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Classifying neovascular age‑related 
macular degeneration with a deep 
convolutional neural network 
based on optical coherence 
tomography images
Jinyoung Han1,2,9, Seong Choi1,2,9, Ji In Park3, Joon Seo Hwang4, Jeong Mo Han5, 
Hak Jun Lee6, Junseo Ko1,2, Jeewoo Yoon1,2 & Daniel Duck‑Jin Hwang6,7,8*

Neovascular age-related macular degeneration (nAMD) is among the main causes of visual impairment 
worldwide. We built a deep learning model to distinguish the subtypes of nAMD using spectral domain 
optical coherence tomography (SD-OCT) images. Data from SD-OCT images of nAMD (polypoidal 
choroidal vasculopathy, retinal angiomatous proliferation, and typical nAMD) and normal healthy 
patients were analyzed using a convolutional neural network (CNN). The model was trained and 
validated based on 4749 SD-OCT images from 347 patients and 50 healthy controls. To adopt an 
accurate and robust image classification architecture, we evaluated three well-known CNN structures 
(VGG-16, VGG-19, and ResNet) and two customized classification layers (fully connected layer with 
dropout vs. global average pooling). Following the test set performance, the model with the highest 
classification accuracy was used. Transfer learning and data augmentation were applied to improve 
the robustness and accuracy of the model. Our proposed model showed an accuracy of 87.4% on the 
test data (920 images), scoring higher than ten ophthalmologists, for the same data. Additionally, the 
part that our model judged to be important in classification was confirmed through Grad-CAM images, 
and consequently, it has a similar judgment criteria to that of ophthalmologists. Thus, we believe that 
our model can be used as an auxiliary tool in clinical practice.

Neovascular age-related macular degeneration (nAMD), a degenerative macular disease, is among the leading 
causes of blindness in elderly people over 50 years of age in developed countries1,2. nAMD can be classified into 
one of the three subtypes3: (i) typical nAMD, (ii) polypoidal choroidal vasculopathy (PCV), and (iii) retinal 
angiomatous proliferation (RAP). The different subtypes of nAMD could have different post-injection treat-
ment responses and disease prognosis4. PCV has been considered a variant form of nAMD, is more prevalent 
among Asians; however, its distinct characteristics have led to the recognition that PCV might be a different 
disease entity from typical nAMD5–7. Disease course and response to PCV treatment have been shown to differ 
from typical AMD forms: because of variants of PCV or massive macular hemorrhage, long-term outcomes 
of PCV treatment are still controversial, but better responses to photodynamic therapy have been reported8,9. 
Retinal angiomatous proliferation (RAP) is another subtype of nAMD, characterized by retinal-retinal or retinal-
choroidal anastomoses, and has a poor functional prognosis because it is likely to respond poorly to treatment 
compared to other subtypes of nAMD10–13.

Multimodal imaging, including fluorescein angiography (FA) or indocyanine green angiography (ICGA), 
has been demonstrated to be effective in accurately diagnosing nAMD3,7,14. Accurate diagnosis is essential for 
establishing an appropriate treatment strategy and accurately predicting a patient’s prognosis. Among these 
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modalities, optical coherence tomography (OCT) is noninvasive and is often used to evaluate the structural 
abnormalities associated with nAMD, and is used as an adjunct to these angiography methods7,14.

Recent advances in deep learning technologies such as Convolutional Neural Networks (CNNs) have made 
it possible to classify nAMD or other macular disorders using only OCT images15–21. In the prior work19, it has 
been reported that distinguishing RAP from PCV using a deep learning model and OCT images could be pos-
sible, and hence such a deep learning approach could support ophthalmologists in distinguishing RAP from PCV.

The present study proposes and evaluates a comprehensive diagnosis system for nAMD, rather than a simple 
binary classification between PCV and RAP. We propose a deep learning model that can classify all the subtypes 
of nAMD, including typical AMD with type 1 or type 2 choroidal neovascularization (CNV) using OCT images 
alone. The performance of the proposed model was compared with that of an ophthalmologist. Additionally, 
the structural differences of these nAMD subtypes were investigated by using gradient-weighted class activation 
mapping (Grad-CAM) heatmaps to visualize the specific features determined by the proposed model.

