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Abstract

Motivation: As the quantity of data per sequencing experiment increases, the challenges of frag-

ment assembly are becoming increasingly computational. The de Bruijn graph is a widely used

data structure in fragment assembly algorithms, used to represent the information from a set of

reads. Compaction is an important data reduction step in most de Bruijn graph based algorithms

where long simple paths are compacted into single vertices. Compaction has recently become

the bottleneck in assembly pipelines, and improving its running time and memory usage is an im-

portant problem.

Results: We present an algorithm and a tool BCALM 2 for the compaction of de Bruijn graphs. BCALM 2

is a parallel algorithm that distributes the input based on a minimizer hashing technique, allowing

for good balance of memory usage throughout its execution. For human sequencing data, BCALM 2

reduces the computational burden of compacting the de Bruijn graph to roughly an hour and 3 GB

of memory. We also applied BCALM 2 to the 22 Gbp loblolly pine and 20 Gbp white spruce sequenc-

ing datasets. Compacted graphs were constructed from raw reads in less than 2 days and 40 GB of

memory on a single machine. Hence, BCALM 2 is at least an order of magnitude more efficient than

other available methods.

Availability and Implementation: Source code of BCALM 2 is freely available at: https://github.com/

GATB/bcalm

Contact: rayan.chikhi@univ-lille1.fr

1 Introduction

Modern sequencing technology can generate billions of reads from a

sample, whether it is RNA, genomic DNA, or a metagenome. In

some applications, a reference genome can allow for the mapping of

these reads; however, in many others, the goal is to reconstruct long

contigs. This problem is known as fragment assembly and continues

to be one of the most important challenges in bioinformatics.

Fragment assembly is the central algorithmic component behind the

assembly of novel genomes, detection of gene transcripts (RNA-seq)

(Grabherr et al., 2011), species discovery from metagenomes, struc-

tural variant calling (Iqbal et al., 2012).

Continued improvement to sequencing technologies and in-

creases to the quantity of data produced per experiment present a

serious challenge to fragment assembly algorithms. For instance,

while there exist many genome assemblers that can assemble bacter-

ial sized genomes, the number of assemblers that can assemble a

high-quality mammalian genome is limited, with most of them de-

veloped by large teams and requiring extensive resources (Gnerre

et al., 2011; Luo et al., 2012; Simpson et al., 2009). For even larger

genomes, such as the 20 Gbp Picea glauca (white spruce), graph

construction and compaction took 4.3 TB of memory, 38 h and

1380 CPU cores (Birol et al., 2013). In another instance, the whole

genome assembly of 22 Gbp Pinus taeda (loblolly pine) required

800 GB of memory and three months of running time on a single

machine (Zimin et al., 2014).

Most short-read fragment assembly algorithms use the de Bruijn

graph to represent the information from a set of reads. Given a set

of reads R, every distinct k-mer in R forms a vertex of the graph,

while an edge connects two k-mers if they overlap by k – 1 charac-

ters. The use of the de Bruijn graph in fragment assembly consists of

a multi-step pipeline, however, the most data intensive steps are usu-

ally the first three: nodes enumeration, compaction and graph clean-

ing. In the first step (sometimes called k-mer counting), the set of

distinct k-mers is extracted from the reads. In the second step, all

unitigs (paths with all but the first vertex having in-degree 1 and all

but the last vertex having out-degree 1) are compacted into a single
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vertex. In the third step, artifacts due to sequencing errors and poly-

morphism are removed from the graph. The second and third step

are sometimes alternated to further compact the graph. After these

initial steps, the size of the data is reduced gradually, e.g. for a

human dataset with 45� coverage,

To overcome the scalability challenges of fragment assembly of

large sequencing datasets, there has been a focus on improving the

resource utilization of de Bruijn graph construction. In particular,

k-mer counting has seen orders of magnitude improvements in mem-

ory usage and speed. As a result, graph compaction is becoming the

new bottleneck; but, it has received little attention (Kundeti et al.,

2010). Recently, we developed a compaction tool that uses low

memory, but without an improvement in time (Chikhi et al., 2014).

