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Abstract
Increasing evidence indicates that abnormalities in the composition of gut microbiota might play a role in stress-related
disorders. In the learned helplessness (LH) paradigm, ~60–70% rats are susceptible to LH in the face of inescapable electric
stress. The role of gut microbiota in susceptibility in the LH paradigm is unknown. In this study, male rats were exposed to
inescapable electric stress under the LH paradigm. The compositions of gut microbiota and short-chain fatty acids were
assessed in fecal samples from control rats, non-LH (resilient) rats, and LH (susceptible) rats. Members of the order
Lactobacillales were present at significantly higher levels in the susceptible rats than in control and resilient rats. At the
family level, the number of Lactobacillaceae in the susceptible rats was significantly higher than in control and resilient rats.
At the genus level, the numbers of Lactobacillus, Clostridium cluster III, and Anaerofustis in susceptible rats were significantly
higher than in control and resilient rats. Levels of acetic acid and propionic acid in the feces of susceptible rats were lower
than in those of control and resilient rats; however, the levels of lactic acid in the susceptible rats were higher than those of
control and resilient rats. There was a positive correlation between lactic acid and Lactobacillus levels among these three
groups. These findings suggest that abnormal composition of the gut microbiota, including organisms such as
Lactobacillus, contributes to susceptibility versus resilience to LH in rats subjected to inescapable electric foot shock.
Therefore, it appears likely that brain–gut axis plays a role in stress susceptibility in the LH paradigm.

Introduction
Resilience is adaptation in the face of stress and

adversity. It is well known that humans display wide
variability in their responses to stress. Increasing amounts
of evidence show that resilience might be mediated by
adaptive changes in several neural circuits, including
numerous molecular and cellular pathways1–11. An
understanding of the molecular and cellular mechanisms
underlying resilience will facilitate the discovery of new
therapeutic drugs for stress-related psychiatric disorders,

but the detailed mechanisms underlying resilience and
susceptibility remain unclear.
The brain–gut–microbiome axis is a complex, bidirec-

tional signaling system between the brain and the gut
microbiota12–16. Accumulating studies suggest that an
abnormal composition of the gut microbiota contributes
to the pathophysiology of depression17–21 and the anti-
depressant effects of certain potential compounds22–29.
Previously, we reported that the presence of Bifido-
bacterium in the gut microbiome confers stress resilience
in a chronic social defeat stress (CSDS) model30. It has
been shown that ~30–40% of rats are resilient to ines-
capable electric stress in the learned helplessness (LH)
paradigm31–34; however, the role of gut microbiota in the
production of this resilience has not yet been investigated.
Microbes in the gut can produce short-chain fatty acids.
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The presence and abundance of such acids could pos-
sibly be used as an indicator of the types of bacteria
present in the gut. However, it is also currently unknown
how the altered composition of the gut microbiota
affects the concentration of short-chain fatty acids in
fecal samples.
The purpose of this study was to investigate the role of

gut microbiota on stress resilience using a rat LH para-
digm. First, we investigated whether the composition of
the gut microbiota was altered in fecal samples from LH
(susceptible) and non-LH (resilient) rats compared with
control rats. Then we examined whether the levels of
short-chain fatty acids—acetic acid, propionic acid, butyric
acid, lactic acid, and succinic acid—in the fecal samples
from susceptible and resilient rats were altered compared
with control rats, since these short-chain fatty acids can
produced by the gut microbiota23.

Materials and methods
Animals
Male Sprague-Dawley rats (n= 25, 200–230 g; 7 weeks,

Charles River Japan, Co., Tokyo, Japan) were used. The
animals were housed under a 12-h light/dark cycle with
ad libitum access to food and water. The experimental
procedures were approved by the Chiba University Insti-
tutional Animal Care and Use Committee (Permission
number: 31-341).

