and Teager energy
(55). These features may be considered alone, or may be
incorporated into a machine learning algorithm (33). Other
algorithms have been developed based on pattern matching
(23, 34, 42, 53); integration of data from multiple channels
(11, 53); empirical mode decomposition (56); Gabor atoms (41);
Gaussian mixture model clustering (57); topographic analysis
(16, 51); independent component analysis (51); and integration
of a rigorous artifact rejection step following HFO detection (43).

The performance of these algorithms may only be evaluated
against some determined baseline. In theory, the ideal algorithm
would be able to identify HFOs that perfectly delineate the EZ
in prospective studies. In practice, this is not a widely feasible
comparison, and even comparisons with retrospective surgical
outcomes (11, 50) are rarely performed, so existing benchmarks
are often used. Whether these benchmarks are other algorithms
(43, 52), visual review (16, 32–34, 36, 41), or some combination
thereof, the result is the same—the comparison of an algorithm
against a set of markings that itself has not been validated in a
generalizable, reliable manner, and therefore, a comparison of
unknown clinical significance.
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In the present study, we seek to establish a protocol
for overcoming this critical limitation of both visual and
algorithmic HFO identification. To accomplish this, we turn to
a statistical framework called generalizability theory. The use of
generalizability theory has been commonplace in the education
literature for decades, but has only recently been implemented
in neurology (58). It not only allows the characterization of
interrater reliability in a manner that is less subject to bias than
traditional metrics (59), but also predicts how changing the
sample size could affect the generalizability (60). It may be used
to determine how to create a dataset that would achieve strong
generalizability in practice.

The present study makes use of generalizability theory to
establish a framework for optimizing visual HFO markings, in
order to reconcile the findings from diverse HFO studies and
facilitate the transition of HFO evaluation to routine clinical care.

METHODS

This study was approved by our local Research Ethics Board.
Forty-one consecutive adult patients (mean age: 35.6 years) were
recruited, all with drug-resistant focal epilepsy and undergoing
intracranial video-EEG monitoring (iVEM) at high sampling
rates (1,000–2,000Hz) for possible surgical candidacy at our
epilepsy center. All patients were included in the study, regardless
of the types or locations of the implanted intracranial electrodes,
or of the type or presumed localization of the epileptogenic
activity.

Data were initially processed as per the methodology detailed
in Spring et al. (44). Twenty minutes of iEEG data were
selected, filtered (80–250Hz), derived (bipolar or Laplacian), and
normalized (sliding 1 s root-mean-square). As in the previous
study, the data were selected as close as possible to midnight,
as close as possible to the fifth day postimplantation, in order
to reduce artifact. No preference was given to stage of sleep or
wakefulness due to the lack of concurrent scalp EEG recordings.
Notably, this study focuses on HFOs in the ripple band (80–
250Hz), and the terms HFOs and ripples are used synonymously
throughout this text, except where noted otherwise.

Three types of events were algorithmically detected from the
normalized data: candidate HFO events, low-threshold HFO
events, and distractor events. From each dataset (patient), 64
events of each type were pseudorandomly selected, resulting in
a total of 7,872 events (64 events per type × 3 event types
× 41 patients = 7,872 events). Filtered data (80–250Hz) were
presented to six visual reviewers as a series of epochs (250ms),
each containing the entirety of one event. Three seconds of
unfiltered data were also provided simultaneously, and included
the same 250ms epoch, as well as the preceding and following
1,375ms of data. In each case, the data presented included the
target channel (in which the event was detected), the two nearest
neighboring channels, and four channels randomly selected from
those remaining.

A detailed overview of the evaluation program and process
are published in our previous work (44), and a screenshot of
the program is shown in Figure 1. The six reviewers (YA, JJ, NP,

LB, CJ, PF) hailed from two epilepsy centers, and had varying
degrees of experience evaluating HFOs, as detailed previously
(44). They were instructed to identify HFOs that stood out from
the surrounding baseline for at least 3 consecutive cycles. They
also had the opportunity to mark the presence of any artifacts
that they believed affected the presence or interpretation of an
HFO.