Results
In this study, we conducted a study based on 4749 OCT images from 397 participants. The mean ages of the 
normal and nAMD groups were 64.66 ± 8.41 and 75.40 ± 8.74 years, respectively. Detailed information on the 
data used in this study is presented in Table 1.

Model performance.  We conducted experiments to compare three different CNN models (VGG-16, VGG-
19, and Resnet) with two custom layers. Table 2 shows the details of each model, such as the number of param-
eters used and the best accuracy on the test set (920 images) among the fivefold cross validations. As shown in 
Table 2, the VGG-16 based model with four fully connected layers and three dropout layers showed the highest 
accuracy (87.4%) on the test set.

Performance comparison with ophthalmologists.  The performance comparison between the pro-
posed model (i.e., VGG-16 with four fully connected and three dropout layers) and ten ophthalmologists is 
shown in Fig. 1. The classification accuracies of the ten ophthalmologists ranged from 47.4 to 82.8%. Of the ten 
ophthalmologists, two retina experts with more than 10 years of clinical experience at an academic ophthalmol-
ogy center showed the highest classification accuracy of 82.8% and 79.9%, respectively, which was lower than 
our model’s accuracy (87.4%).

We also measured the kappa coefficients between the two retina experts and our proposed model. The kappa 
coefficient between the two experts was 0.70. The kappa coefficients between the model and the two experts were 
0.75 and 0.77, respectively. This suggests that the decision-making criteria for the nAMD subtype classification 
of our proposed model are similar to those of experts. In addition, looking at various performance measures, 

Table 1.   Baseline characteristics of patients who had undergone macular OCT. OCT optical coherence 
tomography, neovascular AMD neovascular age-related macular degeneration, RAP retinal angiomatous 
proliferation, PCV polypoidal choroidal vasculopathy, SD standard deviation.

Normal Typical AMD

neovascular AMD

RAP PCV Total

Image, no 2125 806 863 955 2624

Patients, no 50 120 106 121 347

Age, yrs. (SD) 64.66 (8.41) 80.35 (6.21) 80.35 (6.21) 71.07 (8.33) 75.40 (8.74)

Gender, no (%)

Male 23 (27.06) 20 (18.69) 20 (18.69) 82 (67.21) 102 (44.54)

Female 62 (72.94) 87 (81.31) 87 (81.31) 40 (32.79) 127 (55.46)

Eye, no. (%)

Right 44 (51.76) 55 (51.40) 55 (51.40) 64 (52.46) 119 (51.97)

Left 41 (48.24) 52 (48.60) 52 (48.60) 58 (47.54) 110 (48.03)

Table 2.   Comparative results of our deep learning models (VGG-16, VGG-19 and Resnet based Model).

Base model Custom layer # of parameters Accuracy (%)

VGG-16
4 Fully connected layer + 3 Dropout layer (LeakyRelu) 27,636,388 87.4%

Global average pooling 14,716,740 86.1%

VGG-19
4 Fully connected layer + 3 Dropout layer (LeakyRelu) 32,946,084 87.3%

Global average pooling 20,026,436 86.8%

Resnet
4 Fully connected layer + 3 Dropout layer (LeakyRelu) 75,021,668 85.4%

Global average pooling 23,572,996 83.0%
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as shown in Table 3, we found that the model performed better than the two experts in precision, recall, and 
F1-score. Furthermore, as shown in the confusion matrix for the test set in Fig. 2, the overall classification per-
formance of the proposed model is higher than that of the two retina specialists.

As a result of the experiment, we identified 15 cases that were correctly classified by the two retina experts 
but were incorrectly categorized by six or more of the remaining eight ophthalmologists, suggesting that profes-
sional experience with retinal disorders is required. Of these 15 cases, the proposed model correctly classified 14 
cases, indicating that the model could play a subsidiary role in the diagnosis of nAMD among normal, typical 
AMD, PCV, and RAP.