Stress paradigm (LH model) and collection of fecal sample
The LH paradigm was performed as previously repor-

ted6–8,11,31–34. Animals were initially exposed to
uncontrollable stress to create LH rats. When the rats
were later placed in a situation in which the shock is
controllable; that is, the animal could escape it, an animal
exhibiting LH not only fails to acquire an escape response
but also often makes no effort to escape the shock at all.
We used the Gemini Avoidance System (San Diego

Instruments, San Diego, CA) for LH paradigm. This
apparatus has two compartments by a retractable door.
On day 1 and day 2, rats were subjected to 30 inescapable
electric foot shocks (0.65 mA, 30 s duration, at random
intervals averaging 18–42 s). On day 3, a post-shock test
using a two-way conditioned avoidance test was per-
formed to determine whether the rats would exhibit the
predicted escape deficits (Fig. 1a). This session consisted
of 30 trials, in which electric foot shocks (0.65 mA, 6 s
duration, at random intervals with a mean of 30 s) were
preceded by a 3-s conditioned stimulus tone that
remained on until the shock was terminated. The num-
bers of escape failures and the latency to escape in each of
the 30 trials were counted. Animals with more than 25
escape failures in the 30 trials were regarded as having
met the criterion for LH rats (susceptible). Animals with
fewer than 24 failures were defined as non-LH rats

(resilient)31–34. Fresh fecal samples were collected in a
blind manner before post-shock stress on day 4, and
stored at −80 °C until use (Fig. 1A).

16S rDNA analysis
DNA extraction from fecal samples and the 16S rDNA

analysis were performed at the TechnoSuruga Laboratory,
Co., Ltd. (Shizuoka, Japan), as reported previously35.
Briefly, the samples were suspended in a buffer containing
4M guanidium thiocyanate, 100mM Tris-HCl (pH 9.0)
and 40mM EDTA and broken up in the presence of
zirconia beads using the FastPrep-24 5G homogenizer
(MP Biomedicals, Irvine, CA). Then, DNA was extracted
using GENE PREP STAR PI-480 (KURABO, Japan). The
final concentration (10 ng/μL) of the DNA sample was
used. Briefly, the V3-V4 hypervariable regions of the 16S
rRNA were amplified from microbial genomic DNA using
PCR with the bacterial universal primers (341F/R806)35

and the dual-index method36. For bioinformatics analysis,
the overlapping paired-end reads were merged using the
fastq-join program with default settings37. The reads were
processed for quality and chimera filtering as follows.
Only reads with quality value scores of 20 for >99% of the
sequence were extracted, and chimeric sequences were
removed using the program usearch6.138. Non-chimeric
reads were submitted for 16S rDNA-based taxonomic
analysis using the Ribosomal Database Project (RDP)
Multiclassifier tool39. Reads obtained in the Multi-FASTA
format were assigned to genus or phylum levels with an
80% confidence threshold. Principal component analysis
(PCA) was performed using Metagenome@KIN software
(World Fusion Co., Ltd., Tokyo, Japan) based on data
obtained from the bacterial family using the RDP taxo-
nomic analysis software.

Measurement of fecal short-chain fatty acids
Measurement of short-chain fatty acids—acetic acid,

propionic acid, butyric acid, lactic acid, and succinic acid
—in fecal samples was performed at the TechnoSuruga
Laboratory, Co., Ltd. (Shizuoka, Japan). For the determi-
nation of these short-chain fatty acids, feces were sus-
pended in distilled water, heated at 85 °C for 15min to
inactivate viruses, and then centrifuged according to
previously reported methods40,41. The concentrations of
these short-chain fatty acids in feces were measured using
a high-performance liquid chromatography organic acid
analysis system with a Prominence CDD-10A con-
ductivity detector (Shimadzu, Kyoto, Japan), two tan-
demly arranged Shim-pack SCR-102(H) columns
[300 mm× 8mm inner diameter (ID)], and a Shim-pack
SCR-102(H) guard column (50 mm× 6mm ID)40,41. The
HPLC calibration curves for the measurement of the
short-chain fatty acids were created using prepared
standard solutions.
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Statistical analysis
The data are presented as the mean ± standard error of

the mean (S.E.M.). Analysis was performed using the
PASW Statistics 20 software (now SPSS statistics; SPSS,
Tokyo, Japan). Comparisons between groups were per-
formed using one-way analysis of variance, followed by
post hoc Fisher’s Least Significant Difference test. A P
value < 0.05 was considered statistically significant.