HFO Rating
Each reviewer registered an HFO rating for each epoch. The
rating was on a scale from −5 to +5, with the magnitude
corresponding to the given confidence rating (1–5, with 5
indicating complete certainty), and the sign corresponding to the
HFO evaluation of present (+) or absent (−). This rating reflects
the likelihood of each epoch containing an HFO, as determined
by each reviewer, and enables a more robust comparison of
the relative “stringency” of the reviewers. In essence, stringency
describes the probability of a reviewer positively marking an
HFO of a given threshold. For example, a more stringent
reviewer would typically assign lower ratings than a less stringent
colleague, as they have a higher internal threshold for marking
HFOs.

Evaluation Time
The evaluation program recorded the time each reviewer spent
on each epoch evaluation. The mean evaluation time was then
calculated for each reviewer, before and after eliminating outliers
(lower and upper 5% of each reviewer’s times).

Generalizability Studies
An initial generalizability study (G-study) was performed
to characterize the observed interrater reliability and
generalizability. It was also performed to determine the
consistency of the internal threshold employed by each reviewer
in their evaluation of potential HFOs. In all cases, the HFO
ratings made for each epoch by each reviewer were used as the
G-study “measurement.”

Models
A nested mixed-effects model was used for the G-study analyses.
The Image 1 in the Supplementary Material shows a Venn
diagram depicting the primary effects and their interactions:

• Reviewer (r), the clinician evaluating the data for HFOs
• Dataset (d), the patient from whom the data were collected
• EventType (t), the type of event used to generate the epoch
• e:[d · t], the individual Epoch, nested within Dataset and

EventType
• The interactions amongst the above effects

The generalizability theory model is expressed as:

Xrdte = µ+νr+νd+νt+νr·d+νd·t+νr·t+νr·d·t+νe :[d·t]+νr·e :[d·t]

where Xrdte is the HFO rating given by Reviewer r to Epoch e of
Dataset d and EventType t; µ is the grand mean HFO rating; and
να is the score effect for any arbitrary effect α.
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FIGURE 1 | Screenshot of the program used for the visual review component of the study. Three seconds of raw data is shown in the right pane. Two hundred and

fifty milliseconds of filtered data is shown in the left pane, and the corresponding raw data is highlighted in yellow. The top pane contains the evaluation form for the

current Epoch, as well as the current progress. A detailed description of the evaluation program is available in our previous work (44).

Objects of Measurement
In generalizability theory, any one of the effects can be
declared the “object of measurement,” while the other effects
constitute the “facets” of variability. As the names imply, the
object of measurement is what we are measuring, while the
facets are effects to which we can attribute the variability
of our measurements. The assignment of the object of
measurement depends upon the question of interest. This study
was designed to determine how well one could answer two
questions:

1. What is the likelihood that Epoch ei is an HFO?
2. What is the stringency of Reviewer ri in evaluating Epochs

for HFOs?
In order to address these questions, two separate objects of
measurement were used. For Question 1, the apparent object of
measurement was Epoch; however, since Epoch is nested within
Dataset and Type, the object of measurement was actually e:[d·t].
For Question 2, the object of measurement was simply Reviewer
(r). It is important to note the primary objective of the study is
not to provide answers to these questions with the present sample
sizes, but rather to quantify and predict how well the answers
obtained would generalize to the population of epochs, reviewers,
or patients.

Generalizability Coefficient Calculation
A minimum norm quadratic unbiased estimator (61, 62) was
used to calculate the variance components, which were in turn
used to derive the generalizability coefficients. Details regarding
the calculations are provided in the Generalizability Theory
Details section. A threshold of 0.8 was used to indicate high
generalizability or interrater reliability (44).

Epoch Generalizability—Interrater Reliability
For Epoch generalizability, the coefficient is a measure of how
well the consensus HFO rating given by a set of Reviewers would
generalize to the universe of potential Reviewers. It is an indicator
of interrater reliability: a coefficient of 1.0 indicates that the
HFO rating would generalize completely, while a coefficient close
to 0.0 would indicate that it would not generalize. Optimizing
this coefficient would reflect increasing the overall interrater
reliability, and allow for the generation of a set of “universal”
HFO Epoch evaluations.