Other parallel approaches for compaction have been proposed, as

part of genome assemblers. However, most are only implemented

within the context of a specific assembler, and cannot be used as

modules for the construction of other fragment assemblers or for

other applications of de Bruijn graphs (e.g. metagenomics).

In this paper, we present a fast and low memory algorithm for

graph compaction. Our algorithm consists of three stages: careful

distribution of input k-mers into buckets, parallel compaction of the

buckets, and a parallel reunification step to glue together the com-

pacted strings into unitigs. The algorithm builds upon the use of

minimizers to partition the graph (Chikhi et al., 2014); however, the

partitioning strategy is completely novel since the strategy of Chikhi

et al. (2014) does not lend itself to parallelization. Due to the algo-

rithm’s complexity, we formally prove its correctness. We then

evaluate it on whole-genome human, pine and spruce sequencing

data. The de Bruijn graph for a whole human genome dataset is

compacted in roughly an hour and 3 GB of memory using 16 cores.

For the >20 Gbp pine and spruce genomes, k-mer counting and

graph compaction take only 2 days and 40 GB of memory, improv-

ing on previously published results by at least an order of

magnitude.

2 Related work

The parallelization of de Bruijn graph compaction has been previ-

ously explored. In (Jackson et al., 2010; Kundeti et al., 2010), the

problem is reduced to the classic list ranking problem and solved

using parallel techniques such as pointer jumping. Another recurrent

MPI-based approach is to implement a distributed hash table, where

the k-mers and the information about their neighborhoods are dis-

tributed amongst processes. Each processor then extends seed

k-mers locally as far as possible to build sub-unitigs and then passes

them off to other processors for further extension. Variants of this

approach are used in (Georganas et al., 2014; Liu et al., 2011;

Simpson et al., 2009). Other papers have proposed using a parallel-

ized depth-first search (Zeng et al., 2013) or a small world asyn-

chronous parallel model (Meng et al., 2014, 2012).

Before a de Bruijn graph can be compacted, it has to be con-

structed. Parallel approaches currently represent the state-of-the-art

in this area. Many original efforts were focused on edge-centric de

Bruijn graphs, where edges are represented by ðkþ 1Þ-mers. They

required the identification of both all distinct k-mers and ðkþ 1Þ-
mers (Jackson and Aluru, 2008; Jackson et al., 2010; Kundeti et al.,

2010; Lu et al., 2013; Zeng et al., 2013). More recent efforts have

focused on the node-centric graph, which only requires the counting

of k-mers (Deorowicz et al., 2014; Li et al., 2013; Lu et al., 2013;

Marçais and Kingsford, 2011; Melsted and Pritchard, 2011; Rizk

et al., 2013; Simpson et al., 2009).

In genome assembly, the construction and compaction of a de

Bruijn graph form only the initial stages. There are also alternate

approaches that do not use the de Bruijn graph at all (e.g. greedy or

string graph). Numerous parallel assemblers are available for use,

including ABySS (Simpson et al., 2009), SOAPdenovo (Luo et al.,

2012), Ray (Boisvert et al., 2010), PASQUAL (Liu et al., 2013),

PASHA (Liu et al., 2011), SAND (Moretti et al., 2012), SWAP-

Assembler (Meng et al., 2014). Other methods for parallel assembly

have been published but without publicly available software (Duan

et al., 2014; Garg et al., 2013; Georganas et al., 2015; Jackson

et al., 2010).