Results
Composition of gut microbiota in control, resilient, and
susceptible rats
We used 16S rDNA gene sequencing to determine

differences in the gut microbiota composition among the
three groups of rats. α-diversity refers to the diversity of
bacteria or species within a community or habitat. The
susceptible rats showed a significant decrease in the α-
diversity value compared with control rats or resilient rats
(Fig. 1b). In the three-dimensional PCoA data, the mea-
surements from susceptible rats were well separated from
those of control rats and resilient rats. Four measure-
ments from the susceptible group were close to those of
the sham group, whereas the other three measurements
were close to those of the resilient group (Fig. 1c).
Firmicutes were the most dominant phylum, comprising

>85% of the total sequences. There were no significant
differences in the levels of this phylum among the three
groups. The order levels of gut bacterium in control rats,
resilient rats, and susceptible rats were identified (Fig. 2a).

Clostridiales and Lactobacillales were the most dominant
orders, with >80% of total sequences. The number of
Lactobacillales was significantly increased in the suscep-
tible rats compared with that in control and resilient rats
(Fig. 2b). In contrast, the number of Lactobacillales in the
resilient rats was similar to that in the control rats (Fig.
2b). The number of Actinomycetales in the susceptible
rats was significantly lower than that in the resilient rats
(Fig. 2c). Although the number of Actinomycetales in the
resilient rats was higher than that in the control rats, the
difference did not reach statistical significance.
The families of the gut bacteria in control, resilient, and

susceptible rats are shown (Fig. 3a). Lactobacillaceae were
significantly more highly represented in the susceptible
rats than in the control and resilient rats, although the
number of Lactobacillaceae in the resilient rats was
similar to that in the control rats (Fig. 3b). In contrast, the
number of Corynebacteriaceae was significantly lower in
the susceptible rats than that in the resilient rats, although
these two did not significantly differ from the control rats
(Fig. 3c).
The genera of gut bacteria in the control, resilient, and

susceptible rats are shown (Fig. 4a). Lactobacillus, Clos-
tridium cluster III, and Anaerofustis numbers were sig-
nificantly higher in the susceptible rats than in the control
and resilient rats (Fig. 4b, c, e). Corynebacterium numbers
were significantly lower in the susceptible rats than in the
resilient rats, although these two groups were not sig-
nificantly altered compared with the control rats (Fig. 4d).

Fig. 1 Experimental schedule of LH paradigm and profiles of gut microbiota. a Schedule of LH paradigm and collection of fecal samples. Rats
received inescapable electric shock (IES) treatments on 2 days (days 1 and 2). On day 3, fecal samples from rats were collected. Subsequently, rats
passed a post-shock test (PS), and were designated as resilient rats and susceptible rats. b Simpson index (an α-diversity indicator: one-way ANOVA:
F2,17= 11.531, P= 0.001) among the three groups. α-Diversity data are shown as mean ± S.E.M. (n= 6 or 7). **P < 0.01. N.S.: not significant. c Principal
coordinates analysis (PCA)
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Measurement of short-chain fatty acids in fecal samples
Levels of acetic acid and propionic acid in the suscep-

tible rats were significantly lower than those in control
rats and resilient rats, and there were no significant dif-
ferences between control rats and resilient rats (Fig. 5a, b).
There were no changes in butyric acid and succinic acid
among the three groups (Fig. 5c, e). In contrast, levels of
lactic acid in the susceptible rats were significantly higher
than those of control rats and resilient rats, although there
were no changes between control rats and resilient rats
(Fig. 5d). There was a positive correlation (r= 0.461, P=
0.041) between lactic acid and Lactobacillus levels among
three groups (Fig. 5f). There were no correlations between
other short-chain fatty acids and the microbiome com-
position among the three experimental groups.

