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Abstract

Uranium, perhaps the most strategically important component of heavy minerals, finds par-

ticular significance in the nuclear industry. In prospecting trenches, the radioactivity of 238U

and 232Th provides a good signature of the presence of heavy minerals. In the work herein,

the activity concentrations of several key primordial radionuclides (238U, 232Th, and 40K)

were measured in prospecting trenches (each of the latter being of approximately the same

geometry and physical situation). All of these are located in the Seila area of the South East-

ern desert of Egypt. A recently introduced industry standard, the portable hand-held RS-230

BGO gamma-ray spectrometer (1024 channels) was employed in the study. Based on the

measured data, the trenches were classified as either non-regulated (U activity less than

1000 Bq kg-1) or regulated (with 238U activity more than 1000 Bq kg-1). Several radiological

hazard parameters were calculated, statistical analysis also being performed to examine

correlations between the origins of the radionuclides and their influence on the calculated

values. While the radioactivity and hazard parameters exceed United Nations Scientific

Committee on the Effects of Atomic Radiation (UNSCEAR) guided limits, the mean annual

effective doses of 0.49 and 1.4 mSv y-1 in non-regulated and regulated trenches respec-

tively remain well below the International Commission on Radiological Protection (ICRP)

recommended 20 mSv/y maximum occupational limit. This investigation reveals that the

studied area contains high uranium content, suitable for extraction of U-minerals for use in

the nuclear fuel cycle.
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1. Introduction

The radioactivity of the living environment is contributed to by terrestrial and extra-terrestrial

sources. Terrestrial natural radionuclides (238U, 232Th and their progeny, and 40K) exist in all

ground formations, forming the main sources of external gamma radiation exposure to

humans [1–3]. Extra-terrestrial sources such as cosmogenic radionuclides (36Cl, 32Si, 26Al, 14C,
10Be, 7Be and 3H) exist at trace levels, forming a minor part of radiation exposure to humans,

albeit at levels varying with altitude and location. About 96% of the total radiation dose to the

world population is from these natural sources, while 4% arises from anthropogenic sources

[2, 4]. Elevated levels of environmental radiation are contributed to by igneous rocks such as

granite, with lower levels typically being associated with sedimentary rocks. Both are used as

essential raw materials for building material purposes, landfill etc. The presence of terrestrial

radionuclides in raw materials used for constructional intent may pose radiation risks within

the living environment [5].

Prospecting for and research on important minerals is being carried out in many parts of

the world. Uranium mining in particular is unique in that currently the ores represent the only

source of nuclear fuel for nuclear power production [6, 7]. In uranium prospecting, the princi-

pal sources of occupational exposure are inhaled radon, thoron, and their respective progenies

from the 238U and 232Th series, along with the associated external irradiation gamma rays [8–

12].

Uranium ore deposits in Egypt are found in several areas, including El-Missikate and El-

Erediya (in the Central Eastern Desert of Egypt), Gable Gattar (in the North Eastern Desert of

Egypt), Abu Rusheid, El Seila and Um Ara (in the South Eastern Desert of Egypt), and Abu

Zeneima (South of Sinai) [13, 14]. While numerous studies around the world, including in

Egypt, have concerned determination of radiation levels in various trenches or ores as indica-

tors of mineral deposits [15–23], no such investigation has been found for the trenches of the

El Seila area of Egypt.

The nomadic El-Bishariya tribe inhabit areas around Seila, practicing a pastoral life-style

within this region of the South East Desert. The area is also one with occurrences in the gran-

ites of natural uranium, UNat. Over the past several decades, with guidance offered under pro-

grames of the Internarional Atomic Energy Agency (IAEA), Egypt has paid great attention to

the possibility of using nuclear energy to produce electricity. The responsible national authori-

ties examining justification of such process includes the Nuclear Materials Authority (NMA),

undertaking exploration for radioactive raw materials. The NMA has established an explora-

tion project to evaluate and extract radioactive raw materials, primarily from uranium-bearing

heavy minerals. Accordingly, many open trenches have been created, workers consequently

being exposed, not least from the external gamma radiation from the terresterial radionuclides,

either at site or during transportation. Most of the trenches have been located in mountainous

or relatively uneven areas, drilling and transportation of the heavy minerals accordingly repre-

senting a relatively difficult task. Moreover, weathering, aeration and rock fracturing processes

lead to stream sediments, concentrated in various wadis and tributaries, further contributing

to radiation exposures, both to surrounding dwellers as well as personnel working in the vari-

ous prospecting processes.