There has also been work done in reducing the overall memory

footprint de Bruijn graph assembly. This challenge is most pro-

nounced for k-mer counters. However, when scaling to mammalian-

sized genomes, memory usage continues to be an issue in down-

stream steps such as compaction. Chikhi et al. (2014) used minim-

izers to compact the de Bruijn graph of a human whole-genome

dataset in under 50 MB of memory, but the algorithm did not im-

prove the running time. Wu et al. (2012) propose an approach based

on dividing the assembly problem into mutually independent in-

stances. Ye et al. (2012) exploit the notion of graph sparseness for

reducing memory use. Kleftogiannis et al. (2013) perform a com-

parative analysis and propose several memory-reducing strategies.

Chikhi and Rizk (2012) use Bloom filters to reduce memory usage.

Movahedi et al. (2012) propose a divide-and-conquer approach for

compacting a de Bruijn graph.

3 Definitions

We assume, for the purposes of this paper, that all strings are over

the alphabet R ¼ fA;C;G;Tg. A string of length k is called a k-mer.

For a string s, we define its k-spectrum, spkðsÞ, as the multi-set of all

k-mer substrings of s. For a set of strings S, we define its multi-set

k-spectrum as spkðSÞ ¼ [s2SspkðsÞ. For two strings u and v, we write

u 2 v to mean that u is a substring of v. We write u½i::j� to denote the

substring of u from the ith to the jth character, inclusive. We define

sufkðuÞ ¼ u½juj � kþ 1; juj� and prekðuÞ ¼ u½1::k�. For two strings u

and v such that sufkðuÞ ¼ prekðuÞ, we define a glue operation as

u�kv ¼ u � v½kþ 1::jvj�.
The binary relation u! v between two strings denotes that

sufk�1ðuÞ ¼ prek�1ðvÞ. For a set of k-mers K, the de Bruijn graph of

K is a directed graph such that the nodes are exactly the k-mers in K

and the edges are given by the ! relation. Note that our definition

of the de Bruijn graph is node-centric, where the edges are implicit

given the vertices; therefore, we use the terms de Bruijn graph and a

set of k-mers interchangeably.

Suppose we are given a de Bruijn graph, represented by a set of

k-mers K. Consider a path p ¼ ðx1; . . . ; xmÞ over m � 1 vertices. We

allow the path to be a cycle, i.e. it is possible that x1 ¼ xm. The end-

points of a path are x1 and xm if it is not a cycle. A single-vertex

path has one endpoint. A cycle does not have endpoints. The in-

ternal vertices of a path are vertices that are not endpoints. p is said

to be a unitig if either jpj ¼ 1 or for all 1 < i < m, the out- and in-

degree of xi is 1, and the in-degree of xm and the out-degree of x1 are

1. A unitig is said to be maximal if it cannot be extended by a vertex

on either side. The problem of compacting a de Bruijn graph is to re-

port the set of all maximal unitigs.

We say that two strings u and v are compactable in a set S if

u! v and, 8w 2 S, if w! v then w¼u and if u! w then w¼ v.

That is, u is the only in-neighbor of v, and v is the only out-neighbor
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of u. The compaction operation is defined on a pair of compactable

strings and replaces u and v by a single string u�k�1v.

Consider some ordering of ‘-mers. We define the ‘-minimizer of

a string x as the smallest ‘-mer substring of x. Given k > ‘ and

a string x with at least k characters, we define lmmðxÞ as the

‘-minimizer of the prefix ðk� 1Þ-mer, and rmmðxÞ as the ‘-minim-

izer of the suffix ðk� 1Þ-mer. We refer to these as the left and right

minimizers of x, respectively.

Two strings (u, v) are m-compactable in S if they are compact-

able in S and if m ¼ rmmðuÞ ¼ lmmðvÞ. The m-compaction of a set

S is obtained from S by applying the compaction operation as much

as possible in any order to all pairs of strings that are m-compact-

able in S.