Discussion
The major findings of this study are as follows. At the

order level, susceptibility to LH in rats exposed to

inescapable shock might be associated with an increase of
Lactobacillales and a decrease of Actinomycetales in the
host gut. At the family level, stress susceptibility might be
associated with an increase in Lactobacillaceae and
decrease of Corynebacteriaceae in the host gut. At the
gene level, stress susceptibility might be associated with
the increase of Lactobacillus, Clostridium cluster III and
Anaerofustis, and the decrease of Corynebacterium in the
host gut. Levels of acetic acid and propionic acid in the
feces from susceptible rats were lower than those in the
feces of control and resilient rats, whereas levels of lactic
acid in the susceptible rats were higher than those of
control and resilient rats. There was a positive correlation
between lactic acid and Lactobacillus levels among these
three groups. These findings suggest that alterations in
the composition of these microbiota contribute to sus-
ceptibility versus resilience in rats in the LH situation.
In this study, we found an increase in the abundance of

members of the order Lactobacillales and the family
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Lactobacillaceae in susceptible rats, in comparison with
control and resilient rats. It is possible that increased
abundance of members of the Lactobacillales order and
Lactobacillaceae family might play a role in susceptibility
versus resilience of rats to LH after inescapable electric
stress.
At the genus level, susceptibility in rats exposed to

inescapable shock might be associated with an increase in
Lactobacillus, Clostridium cluster III, and Anaerofustis
and a decrease of Corynebacterium in the host gut.
Clostridium, a genus of Gram-positive bacteria, includes
several significant human pathogens, such as the causative
agent of botulism. High levels of members of the genus
Clostridium have been reported in patients with major
depressive disorder (MDD) compared with controls42,43,
suggesting that increased levels of Clostridium play a role
in depression. We reported that susceptible mice after
CSDS have higher levels of Clostridium, and that the

novel antidepressant candidate (R)-ketamine attenuated
the increased levels of Clostridium in susceptible mice25.
This study shows that the antidepressant effects of (R)-
ketamine might be partly mediated by the restoration of
altered composition of the gut microbiota in the CSDS
susceptible mice. Although the role of members of Clos-
tridium cluster III in depression is currently unclear, it
appears that Clostridium cluster III may contribute to
susceptibility in rats subjected to inescapable electric
stress.
Anaerofustis is a strictly anaerobic, Gram-positive, rod-

shaped, non-spore-forming bacterial genus of the family
Eubacteriaceae44. In this study, we found decreased levels
of Anaerofustis in the susceptible rats compared with the
control and resilient rats. At present, there have been no
reports showing alterations in Anaerofustis in patients
with MDD, or in rodents with depression-like phenotypes.
Therefore, it is unclear how decreased levels of
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Anaerofustis play a role in susceptibility to LH. Further
study into the role of Anaerofustis in depression is needed.
In this study, we found lower levels of Corynebacterium

in the susceptible rats compared with control and resilient
rats. It has been reported that sub-chronic and chronic
exposure to glyphosate-based herbicides decreases the
composition of microbiota, such as Corynebacterium,
resulting in behavioral abnormalities including depression
and anxiety45. Low levels of Corynebacterium were also

reported in a chronic variable stress-induced rat model of
depression46. It appears likely that lowered levels of Cor-
ynebacterium might play a role in a depression-like phe-
notype in rodents, although further study into the role of
Corynebacterium in depression is needed.
Short-chain fatty acids—acetic acid, propionic acid,