Reviewer Generalizability—Internal Reviewer

Threshold
The generalizability coefficient of the Reviewer object is a
measure of how well the relative observed stringency of

Frontiers in Neurology | www.frontiersin.org 4 June 2018 | Volume 9 | Article 510

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Spring et al. HFO Generalizability

Reviewers would generalize to the universe of potential Datasets
and Epochs. A coefficient approaching 1.0 indicates complete
generalizability of Reviewer stringency, which would permit
the confident relative ranking of Reviewers in terms of their
probability of positively identifying an HFO of a given threshold.
A low coefficient, on the other hand, would indicate that such
a ranking could not be reliably made. Such rankings could
be useful for clinical purposes, as in ensuring that a selected
set of Reviewers would not be skewed toward a high or low
stringency. They would be even more valuable for training
purposes: Reviewers with a lower stringency could be trained
to increase their internal threshold, while those with a higher
stringency could be trained to decrease it.

Decision Study Projections
In order to determine how the generalizability of each object of
measurement would be affected by changes in the other facets,
a decision study (D-Study) projection was performed for each
object of measurement. The generalizability of the Epoch rating
was projected across 5–300 Datasets and 2–20 Reviewers, and
the generalizability of the Reviewer rating was projected across
1–3,000 Epochs and 5–300 Datasets. This enables us to predict
how many datasets, reviewers, or epochs would be needed for
us to achieve strong generalizability; in other words, it is used to
predict the number of reviewers that would be needed for studies
interested in determining the presence of HFOs, or the number
of epochs and datasets that would be needed for studies interested
in determining the internal stringency of reviewers.

Generalizability Theory Details
The following section contains the details regarding the
definitions and calculations involved in the derivation of the
generalizability coefficients.

Variance Components
The variance components (σa

2 for facet α) were estimated
within SPSS. Specifically, the VARCOMP procedure was
implemented using a minimum norm quadratic unbiased
estimator [MINQUE; (61, 62)], with an intercept term and
uniform weight assignment. These variance components were
independent of the object of measurement.

The normalized variance components (σA
2 for facet α) were

then computed by normalizing the variances component by the
sample sizes (na) of all effects in the given facet, regardless of
whether the effects are crossed or nested. Sample formulae are
illustrated below:

σ 2
A =

σ 2
a

na
σ 2
A·B =

σ 2
a·b

na · nb
σ 2
A :B =

σ 2
a : b

na · nb

The sample size for the object of measurement was set to 1, so
this process was repeated for each object of measurement.

Object and Residual Variances
The object of measurement variance (σ 2

τ ) is the variance
attributable to the object of measurement. The object variances of
all objects were estimated by summing the variance component of

the object of measurement with those of any interactions between
the object of measurement and fixed facets only:

σ 2
τ (e) = σ 2

e :[D·T] σ 2
τ (r) = σ 2

r + σ 2
r·T

The relative residual variance (σ 2
δ ) is the variance attributable

to the interaction between the object of measurement and the
random effects. The relative residual variances of all objects were
estimated by summing the variance components of interactions
between the object ofmeasurement and at least one random facet:

σ 2
δ (e) = σ 2

R·e[D·T]

σ 2
δ (r) = σ 2

r·D + σ 2
r·D·T + σ 2

r·E[D·T]

The absolute residual variance (σ 2
1) is the variance not solely

attributable to the object of measurement. The absolute residual
variances of all objects were estimated by summing the variance
components of all facets excluded from σ 2

τ :

σ 2
1(e) = σ 2

R + σ 2
D + σ 2

R·D + σ 2
R·T + σ 2

D·T + σ 2
R·D·T

+σ 2
R·e[D·T]

σ 2
1 (r) = σ 2

D + σ 2
r·D + σ 2

r·T + σ 2
D·T + σ 2

r·D·T + σ 2
E :[D·T]

+σ 2
r·E[D·T]

Generalizability Coefficients
Two generalizability coefficients may be estimated for each of
object of measurement: A relative generalizability coefficient (ρ2)
which describes how well the relative measurements amongst
the objects generalize to the universe of facets, and an absolute
dependability coefficient (ϕ2) which describes how well the
absolute scores of the objects generalize to the universe. These
may be estimated from the object variance as well as the relative
or absolute residual variance, respectively, by:

ρ2
=

σ 2
τ

σ 2
τ + σ 2

1

ϕ2
=

σ 2
τ

σ 2
τ + σ 2

1

In the present study, the relative measurements are of more
interest compared to the absolute measurements: the likelihood
of an epoch containing an HFO compared to other epochs, or
the likelihood of a reviewer marking an HFO compared to other
reviewers, are of greater interest than those likelihoods relative
to some arbitrary value. As such, the following discussions are
limited to the relative generalizability coefficients.