The present work forms the first such study determining terrestrial radionuclide concentra-

tions and estimating the concomitant radiation exposure inside these particular open pros-

pecting trenches. Several radiological parameters such as the radium equivalent activity Raeq

(Bq kg-1), absorbed dose rate in air D (nGy h-1), and the annual effective dose AED (mSv y-1)

have been estimated, seeking evaluation of radiation risk, most particularly to trench workers.

Details of the study are presented in the following sections.
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2. Materials and methods

2.1 Environmental setting of the prospecting trenches

The prospecting trenches in the area of Seila are located between latitudes 22˚ 130 4800 - 22˚ 180

3600N and longitudes 36˚ 100 1200 - 36˚ 180 3600 E (Fig 1). The granite within these trenches are

large highly weathered entities, exposed within low-to-moderately separated hills, being coarse-

grained, and pink to pinkish-grey in colour. It is mainly composed of quartz, K-feldspar, plagio-

clase, biotite, and rare muscovite and is characterized by the presence of iron and manganese

oxides filling joints and fractures, indicating Fe and Mn mineralization. The area is further

intruded by fine-grained granite, occurring as sheets and dykes trending north-west (NW) to

south-east (SE). This granite, dissected by basic dykes, are massive, fine-grained, and range in col-

our from greyish-green to dark grey, mostly trending east-north-east (ENE) to west-south-west

(WSW), usually injected along the extension planes. The southern part of the coarse-grained

granite is dissected by a barren quartz vein trending ENE-WSW, extending for more than 600 m,

the widest parts ranging from 1 to 10 m [24]. This area is the one in which most of the granite

trenches are distributed, perpendicular to the ENE-WSW shear zone. The length of these

trenches range from 10 m to 15 m, with width from 5 m to 8 m, and depth of 5–6 m [25, 26].

2.2. Sampling method and experimental measurements

A portable, industry-standard RS-230 BGO gamma-ray spectrometer was used to determine

the terrestrial radionuclides content in the trenches, popular in uranium exploration. This

handheld instrument has been reported to offer convenience and affordability, comparison being

Fig 1. [a] Map of Egypt with the investigated area, [b] the geological map of the Seila area together with the distribution of prospecting trenches [27].

https://doi.org/10.1371/journal.pone.0249329.g001
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made against that of a number of other portable units [28]. Terraplus (2013) showed that a 120 s

duration RS-230 BGO measurement provides comparable quality to that performed using the

much larger 21 in3 NaI portable detector. The spectrometer auto-stabilizes on the naturally

occurring radioactivity (K, U, & Th) and does not require any test sources [29].

The present study was carried out as a field study for many regions in Egypt by the Nuclear

Materials Authority (NMA). The first and second authors are working in the NMA. This work

was done as a part of their MSc. thesis. The area of interest is not restricted or under control,

and it is open for measurement by any researchers. The samples were not collected from the

prospecting trenches, instead a portable gamma-ray spectroscopy (RS-230) was employed. The

RS-230 builds up with a 6.3 in3 (103 cm3) high density bismuth germinate oxide (BGO) detec-

tor. The main characteristics is the recording of readout result rapidly, which facilitates

repeated measurements within a short period.

A total of 20 trenches have been studied, obtaining 30 s duration direct readings of 238U,
232Th, and 40K, recorded in ppm, recorded four times for each trench in order to obtain good

statistics. The RS-230 BGO spectrometer also provides a measure of the percentage of potas-

sium in the trenches. The radiological measurements were defined by the activity concentra-

tion (Bq kg-1) instead of content (ppm) [28], both listed in Table 1.

Following the recommendation of the IAEA [30], the measured activity concentrations of

terrestrial radionuclides in the prospecting trenches have been divided into two categories,

non-regulated and regulated. For this, the IAEA has established reference values of 1 Bq/g for

radioactive material 238U and 232Th, and 10 Bq/g for 40K; above these values the radioactive

material is recommended to be regulated [30].

2.2.1 Assessment of radiation hazard. The key radiological hazard indices were: radium

equivalent activity (Bq kg-1), absorbed dose rate (nGy h-1), and annual effective dose (mSv y-1),

seeking to evaluate the radiation risk to occupationally exposed workers.

2.2.2 Radium equivalent activity (Raeq). This index is related to the external gamma-ray

exposure and internal dose due to alpha particles, the following formula being used [31]:

RaeqðBqkg
� 1Þ ¼ AU þ 1:43ATh þ 0:077AK ð1Þ

with AU, ATh, and AK the activity concentrations of uranium, thorium, and potassium in Bq

kg-1
. The weights are based on the estimated dose of 370 Bq kg-1 for 238U, 259 Bq kg-1 for

232Th, and 4810 Bq kg-1 for 40K [32].