Visualizing the classification process of our model using Grad‑CAM.  In this study, we used gradi-
ent-weighted class activation mapping (Grad-CAM), a technique that visualizes the region where a deep learn-
ing model recognizes the important classification features. The representative heat maps generated by Grad-
CAM are shown in Fig. 3. The images used in Fig. 3 are Grad-CAM images of three PCV cases, two RAP cases, 
and one typical AMD case. These images were correctly classified by two retina experts and our model, but more 
than six out of eight ophthalmologists classified them incorrectly. The areas highlighted in the heat map are those 
that are recognized as important for classification. These areas are similar to those that ophthalmologists usually 
examine when diagnosing patients with nAMD. This implies that our model can classify nAMD subtypes with 
clinically meaningful criteria.

Figure 1.   Comparison of classification performance with model and 10 ophthalmologists. The 
classification accuracy of the model was 87.4%, the highest performance compared to ten ophthalmologists. 
Ophthalmologists consisted of two retina specialists (RE), four retina fellows (F) and four residents (R).

Table 3.   Classification results of comparative performance of Our model and 2 retina specialist. OCT 
optical coherence tomography, neovascular AMD neovascular age-related macular degeneration, RAP retinal 
angiomatous proliferation, PCV polypoidal choroidal vasculopathy.

Class Class Precision Recall F1-Score

Our model

Normal 1.00 1.00 1.00

PCV 0.74 0.88 0.80

RAP 0.92 0.76 0.83

Typical AMD 0.70 0.69 0.69

Specialist 1

Normal 1.00 1.00 1.00

PCV 0.78 0.71 0.74

RAP 0.71 0.65 0.68

Typical AMD 0.48 0.57 0.52

Specialist 2

Normal 1.00 1.00 1.00

PCV 0.67 0.88 0.76

RAP 0.78 0.73 0.76

Typical AMD 0.63 0.46 0.53
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Discussion
In this study, we presented a deep learning model and investigated its performance in distinguishing several 
subtypes of nAMD using SD-OCT images. Our model not only classified between the normal and nAMD groups, 
but also further classified the nAMD group into PCV, RAP, and typical AMD, which showed a performance 
comparable to that of ophthalmologists. In addition, our model correctly classified the images with incorrect 
readings by more than half of the ophthalmologists participating in the test, demonstrating that our model could 
provide additional help in nAMD classification by ophthalmologists.

Several studies15–18 have tried to (1) differentiate macular disease from normal macula, and (2) classify retinal 
diseases into various macular diseases such as AMD, diabetic retinopathy, and epiretinal membrane using OCT. 
Going one step further, there have been attempts to classify AMD using fundus photographs and OCT. Using 
the two modalities, Chou et al. differentiated PCV from nAMD with EfficientNet and multiple correspondence 
analysis22. Moreover, Xu et al. classified nAMD, Dry AMD, PCV, and normal groups using deep CNN networks23. 
However, no report has been on a deep learning model that can classify nAMD in more detail subtypes, such 
as typical AMD, PCV, and RAP, using a single modality. In addition, our study compared the classification 
accuracy of the proposed model with 10 ophthalmologists who have various clinical experiences. Through a 
detailed division of nAMD into specific subtypes, we believe our work would be helpful in predicting the treat-
ment responses and prognoses.

Figure 2.   Confusion matrixes of the two retina specialists and the proposed model. Two retinal specialists 
showed the highest classification accuracy among 10 ophthalmologists, and the classification accuracy was 
79.9% and 82.8%, respectively. Our proposed model recorded 87.4% classification accuracy for the same test 
dataset, higher performance than the two retinal specialists.
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This model could also assist the ophthalmologist in interpreting the OCT images. For 15 images that most 
ophthalmologists misclassified (more than 6 out of 8 remaining ophthalmologists), the proposed model correctly 
classified 14 (93.3%), two retina experts classified them correctly. In addition, high kappa coefficients were found 
not only between the two retina experts, but also between our model and each retina expert. This suggests that 
the proposed deep learning model can help non-retina experts classify subtypes of nAMD, a task that requires 
the involvement of experienced retinal experts.