4 Algorithm overview

In this section, we give a high-level description of our BCALM 2 algo-

rithm (Algorithm 1), leaving important optimizations and imple-

mentation details to Section 6. Recall that the input is a set of

k-mers K and the output are the strings corresponding to all the

maximal unitigs of the de Bruijn graph of K. If time and memory are

not an issue, then there is a trivial algorithm: repeatedly find com-

pactable strings and compact them until no further compactions are

possible. However, such an approach requires loading all the data

into memory, which is not feasible for larger genomes.

Instead, BCALM 2 proceeds in three stages. In the first stage, the

k-mers are distributed into buckets, with some k-mers being thrown

into two buckets. In the second stage, each bucket is compacted,

separately. In the third stage, the k-mers that were thrown into two

buckets are glued back together so that duplicates are removed.

Figure 1 shows the execution of BCALM 2 on a small example.

In the first stage (lines 1–6 of Algorithm 1), BCALM 2 distributes

the k-mers of K to files Fð1Þ; . . . ; Fð4‘Þ. These are called bucket files.

Each k-mer x 2 K goes into file FðlmmðxÞÞ, and if

lmmðxÞ 6¼ rmmðxÞ, also in FðrmmðxÞÞ. The parameter ‘ controls the

minimizer size (in our implementation, we set ‘ ¼ 8).

In the second stage of the algorithm, we process each bucket file

using the CompactBucket procedure (Algorithm 2). After the k-mer

distribution of the first stage, the bucket file F(i) contains all the

k-mers whose left or right minimizer is i. We can therefore load F(i)

into memory and perform i-compaction on it. Since the size of the

bucket is small, this compaction can be performed using a simple in-

memory algorithm. The resulting strings are then written to disk,

and will be processed during the third stage. At the end of the second

stage, when all CompactBucket procedures are finished, we have

performed all the necessary compactions on the data.

At this stage of the algorithm, notice that the k-mers x 2 K with

lmmðxÞ 6¼ rmmðxÞ exist in two copies. We call such k-mers doubled.

We will prove in Section 5 that these k-mers are always at the ends

(prefix or suffix) of the compacted strings, never internal, and they

can be recognized by the fact that the minimizer at that end does not

correspond to the bucket where it resides. We record these ends that

have doubled k-mers by marking them ‘lonely’ (lines 4 and 5 of

Algorithm 2), since they will need to be ‘reunited’ at the third stage

of the algorithm. Strings that have no lonely ends are maximal uni-

tigs, therefore they are output (line 8).

At the third stage of the algorithm, we process the strings output

by CompactBucket with the Reunite procedure (Algorithm 3). At a

high level, the purpose of Reunite is to process each string u that has

a lonely end, and find a corresponding string v that has a matching

lonely end with the same k-mer. When one is found, then u and v

are glued together (Algorithm 4), thereby ‘reuniting’ the doubled

k-mer that was split in the k-mer distribution stage. The new string

inherits its end lonely marks from the glued strings, and the process

is then repeated for the next string u that has a lonely end. After

Reunite() completes, all duplicate k-mers will have been removed,

and the strings in the output will correspond to the maximal unitigs.

Algorithm 1. BCALM 2(K)

Input: the set of k-mers K.

1: for all parallel x 2 K do

2: Write x to FðlmmðxÞÞ.
3: if lmmðxÞ 6¼ rmmðxÞ then

4: Write x to FðrmmðxÞÞ.
5: for all parallel i 2 f1; . . . ; 4‘g do

6: Run CompactBucket(i)

7: ReuniteðÞ

Algorithm 2. CompactBucket(i)

1: Load F(i) into memory.

2: U i-compaction of F(i).

3: for all strings u 2 U do

4: Mark u’s prefix as “lonely” if i 6¼ lmmðuÞ.
5: Mark u’s suffix as “lonely” if i 6¼ rmmðuÞ.
6: if u’s prefix and suffix are not lonely then

7: Output u.

8: else

9: Place u in the Reunite file

Algorithm 3. Reunite()

Input: the set of strings R from the Reunite file.