2.2.3 Absorbed dose rate. The absorbed dose rate D (nGy h-1) is conventionally deter-

mined by assessing the gamma-ray exposure at 1 m above the ground surface. This value can

be calculated by using the following equation [28, 33]:

DðnGy h� 1Þ ¼ 0:427AU þ 0:662ATh þ 0:043AK ð2Þ

2.2.4 Annual effective dose. To assess the occupational radiation exposure due to natural

radioactivity inside the open prospecting trenches, the annual effective dose (AED) was esti-

mated in mSv y-1, the following equation being used [1]:

AEDðmSv y� 1Þ ¼ DðnGy h� 1Þ � 2000� 1ðSv Gy� 1Þ ð3Þ

Table 1. Conversion of radioelement content to activity concentration (Bq kg-1).

Radioelement Content Activity concentration (Bq kg-1)
40K 1% K in rock 313
238U 1 ppm U in rock 12.4
232Th 1 ppm Th in rock 4.06

https://doi.org/10.1371/journal.pone.0249329.t001
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where the duration of occupational exposure is taken to be 2000 h/y, with a conversion factor

of 1 Sv Gy-1 for whole-body exposures.

2.3. Statistical analysis

Variation in radionuclide activity, in terms of mean and standard deviation was assessed, also

data normality, use being made of a one-way analysis of variance (ANOVA-1). SPSS software

(SPSS, 2006) was used to test the means by Duncan’s multiple ranges at P < 0.05.

3. Results and discussion

The studied trenches are approximately of the same geometry and physical condition. The

average activity concentrations in the two types of trenches (non-regulated and regulated) are

shown in Fig 2. For non-regulated trenches, the mean activity concentrations of 238U, 232Th

and 40K are 313, 76, 1131 Bq kg-1 with ranges (49 to 510 Bq kg-1), (42 to 126 Bq kg-1), and (805

to 1477 Bq kg-1) respectively. For regulated tranches, the average activity concentrations are

1487, 42, 1112 Bq kg-1 with ranges (1100 to 2163 Bq kg-1), (25 to 92 Bq kg-1), and (805 to 1435

Bq kg-1) for 238U, 232Th and 40K respectively.

Overall, the highest activity concentrations of 238U, 232Th, and 40K have been found to be

2163 ± 126, 126 ± 5, and 1476 ± 120 Bq kg-1, respectively, while the respective lowest values

were observed to be 49 ± 3, 25 ± 2, and 805 ± 15 Bq kg-1. These values, other than some small

values for 232Th, are greater than the UNSCEAR reported reference values of 33, 45, and 412

Bq kg-1 for uranium, thorium, and potassium [1]. The various terrestrial radionuclide concen-

tration values in the different prospecting trenches are reflective of geological formation vari-

ability, the granite rocks in the studied trenches being considered uriniferous granite in that

they contain at least twice the Clarke value [34]. The normal probability of 238U, 232Th, and
40K activity concentrations in the studied regulated and non-regulated prospecting trenches

are presented in Fig 3.

The calculated radium equivalent activity (Raeq) values for each studied trenches (both reg-

ulated and non-regulated) are presented in Fig 4. The Raeq values ranging from 282 to 1004 Bq

kg-1 with a mean of 510 Bq kg-1 for the non-regulated prospecting trenches. In the regulated

Fig 2. Box and whisker plot of 238U, 232Th, and 40K activity concentrations (Bq kg-1) in: (a) the regulated trenches and; (b) non- regulated

trenches.

https://doi.org/10.1371/journal.pone.0249329.g002
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prospecting trenches, the range of Raeq values are 1146–2282 Bq kg-1 with a mean of 1634 Bq

kg-1. The mean values of Raeq, in all of the prospecting trenches these are above the recom-

mended value of 370 Bq kg-1 [31], graphically represented in Fig 4. The higher Raeq belong to

granite rocks, rich in potassium together with content of uranium, thorium, and their decay

products [35, 36].

In regard to the estimated occupational absorbed dose rates in air (nGy h-1), in the non-reg-

ulated and regulated prospecting trenches respectively, these range from 131 to 446 nGy h-1

with a mean of 241 nGy h-1, and from 505 to 982 nGy h-1 with a mean of 709 nGy h-1. In all of

the prospecting trenches these absorbed dose rates are above the recommended value of 59

nGy h-1 [1].