In the results of Grad-CAM, the highlighted area was mainly the foveal region of the retina. This implies that 
our model mainly looked at foveal lesions, not the parafoveal or perifoveal regions when distinguishing subtypes 
of nAMD. Note that the foveal region is the area at which ophthalmologists mainly look at when classifying 
nAMD using OCT. When the model plays an auxiliary role in the diagnosis by ophthalmologists in actual clinical 
practice, if not only the reading results of the model but also visualization tools such as Grad-CAM are presented, 
more reliable results and interpretations can be provided by ophthalmologists. Interestingly, unlike the retina, the 
choroidal region was not significantly considered in the proposed nAMD classification model. The choroid was 
barely highlighted in the heat map using Grad-CAM. Several studies have shown that thinning of the choroid is 
characteristic of RAP14,24,25, whereas PCV involves thickening of the choroid26–28. The Grad-CAM results of our 
study suggest that choroidal thickness was not an essential feature used by the proposed model to discriminate 
subtypes of nAMD. Future studies should investigate whether choroidal findings influences the development of 
deep learning models capable of discriminating the subtypes of nAMD.

To optimize the performance of classifying subtypes of nAMD from a limited number of OCT images, we 
applied several deep learning methodologies. First, we applied transfer learning, a method of reusing knowledge 
of a source domain to solve a target task (classifying subtypes of nAMD in our work). In this study, a pre-trained 
model based on the ImageNet dataset was trained on the OCT data. As a result, the model with transfer learn-
ing showed a higher performance score than the model without transfer learning. Second, data augmentation 
was used to reduce overfitting by increasing the variance of the OCT dataset. Data augmentation is a technique 
commonly performed in deep-learning-based image classification tasks. It is usually performed based on simple 
parametric transformations, such as rotation, zoom in–out, and resizing images. To ensure that the newly gener-
ated SD-OCT images maintained the disease-related information of the original OCT images, we applied the 
following data augmentation process. First, the images were moved vertically and horizontally. Next, we flipped 
the training set images horizontally.Third, we rotated the training set images at an angle between 0–15 degrees. 
By applying these various learning methodologies, we were able to prevent overfitting on the limited OCT dataset 
and generate a deep learning model with high classification performance.

Our study has several limitations. First, we investigated the performance of the model using only one OCT 
image. In clinical practice, ophthalmologists typically examine multiple OCT images of the same patient to make 
a comprehensive diagnosis. For the diagnosis of nAMD, combining multiple images may be better than basing 
the judgment on only one isolated OCT image. Second, the variety and number of OCT images available were 
limited. In addition, all images were acquired using a single OCT device. In future studies, external validation 
with OCT devices sourced from different manufacturers will be necessary. However, the dataset was sufficient 
to demonstrate the feasibility of our proposed deep learning model to distinguish the subtypes of nAMD using 
OCT images. Despite these limitations, our model successfully classified the nAMD subtypes based on a single 
SD-OCT image, suggesting the possibility of future study directions toward developing nAMD diagnostic models 
using multiple SD-OCT images.

Figure 3.   Visualization of 6 cases of AMD subtypes (3 PCV cases, 2 RAP cases, 1 Typical AMD cases) using 
Grad-CAM on our deep learning model. (a) Three PCV cases, (b) Two RAP cases, (c) One Typical AMD case. 
The high intensity area (red and yellow color) reflects the area of interest to our model. The six images used in 
this figure were correctly classified by two retina specialists and our model, but six or more ophthalmologists 
were misclassified. The corresponding Grad-CAM image shows that our model actually showed the similar 
criteria for classifying AMD subtypes.
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In summary, we developed a deep learning model that performed well in distinguishing between several 
subtypes of nAMD using only OCT images without a segmentation algorithm. Automation of the classification 
process using this model may support ophthalmologists in differentiating nAMD subtypes. We believe that 
this study forms the basis for further studies to develop accurate OCT-based deep learning models with high 
performance for detecting nAMD and for classifying several macular diseases.

Methods
Ethics statement.  This study was conducted in accordance with the 1964 Helsinki Declaration. The Ethics 
Committee of Hangil Eye Hospital approved the research protocols and their implementation. The committee 
waived the requirement for obtaining informed consent, given that this was a retrospective observational study 
of medical records and was retrospectively registered.