RESULTS

In total, 41,065 individual Epoch evaluations were made. A
summary of the completed and missing evaluations is provided
in the Supplementary Material (Data Sheet 1).

Evaluation Time
The trimmed mean evaluation time (excluding upper and lower
5% of values as outliers) for the six Reviewers were 7.15, 14.51,
4.32, 11.45, 4.93, and 8.43 s per Epoch, (overall mean= 7.43 s).
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Generalizability
The derivations of the G-study coefficients are outlined in
Table 1. The generalizability coefficients were calculated to be
0.588 for Epoch and 0.983 for Reviewer.

Decision Study
Epoch Generalizability
The D-study projections for Epoch generalizability are displayed
in Figure 2. The projections increased with the number of
Reviewers, reaching the threshold of 0.8 with 17 Reviewers, and
were independent of the number of Datasets.

Reviewer Generalizability
The D-study projections for Reviewer generalizability are
displayed in Figure 3. The Reviewer generalizability projections
increased with the number of Epochs and Datasets. A
trend of diminishing returns was demonstrated, wherein the
generalizability reached a plateau beyond which increases in
the number of Epochs did not yield an appreciable increase in
generalizability. For example, the threshold of 0.8 was achieved
with 1 Epoch per EventType per Dataset in 10 Datasets, or with 3
Epochs per EventType per Dataset in 5 Datasets.

DISCUSSION

The generalizability studies reaffirm the poor interrater reliability
typically observed between two reviewers (44), and the
projections indicate that a prohibitive number of reviewers
are required to achieve strong generalizability. The results also
illustrate the strong Reviewer generalizability and the relatively

small evaluation times within the novel epoched framework.
Together, these findings provide further evidence for the need for
a gold standard for HFO identification, and a framework for its
establishment.

Evaluation Time
There was a notable variability amongst the Reviewers’ mean
evaluation times. This is unsurprising, as evaluation times also
vary in other medical imaging applications (63, 64). Further
investigation into the nature of the differences between Reviewers
could assist the optimization of HFO evaluations for any given
Reviewer.

It is equally unsurprising but notable that evaluation of HFOs
using this supervised framework is substantially faster than
continuous review. One of the Reviewers reported that prior to
this study, he often required 8 h to review 5min of continuous
EEG data for HFOs in multiple channels. Using the trimmed
mean evaluation time of 7.43 s, he would be able to evaluate
3876 Epochs in those same 8 h. Even considering our most
active HFO patient, who exhibited 278.7 algorithmically-detected
events per minute (across all event types, and all electrodes),
this Reviewer would only have to evaluate 1394 Epochs from
5min of data, which would take only 2.87 h. In the case of our
second most active patient, he would only have to evaluate 350
Epochs (<45min). Thus, he would complete the evaluations in
substantially less time compared to continuous review in most
cases. Furthermore, it is likely that he would have to evaluate only
a fraction of the Epochs, further reducing the time burden.

This anecdotal evidence is further supported by a recent
study reporting that approximately 5 h were required review

TABLE 1 | Derivation of the generalizability coefficients for model considering all EventTypes.