1: UF  Union find data structure whose elements are the

distinct k-mer extremities in R.

2: for all parallel u 2 R do

3: if both ends of u are lonely then

4: UF:unionðsufkðuÞ;prekðuÞÞ
5: for all parallel classes C of UF do

6: P all u 2 R that have a lonely extremity in C

7: while 9u 2 P that does not have a lonely prefix do

8: Remove u from P

9: Let s¼u

10: while 9 v 2 P such that sufkðsÞ ¼ prekðvÞ do

11: s Glueðs; vÞ
12: Remove v from P

13: Output s

Algorithm 4. Glue(u, v)

Input: strings u and v, such that sufkðuÞ ¼ prekðvÞ.
1: Let w ¼ u�kv.

2: Set lonely prefix bit of w to be the lonely prefix bit of u.

3: Set lonely suffix bit of w to be the lonely suffix bit of v.

4: return w
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To perform these operations efficiently in time and memory,

Reunite first partitions the strings of R so that any two strings that

need to be reunited are guaranteed to be in the partition. Then, each

partition can be processed independently. To achieve the partition,

we use a union-find (UF) data structure of all k-mers extremities.

Recall that a UF data structure is created by first assigning a set to

each distinct element (here, an element is the k-mer extremity of a

string). Then, the union operation replaces the sets of two elements

by a single set corresponding to their union. Here, union is applied

to both k-mer extremities of a string. After the UF is constructed,

the set of strings to be reunited is partitioned such that k-mer

extremities of sequences in a partition all belong to the same UF set.

5 Proof of correctness

Recall that K is the input to the algorithm and let U be the strings

corresponding to the set of all maximal unitigs of K. We will assume

for our proof that U does not contain any circular unitigs. We note

that since BCALM 2 outputs strings, it cannot represent circular uni-

tigs in its output. Circular unitigs present a corner case for both the

analysis and the algorithm itself, and, for the sake of presentation

brevity, we do not consider them here.

We prove the correctness of BCALM 2 by showing that it outputs

U. We first give a Lemma that will allow us to show that the output

is U by arguing about its k and kþ1 spectrums.

LEMMA 1. Let S and T be two sets of strings of length at least k

such that spkþ1ðSÞ ¼ spkþ1ðTÞ and spkðSÞ ¼ spkðTÞ and all these

spectrums are without duplicates. Then, S¼T.

PROOF. We will prove that S � T. The same argument will be

symmetrically applicable to prove T � S, which will imply S¼T.

First, we show that for all s 2 S, there exists a t 2 T such that

s 2 t. Let s 2 S and let p ¼ maxfi : 9t 2 T; s½1::i� 2 tg, and let t be a

string achieving the max. Note that p � kþ 1 since every ðkþ 1Þ-
mer of S is also in T. Suppose for the sake of contradiction that

p < jsj. Then the ðkþ 1Þ-mer s½p� kþ 1;pþ 1� must occur in ei-

ther another location of t or another string t0 2 T. Either way, this

means that the k-mer s½p� kþ 1;p� must also occur elsewhere

besides at t½p� kþ 1;p�. Since there are no duplicate k-mers in T,

this is a contradiction.

Now, we show that S � T. Let s 2 S and let t 2 T such that

s 2 t. By applying an argument symmetrical to the one above, there

exists a s0 2 S such that t 2 s0. This means that s 2 s0, and, in particu-

lar, s½1::k� 2 s0. Since k-mers can only appear once in S, we must

have that s ¼ s0 and hence s ¼ t 2 T. h

Next, we characterize the k and kþ1 spectrums of U. Given a

multi-set M, we denote by Set(M) as the set version of M, with all

multiplicity information implicitly removed. When referring to a set,

such as K, as a multi-set, we will mean that all the elements have

multiplicity one.