Data collection and labeling.  We analyzed the records of patients who visited the Hangil Eye Hospital 
between January 2014 and January 2020. We used SD-OCT (Heidelberg Spectralis; Heidelberg Engineering, 
Heidelberg, Germany) images of normal healthy participants and patients with nAMD. Among the 347 patients 
enrolled at the outpatient clinic during that period, 120 had typical AMD, 106 had RAP, and 121 had PCV. Addi-
tionally, 50 participants were assigned to the normal healthy group. All typical AMD, RAP, and PCV cases were 
diagnosed by independent retina specialists using fundus photographs, FA, ICGA, and OCT images. One eye 
per patient was selected for this study, with one visit per patient. The FA-/ICGA-based classification of nAMD 
was performed by two retina specialists (DDH and JSH) who reviewed all images obtained by OCT, FA, and 
ICGA multimodal imaging. In cases of disagreement, a third retina specialist (JMH) assessed the discrepancy 
and discussed the case with other specialists. All discrepancies were resolved by consensus.

PCV was diagnosed based on the presence of polypoidal lesions with or without branching vascular 
networks19. Cases that exhibited retinal-retinal or retinal-choroidal anastomoses were classified as type 3 neo-
vascularization (RAP)19. The remaining patients who were not diagnosed with either PCV or RAP were classified 
as having typical nAMD with type 1 or type 2 choroidal neovascularization (CNV). Figure 4 shows representative 
cases of each subtype of nAMD. Our analysis excluded cases that showed other potentially conflicting retinal 
pathologies, such as central serous chorioretinopathy, diabetic retinopathy, and branch retinal vein occlusion.

SD‑OCT dataset collection.  In this study, we used only central volume scans consisting of 25 scan images.
Figure 5 illustrates the overall process of extracting lesion cuts from the 25 scan images. As shown in Fig. 5, 

DDH first selected all lesion cuts from the 25 SD-OCT images for the patient. He considered an SD-OCT image 
as a lesion cut if any of the following findings were observed: (1) Subretinal fluid (SRF), (2) Intraretinal fluid (IRF) 
or intraretinal cyst, (3) Drusen or Irregular RPE elevation with double-layer sign, (4) Pigment epithelial detach-
ment (PED), and (5) Subretinal hyperreflective material. The lesion cuts were carefully selected by checking all 
25 SD-OCT images of each patient. After that, we selected the N (i.e., 0 ≤ N ≤ 5) lesion cuts that were included in 
the central region (between the 11th and 15th cuts). We then randomly selected 10-N non-centered lesion cuts 
that are located in non-centered lesion cuts (including the parafoveal or perifoveal area) that are located between 
the 1st and 10th cuts or between the 16th and 25th cuts. If the number of non-central lesion cuts is less than 
10-N, all non-central lesion cuts are selected. Therefore, up to 10 images were selected per patient in this study.

Data preprocessing.  First, we cropped whole SD-OCT scan images to RGB images of size 490 × 764 for 
using only lesion cuts in training the deep learning model. Then, we down-sampled the images into 224 × 224 
RGB images. This is because using the entire SD-OCT scan images (490 × 764) takes up too much memory, and 
the 224 × 224 RGB format is widely used in deep learning models for image classification. The entire dataset was 
randomly split into a training set (80%) and a test set (20%). The training set consisted of 3,829 images (normal, 
1725; PCV, 777; RAP, 684; typical AMD, 643) of 316 patients (Normal: 40, PCV: 96, RAP: 84, typical AMD: 96). 
The test set consisted of 920 images (normal: 400, PCV: 178, RAP: 179, typical AMD: 163) of 81 patients (nor-
mal, 10; PCV, 25; RAP, 22; typical AMD, 24). Here, the same patient’s data do not belong to either the training 
or test sets at the same time.

Building a robust classification model requires a large amount of training data. However, owing to the lack 
of training data, we applied data augmentation during the training phase. Data augmentation has been demon-
strated as a promising way to increase the performance of classification tasks29. For each image, we generated 
images that were shifted, zoomed in/out, rotated, and flipped. Augmentation was not applied to the test data 
(i.e., 920 images).

Model architecture.  To adopt an accurate image classification architecture in deep learning, we evaluated 
well-known CNN models, namely, VGG1630, VGG1930, and Resnet31. To improve the classification performance, 
we also applied transfer learning with the ImageNet dataset32,33. In transfer learning, a pre-trained model using 
a large dataset, such as ImageNet34 was used. Note that ImageNet has 15 million annotated images with 1000 
classes34,35. By transferring the ImageNet-based pre-trained model to our SD-OCT images, we could obtain an 
accurate and robust model. In our experiment, we found that using transfer learning with the pre-trained model 
could increase the accuracy by 2.1%. To customize the model, we replaced the fully connected layers of the 
original CNN models (VGG-16, VGG-19, and Resnet) with two custom settings: (1) four fully connected layers 
and three dropout layers with Leaky ReLU as an activation function, and (2) a global average pooling layer. An 
illustration of the proposed model architecture is shown in Fig. 6.