(A)

Object: Epoch Object: Reviewer

Facet α σ2
a na σ2

A
Term na σ2

A
Term

r 1.134 6 0.189 1 1.134 τ

d 0.195 41 0.005 1 41 0.005 1

r · d 0.743 246 0.003 1 41 0.018 1, δ

r · t 0.638 18 0.035 1 3 0.213 τ

d · t 0.161 123 0.001 1 123 0.001 1, δ

r · d · t 0.553 738 0.001 1 123 0.004 1, δ

e:[d · t] 1.409 1.409 τ 7,872 0.000 1

r · e:[d · t] 5.925 6 0.988 1, δ 7,872 0.001 1, δ

(B)

Object σ2
τ σ2

δ
σ2
1

ρ2 ϕ2

Epoch 1.409 0.988 1.222 0.588 0.536

Reviewer 1.347 0.024 0.030 0.983 0.978

(A) Overview of variance components. Each row corresponds to the effect or interaction listed in the first column. The sets of columns outline the variance components (leftmost

column set), as well as the normalized variance components where the object of measurement is set to Epoch (second column set) or Reviewer (third column set). For each object of

measurement, the effective sample sizes (na ), normalized variance components (σ2A ), and term(s) corresponding to the variance components are listed. (B) The object variances (σ2τ ),

relative residual variances (σ2
δ
), absolute residual variances (σ21 ), relative generalizability coefficients (ρ

2 ), and absolute dependability coefficients (ϕ2 ), for each object of measurement.

The relative generalizability coefficients are indicated in bold.
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FIGURE 2 | Decision study projections of the generalizability of the evaluated

Epochs. The blue curve denotes the Epoch generalizability projections as a

function of the number of Reviewers. The target threshold of 0.8 is indicated

by the dashed red line. The blue square marks the Epoch generalizability

achieved with the sample size used (6 Reviewers), while the blue triangles

indicate Epoch generalizability projections referenced in the text.

FIGURE 3 | Decision study projections of the generalizability of the Reviewers.

Each curve denotes the Reviewer generalizability projections for a given

number of Datasets, as a function of the number of Epochs per EventType per

Dataset. The target threshold of 0.8 is indicated by the dashed red line. The

blue square indicates the Reviewer generalizability achieved with the sample

sizes used in the study (64 Epochs per EventType, 3 EventTypes, 41

Datasets), while the colored triangles indicate Reviewer generalizability

projections referenced in the text.

10min of continuous EEG for spikes and ripples in a single
channel derivation (27). This 2.5 h for 5min of continuous
data is somewhat less than the worst-case 2.87 h for epoched

review noted above. However, the epoched review would
provide markings for every channel, while the continuous review
completed in that time constitutes markings for only a single
channel.

Epoch Generalizability—Interrater
Reliability
The D-study projections for Epochs predicted how many
Reviewers would be required to achieve a desired Epoch
generalizability. Each Epoch is selected from exactly one Dataset,
and is entirely independent of other Datasets; therefore, D-study
projections are only affected by the number of Reviewers. Only
a moderate Epoch generalizability (0.588) was achieved with the
six Reviewers used in this study. Notably, 17 Reviewers would
be required to achieve a threshold of 0.8. This is a prohibitive
amount for any individual epilepsy center, and would therefore
not be feasible for the routine evaluation of any individual
patient.

One solution to the requirement of such a large number of
Reviewers would be to initiate a multi-center study, including
at least 17 Reviewers, all evaluating the same Epochs. This
would result in highly generalizable evaluations of individual
Epochs, featuring both positive and negative HFOs of varying
characteristics, with and without artifacts, constituting a
benchmark set of universal HFO evaluations. This benchmark
could be used as a reliable standard for testing any number of
HFO detection or classification algorithms, or for the testing or
training of Reviewers. The development of such a benchmark
dataset is currently underway, featuring epileptologists from
multiple centers across western Canada.

The Epoch generalizability for two Reviewers was estimated to
be 0.322. Notably, this is in agreement with our previous study,
which found poor interrater reliability when using a smaller
dataset (44). This supports the use of the Epoch generalizability
coefficient as a measure for interrater reliability, and provides
further evidence against the use of agreement between two visual
reviewers as a “gold standard” for HFO markings.

Reviewer Generalizability—Internal
Reviewer Threshold
The D-study projections for Reviewer predicted how many
Epochs and Datasets would be required to achieve a desired
Reviewer generalizability. For example, to achieve a Reviewer
generalizability of 0.8, each Reviewer could evaluate 3 Epochs per
EventType in 5Datasets (3× 3× 5= 45 evaluations), or 1 Epochs
per EventType in 10 Datasets (1 × 3 × 10 = 30 evaluations). A
study interested only in establishing a ranking of Reviewers by
achieving a Reviewer generalizability of 0.8 could therefore be
constructed with as few as 30 evaluations per Reviewer. Such a
study could be completed for any given set of Reviewers, and
would require an average time commitment of just under 4min,
assuming the trimmed mean observed Epoch evaluation time of
7.43 s.