LEMMA 2. spkðUÞ ¼ K

PROOF. Since every vertex is a single vertex unitig path, every ver-

tex must be covered by some maximal unitig and hence

SetðspkðUÞÞ ¼ K. It remains to show that the set of maximal unitigs

never share a vertex. First, observe that a single unitig cannot visit a

vertex more than once, otherwise that vertex will be an internal ver-

tex at one of its occurrences but will have either multiple ins or outs.

We therefore need to show that no two maximal unitig paths share

a vertex. Let p ¼ ðv1; . . . ; vjpjÞ and p0 ¼ ðv01; . . . ; v0jp0 jÞ be two max-

imal unitigs that share a vertex. Because p is maximal, it cannot be a

subpath of p0, and cannot be a single vertex. If p is a cycle, then all

its vertices have in- and out-degree one so that the only other paths

it can share vertices with are sub-paths of p, contradicting the fact

that p is maximal. Hence, we can assume that p and, by symmetry,

p0, is not a cycle.

First, suppose that all shared vertices are internal to both paths.

Consider such a vertex vi, for a maximal i. Because vi must have dif-

ferent out-neighbors on both paths, it has out-degree at least two,

contradicting that it is an internal vertex. Therefore there must exist

at least one shared vertex that is an endpoint of one of the paths.

Suppose that v1 is a shared vertex, and that it is not the first ver-

tex of p0, If the previous vertex of p0 is not on p, then p can be ex-

tended with it, contradicting its maximality. Otherwise, consider the

first vertex at which p and p0 diverge. That is, the smallest i < jpj

Fig. 1. Execution of BCALM 2 on a small example, with k¼4 and ‘¼ 2. On the top left, we show the input de Bruijn graph. The maximal unitigs correspond to the

path from CCCT to TCTA (spelling CCCTCTA), and to the k-mers CCCC, CCCA, CTAC, CTAA. In this example, minimizers are defined using a lexicographic order-

ing of ‘-mers. In the top right, we show the contents of the bucket files. Only five of the bucket files are non-empty, corresponding to the minimizers CC, CT, AA,

AC and CA. The doubled k-mers are italicized. Below that, we show the set of strings that each i-compaction generates. For example in the bucket CC, the k-mers

CCCT and CCTC are compacted into CCCTC, however CCCC and CCCT are not compactable because CCCA is another out-neighbor of CCCC. The lonely ends are

denoted by •. In the bottom half we show the execution steps of the Reunite algorithm. Nodes in bold are output
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such that vi 2 p0 but viþ1 62 p0. The last vertex of p0 must be vi, other-

wise it has out-degree at least two, contradicting that p is a unitig.

Therefore, there can only exist one such vertex vi, and it must be the

last vertex of p0. h

We define a ðkþ 1Þ-mer w as actionable if there exists x 2 K and y

2 K such that (x, y) are compactable in K and w ¼ x�k�1y. We define

A as the multi-set of all actionable ðkþ 1Þ-mers, but note that it does

not contain duplicates because there are no duplicate k-mers in K.

LEMMA 3. spkþ1ðUÞ ¼ A:

PROOF. First we note that neither A nor spkþ1ðUÞ have any mul-

tiple elements (by Lemma 2), and we do not need to consider multi-

plicities of the elements.

Suppose that there exist two k-mers x and x0 such that x�k�1x0

2 A but is not in spkþ1ðUÞ. Because every vertex is part of some uni-

tig, by Lemma 2 there must exist a unique unitig path p 2 U that

contains x and a unique unitig path p0 2 U that contains x0. Note

that because ðx;x0Þ are compactable, x0 is the unique our-neighbor

of x and x is the unique in-neighbor of x0. Also, x must be the last

vertex of p and x0 must be the first vertex of p0. We can therefore

join p and p0 by adding the edge from x to x0, obtain a unitig and

contradicting the maximality of p and p0.

Now suppose that there exists k-mers x and x0 such that x�k�1x0

2 spkþ1ðUÞ but not in A. Let p be the unitig containing x�k�1x0.