The occupational radiation exposure inside the prospecting trenches occurs via two differ-

ent pathways: external exposure from gamma-rays and internal exposure due to the inhalation

of radon and thoron gases and their decay products, attached to atmospheric dust. Present

study focuses on the external gamma exposure to workers in the prospecting trenches, with

the annual effective dose estimated based on a working period of 2000 h over one year. Fig 5

Fig 3. The normal probability of 238U, 232Th, and 40K activity concentrations for the studied non-regulated and regulated trenches.

https://doi.org/10.1371/journal.pone.0249329.g003
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shows the average annual effective dose (AED) for non-regulated and regulated trenches in the

Seila area, with respective values of 0.48 (range 0.27–0.89) mSv y-1 and 1.4 (range 1.01–1.97)

mSv y-1. The occupational AED for regulated trenches exceeds the recommended safe level

limit of 1 mSv y-1 for members of the public, although it is very much lower than the occupa-

tional maximum limit of 20 mSv y-1, as mentioned in respect of prospecting trenches [37]. The

observed annual effective dose in the trenches showed no significant radiation dose from

gamma radiation. Nevertheless, people who live in this area or use the residues as building

materials may be exposed to elevated levels of radiation dose.

The 232Th/238U ratios for non-regulated and regulated trenches in the Seila area are shown

in Fig 5, comparison being made with the world average value of 3.94 [38]. The 232Th/238U

ratio for non-regulated trenches ranges between 0.054 and 0.975, with a mean of 0.495. The

range for regulated trenches is 0.018 to 0.055, with a mean value of 0.03. These values are

below the worldwide average value [39–41], point to the Seila trenches media being igneous

zircon [42], containing high uranium-content granitic rocks. Related to variations in stream

sediments in terms of geochemical properties, the weather conditions may have affected this

ratio. It is worth mentioning that the trenches are located on the high mountains and hills,

which surrounded the Seila area. The weather in this area is characterized by rainy in the

Fig 4. Radium equivalent activity in: (a) non-regulated (a) and; (b) regulated trenches.

https://doi.org/10.1371/journal.pone.0249329.g004
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winter season, therefore the leaching processes could be happened and there is a high possibil-

ity that the stream sediments may contributed in various ratios.

The statistical analysis was performed using Pearson correlation for the results in non-regu-

lated and regulated trenches and presented in Tables 2 and 3. Table 2 shows that AU has a

strong negative correlation with ATh and AK and a weak negative correlation with the Th/U

ratio. ATh has a positive correlation with the Th/U ratio. AK has a negative correlation with

ATh and a positive correlation with AU. This is due to the relatively high activity of 238U and
40K.

Table 3 shows that AK has a negative correlation with all other parameters due to the rela-

tively high activity concentration of 238U, greater than 1 kBq kg-1 and more elevated than the

activity of 40K itself. ATh has a positive correlation with all other parameters except for AK. AU

has a strong negative correlation with AK and the Th/U ratio but a weak positive correlation

with ATh. In both non-regulated and regulated trenches, AU has a strong correlation with the

Fig 5. The average AED (in mSv/y) and the Th/U ratio.

https://doi.org/10.1371/journal.pone.0249329.g005

Table 2. Pearson correlation for non-regulated trenches.

AU ATh AK Raeq Dair AED Th/U

AU 1 - - - - - -

ATh -0.35 1 - - - - -

AK -0.33 -0.36 1 - - - -

Raeq 0.90 -0.41 0.070 1 - - -

Dair 0.834 -0.44 0.21 0.98 1 - -

AED 0.84 -0.45 0.21 0.98 0.99 1 -

Th/U -0.87 0.38 0.34 -0.75 -0.68 -0.68 1

https://doi.org/10.1371/journal.pone.0249329.t002
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radiological hazard indices (Raeq, Dair, and AED), approaching unity. This is due to the activity

of 238U, in all trenches being greater than the recommended limit.

5. Conclusions

The Seila region in Egypt is considered as a potential area for exploration of heavy minerals,

therefore the prospecting trenches were drilled following some geological and radioactive

studies. Present study forms an interest of measuring the concentrations of terrestrial radionu-

clides in some non-regulated and regulated trenches in this area. The mean activity concentra-

tions of 238U, 232Th, and 40K are found to be 313.4, 76.3 and 1131.4 Bq kg-1 respectively in

non-regulated trenches, and 1487, 42, and 1112 Bq kg-1 respectively in the regulated trenches.

In the regulated trenches, with the exception of thorium, the values are greater than that of the

worldwide mean data. The estimated radiological indices and concomitant dose show that the

workers in the prospecting trenches receive a much lower annual effective dose than the maxi-

mum occupational limit of 20 mSv/y, but in regulated trenches the values are above the safe

limit of 1 mSv/y for the general population. In order to avoid any unnecessary radiation expo-

sure, measured data suggests the need for control in use of any trench materials/residues for

construction of dwellings. The measured concentrations of 238U clearly support the viability of

heavy mineral (uranium) extraction for practical applications within the nuclear fuel cycle.
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