To fairly compare all the possible model architectures, for example, VGG 16 with a global average pooling, 
VGG19 with 4 fully-connected layers/3 dropout layers/leaky Relu, all the models were trained with the same 
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Figure 4.   Representative cases of typical AMD (a–e), RAP (f–j) and PCV (k–o). Typical AMD. (a) FA, (b) 
ICGA, (c) IR, and (d,e) OCT images. The OCT images (d,e) show typical features of AMD with type 2 CNV. 
RAP. (f) FA, (g) ICGA, (h) IR, and (i,j) OCT images of an eye with RAP. The OCT images (i,j) show typical 
features of RAP: a thin choroid (arrowheads), intraretinal cyst like fluid accumulation (asterisks), and trapezoid-
shaped RPED (double arrows). PCV. (k) FA, (l) ICGA, (m) IR, and (n,o) OCT images of an eye with PCV. 
The OCT images (n,o) show irregular RPE elevation with double-layer sign (double arrow), subretinal fluid 
(asterisks), and sharp-peaked or steeper dome-shaped RPEDs or notches (arrows). FA fluorescein angiography, 
ICGA​ indocyanine green angiography, IR infrared reflectance, OCT optical coherence tomography, CNV 
choroidal neovascularization, PCV polypoidal choroidal vasculopathy, RAP retinal angiomatous proliferation, 
RPE retinal pigment epithelium, RPED retinal pigment epithelial detachment.
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hyperparameters. The batch size of the model was 64, the loss function was the categorical cross entropy with 
Adam optimization, and the learning rate was 0.0001.

Experiment setup.  To train and evaluate the proposed model, we conducted a fivefold cross-validation. 
We split the entire SD-OCT dataset into training (80%) and a test (20%) set. Next, we divided the training data 
into five folds. Among the five folds, one fold plays the role of a validation set, while the other folds are used in 
training. We repeated this five times until we validated all folds. Thus, the proposed model was validated for each 
fold. Finally, the performance of the final model was evaluated using a test set (920 images).

To compare the performance of our proposed model with that of ophthalmologists, ten ophthalmologists 
(two retina specialists, four retina fellows, four residents) were asked to classify 920 SD-OCT scanned images 
that were the same as the test set, which was used to evaluate our model’s performance.

Gradient‑weighted class activation mapping.  We used Grad-CAM to visualize potential pathologi-
cal areas in OCT images36. To visualize the critical regions of the image for the classification of the target label, 

Figure 5.   Entire process of extracting lesion cuts from 25 SD-OCT scan images. Initially, Retina expert (DDH) 
extracted lesion cuts from the 25 SD-OCT images for patient. Next, we selected N (i.e., 0 ≤ N ≤ 5) lesion cuts 
between the 11th and 15th central regions. Finally, we randomly selected 10-N non-centered lesion cuts. 
Therefore, up to 10 images were selected per patient for this study.

Figure 6.   Network architecture of the modified CNN-based models (VGG-16, VGG-19, Resnet) in our study. 
Using 3 CNN-based pre-trained models (VGG-16, VGG-19, Resnet) and 2 last classification layers (fully 
connected layer with dropout and global average pooling), a total of 6 models were generated and used in this 
experiment.
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Grad-CAM extracts the gradient of the target labels with respect to the feature map of the convolutional layer to 
generate a heat map showing the critical area during the classification process.

Statistical analysis.  To measure the performance of the model, precision, recall, F1-score, and accuracy 
were calculated. Cohen’s kappa coefficient was used to assess the agreement level between the two retina spe-
cialists and the proposed model. Cohen’s Kappa coefficients were calculated using Scikit-learn, which is a well-
known Python library.

Data availability
The data are not available for public access because of patient privacy concerns, but are available from the cor-
responding author upon reasonable request.

Received: 3 September 2021; Accepted: 17 January 2022
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