Given this high Reviewer generalizability, there need not be
17 Reviewers to produce highly generalizable Epoch evaluations.
Rather, the Epoch generalizability could be increased by
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increasing training with respect to the HFO evaluations. In
the present study, training was limited to the presentation
of an instructional video and companion document, which
defined HFOs and provided clear examples. This training was
designed to avoid influencing the internal threshold of the
Reviewers. Conversely, training Reviewers to adjust their internal
thresholds would decrease the variability between Reviewers (65–
67), increasing the generalizability of their Epoch evaluations.
Our group is currently conducting one such study using the
principles of the Delphi method (68), whereby Reviewers first
conduct the study with no a priori information, and then again
using feedback information regarding the stringency of their
evaluations relative to that of their peers. An increase in the
Epoch generalizability could be expected with theDelphimethod,
which would decrease the number of Reviewers needed to obtain
universal HFO evaluations for any given Epoch.

Such training procedures might facilitate the feasibility of
on-site evaluation of patient data for HFOs as an informative
component of the epilepsy pre-surgical workups. The proposed
threshold training could also reduce the number of Reviewers
needed to construct a benchmark dataset, or to further increase
its generalizability. These possibilities should be thoroughly
evaluated following the implementation of this Delphi study.

HFO Evaluation Framework
Overall, this study has established a novel framework for
efficient and controlled evaluation of HFOs. The Epoched design
allows for the pre-selection of events based on any number
of algorithmic criteria, and can be tailored to the particular
application. It also ensures that all Reviewers can evaluate the
exact same events of interest in the exact same order, in a
manner that requires only an average of 10 s per evaluation.
The evaluation software program provides Reviewers with an
intuitive and versatile interface to complete any number of
evaluations. It enables Reviewers to not only mark the presence
of HFOs, but also the absence of HFOs, and the self-reported
certainty in these determinations.

The present study has established that evaluations conducted
using this supervised method are not sufficient to be used
immediately in clinical practice. Rather, the framework itself
may be extended to any number of automated detectors, to any
number of reviewers, or to any form of standardized training,
producing a comprehensive set of evaluations accompanied by
descriptive information regarding the generalizability of the
findings.

External Applicability
Notably, detection of electrographic signals such as HFOs
are often performed using a visual review of a continuous
record, or using an automated detector alone, rather than a
supervised framework. However, the calculated generalizability
coefficients and the predicted number of reviewers apply only
to studies undertaken in this framework. It is entirely possible
that HFO markings made on a continuous record would require
fewer reviewers to achieve strongly generalizable findings, due
to influences such as the additional context provided by the
continuity of the record. Likewise, it is intuitive that the context

provided by a continuous record may bias the markings—
such as cases where clear or frequent HFOs in one channel
preclude more ambiguous or occasional HFOs in another
channel from being noticed. Furthermore, the sheer volume
of continuous data may result in different reviewers focusing
their search of HFOs on different channels or time windows,
increasing the number of reviewers required to achieve strongly
generalizable findings. Regardless of such points of speculation,
it should be unambiguously emphasized that one cannot assume
that HFO markings obtained through continuous review are
generalizable—rather, it must be assumed that they are not
generalizable, until it can be proven that they are.

The findings of this study are inherently applicable to the
oscillations detected using two thresholds of an established
detection algorithm, along with baseline EEG segments. The
generalizability may differ as the threshold or method used to
detect candidate HFOs varies, as might the clinical meaning
of such oscillations. Further studies conducted within this
framework may indeed be used to compare the meaning and
generalizability of HFOs identified at various thresholds, in other
frequency bands, or using different detection algorithms.

Alternatively, this framework could allow for the evaluation
of HFO detection algorithms in several capacities, including
comparing the performance of countless HFO detection
algorithms against generalizable markings obtained by a large
set of visual reviewers. A detection algorithm that is shown to
be consistent with strongly generalizable visual markings could
then be used as a standard, either alone or in conjunction with
one or two reviewers, replacing the ongoing need for such a large
number of visual reviewers.