butyric acid, lactic acid, and succinic acid—are generated
as the end products of the degradation and fermentation
of indigestible carbohydrates by the gut microbiota47.
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Measurement of these short-chain fatty acids could
therefore serve as an indirect method for the analysis of
microbiota composition. These organic acids have specific
anti-microbial activities48. It has been reported that levels
of acetic acid and propionic acid in feces from women
with depression are lower than those in control subjects,
and that there are negative correlations between acetic
acid or propionic acid and depression scores49. In this
study, we found decreased levels of acetic acid and pro-
pionic acid in rats susceptible to LH, compared with
control and resilient rats, consistent with the results from
a recent clinical study49. We also found decreased levels of
butyric acid in the susceptible rats, although the differ-
ence did not reach statistical significance. Three short-
chain fatty acids containing C2–C4, acetic acid, propionic
acid, and butyric acid, account for over 95% of the pool of
short-chain fatty acids23. It is likely that decreased levels
of acetic acid and propionic acid in feces may be asso-
ciated with susceptibility to LH, and with depression in
patients with MDD.
Elevated levels of lactic acid in the blood, cerebrospinal

fluid and brain have been reported in patients with
MDD50–52. Higher levels of lactic acid in rodents with
depression-like behaviors have also been reported53. In
contrast, peripheral administration of lactic acid produced
antidepressant-like effects in different models of depres-
sion54. In this research we found higher levels of lactic
acid in feces from susceptible rats compared with those
from control and resilient rats. We found a positive

correlation between Lactobacillus, microbes which pro-
duce lactic acid, and the amounts of lactic acid in fecal
samples. It appears likely that the increased levels of lactic
acid produced by Lactobacillus might contribute to sus-
ceptibility to inescapable electric stress, although further
study is needed.
The crosstalk between the brain and the gut is pre-

dominately influenced by the gut bacteria55. Imbalance of
gut microbiota has been found to cause abnormalities in
the brain–gut axis in several neurological and psychiatric
diseases13,55. Multiple lines of evidence suggest that an
abnormal composition of the gut microbiota contributes
to the resilience or susceptibility to LH in rodents after
repeated stress30,56–59. It is well recognized that gut
microbiota plays a role in animal behaviors14,60–62,
although the precise mechanisms underlying the
microbiome-mediated behaviors are currently unknown.
For example, it has been reported that the vagus nerve
plays a major role in modulating the constitutive com-
munication pathway between the brain and the bacteria in
the gut63,64. It is likely that altered composition of
microbiota might play a key role in the stress-induced
disorders although further study is needed.
This research has some limitations. In this study, we did

not identify the specific microbiome which can affect
susceptibility or resilience in the LH experiments.
Therefore, from the present data, we do not know how
the specific microbiome can affect behaviors under the
LH paradigm. In the future, it will be necessary to identify

Fig. 5 Levels of short-chain fatty acids in fecal samples and correlation with microbiota. a Acetic acid (one-way ANOVA: F2,17= 5.898, P=
0.016) among the three groups. b Propionic acid (one-way ANOVA: F2,17= 8.175, P= 0.004) among the three groups. c Butyric acid (one-way ANOVA:
F2,17= 0.559, P= 0.582) among the three groups. d Lactic acid (one-way ANOVA: F2,17= 4.219, P= 0.041) among the three groups. e Succinic acid
(one-way ANOVA: F2,17= 0.763, P= 0.488) among the three groups. The data are shown as mean ± S.E.M. (n= 6 or 7). *P < 0.05, **P < 0.01. N.S.: not
significant. f There is a positive correlation (r= 0.461, P= 0.041) between lactic acid and Lactobacillus in fecal samples
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the specific microbiome, using approaches such as shot-
gun metagenomics sequencing. It will also be of interest
to investigate the way in which specific microbiomes
affect behaviors related to LH.
In conclusion, the present study suggests that an altered

composition of the gut microbiota, including organisms,
such as Lactobacillus, Clostridium cluster III, Anaerofus-
tis, and Corynebacterium, contributes to resilience and
susceptibility to learned helplessness in rats subjected to
inescapable electric foot shock.
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