Furthermore, while the waveforms of interest in this study
were HFOs identified on intracranial EEG, studies have shown
that other electrographic markers are subject to varying degrees
of interrater reliability. It would be interesting to extend
the methodology presented herein to other EEG markers
independently of HFOs, such as epileptiform discharges, or even
other electrographic markers, such as U waves on ECG, to
determine the generalizability of those visual markings. It would
also be interesting to apply this methodology to simultaneous
EEG and magnetoencephalography, which has recent shown
promising results for the source localization of HFOs and IEDs
(69). The present study focused on the generalizability of HFO
detection. As a next step, we are currently assessing how the
algorithmically detected HFOs correlate with location of the
seizure onset zone and post-surgical outcome.

Limitations and Future Direction
The findings of this study establish a framework for further
studies, which can efficiently reduce or eliminate many factors
that currently limit conclusions that may be drawn in HFO
studies.

One notable consideration is the degree of a priori training
of the various Reviewers. All of the Reviewers in the present
study were familiar with HFOs, and all were given both an
instructional video and a short written document to help them
become acquainted with the software used and the criteria used
to evaluate HFOs in this study. However, the training was
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not exhaustive and was not designed to influence the internal
threshold of the Reviewers with respect to HFO evaluations—
only the clearest HFOs were presented as examples. It is
reasonable to assume that two reviewers trained at the same
center would be more similar than reviewers with different
training backgrounds, and that therefore the markings made
by two such reviewers would be more generalizable. However,
our previous work found the pairwise interrater reliability
between two similarly and extensively trained reviewers to be as
poor as the overall interrater reliability (44). Furthermore, it is
likely that across the global population of HFO reviewers, the
individual training received would also vary greatly. Nonetheless,
standardized interventional training such as the simple Delphi
study described above may be effective in using feedback between
evaluation sessions to encourage Reviewers to align their internal
threshold to a desired target, thus increasing the generalizability
of evaluations, whatever the background of any given Reviewer.

There are other confounding factors that may affect how
representative our sample Epochs, Datasets, or Reviewers
were, which could influence the generalizability. Additionally,
Reviewers may be affected not only by a priori training,
but also by fatigue; fortunately, the framework presented
herein is designed to preclude fatigue, by reducing the time
commitment of HFO evaluations, and future studies aimed
at optimizing interrater reliability could further reduce the
workload. Also, the Datasets or Epochs may be affected by
time of day, admission date, and evaluation order: steps
were made to control for time of day and admission date,
by making the data selection across patients consistent, and
the evaluation order was standardized for all Reviewers.
Nonetheless the impact of any of these effects is unknown,
but the proposed framework is well suited to study the effect
sizes.

Another effect that may be addressed in future studies
is that of reproducibility, which examines the variability
in HFO evaluations of the same Epochs by the same
Reviewers on multiple occasions. Such internal consistency is
currently being assessed by incorporating multiple occasions
into the aforementioned Delphi study of a large number of
Reviewers.

CONCLUSION

We have reaffirmed that the current practice in visual
HFO identification, which uses the agreement between
only two visual reviewers to identify HFOs, is unreliable
due to significant variability between reviewers. We have
also projected that the large number of visual reviewers
required to produce reliable HFO markings would be an
impractical barrier to undertaking visual HFO review in a
clinical setting without first reducing the variability amongst
reviewers.

We have also outlined a set of tools, including an evaluation
program and a statistical framework, which may be used for
training visual reviewers and tracking changes to interrater

reliability, all while reducing the time burden of HFO analysis.
Ongoing studies at our research center are using established
training protocols within the framework presented herein to
standardize the internal HFO threshold of visual reviewers,
further reducing the time burden. It may alternatively serve
as the basis of a multicenter study to construct a benchmark
set of epochs that can serve as a new, highly generalizable
gold standard, against which any number of HFO detection
algorithms may be compared.

Ultimately, this study represents an important step toward the
reconciliation of important but discordant findings from HFO
studies undertaken with different sets of HFOs, and ultimately
toward transitioning HFO analysis into a feasible andmeaningful
part of the epilepsy pre-surgical workup.
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