Since x is not the last endpoint, it must have an out-degree of 1.

Similarly, x0 has an in-degree of 1. Hence, ðx;x0Þ is compactable, a

contradiction. h

Next, we characterize the effect that CompactBucket() has on

the k and kþ1 spectrums. Let B be the collection of all strings u

that are either output at line 7 of Compactbucket or placed in the

Reunite file at line 9. We can think of these as the sum output of the

CompactBucket calls.

LEMMA 4. spkþ1ðBÞ ¼ A and spkðBÞ is the same as K except every

doubled k-mer has multiplicity of 2 in spkðBÞ.

PROOF. During distribution of the k-mers into the bucket files, every

k-mer is distributed to exactly one file except for doubled k-mers,

which go into two files. The compaction operations that follow do

not affect the k-spectrum. Thus, the statement about spkðBÞ holds.

Initially, spkþ1ðKÞ ¼1. The compaction operation changes the

kþ1 spectrum by creating one new ðkþ 1Þ-mer. Hence, we will

show that x�k�1y 2 A if and only if (x, y) gets compacted at some

point.

Consider an actionable ðkþ 1Þ-mer x�k�1y 2 A. Observe that

the right minimizer of x is the same as the left minimizer of y.

Denote it by i. Because (x, y) are compactable, they are also i-com-

pactable. The bucket file F(i) will contain x and y. Because x does

not have an out-neighbor that is not y in K, it will not have an out-

neighbor that is not y in F(i). Similarly, y will only have x as an in-

neighbor in F(i). Hence, (x, y) will be i-compacted in F(i).

On the other hand, consider an i-compaction of x 2 K and y 2 K

in F(i). Any out-neighbor of x in K must have i as a left minimizer

and hence must be in F(i). Similarly, any in-neighbor of y in K must

have i as a right minimizer and hence must also be in F(i). Because

(x, y) are i-compactabile in F(i), x does not have an out-neighbor

y0 6¼ y in K and y does not have an in-neighbor x0 6¼ x in K.

Therefore, (x, y) are compactable in K and hence x�k�1y 2 A. h

Next, we analyze the third stage of the algorithm. The following

two Lemmas connect the notion of loneliness to doubled k-mers.

LEMMA 5. Let x 2 K be a doubled k-mer. Then, x appears as a pre-

fix of some string in R and as a suffix of some other string in R, and

the ends where it appears are marked lonely.

PROOF. Let i ¼ rmmðxÞ. Since x is a doubled k-mer, lmmðxÞ 6¼ i.

Consider the fate of x in CompactBucket(i). Because

CompactBucket only performs i-compactions, x will never be com-

pacted from the left. Thus it will be a prefix of some string in U at

line 2 of CompactBucket, and line 4 will mark the prefix end as

lonely. The argument for the suffix is symmetrical. h

LEMMA 6. Let x be a k-mer at a lonely end of a string in R. Then, x

is a doubled k-mer.

PROOF. The only way for x to be marked lonely in B would be in

CompactBucket(i), for some i. Assume without loss of generality

that this happens in line 4. The left minimizer of x is therefore not i,

however, to have been placed into F(i), its right minimizer must be i.

Hence, its left and right minimizers are different and it is a doubled

k-mer. h

The next Lemma is helpful to establish that each string in R that

has a lonely prefix will be examined by Reunite.

LEMMA 7. Let u be a string in R with a lonely prefix. Then, there

exists distinct strings v1; . . . ; va in R such that, letting v0¼u; sufkðviÞ¼
prekðvi�1Þ for 0< i	 a and va has a non-lonely prefix.

PROOF. By Lemma 6, the k-mer prefix x of u is doubled, therefore

by Lemma 5 there exists a string v1 in R such that x is the suffix of

v1. If the prefix of v1 is not lonely, then set a¼1 and the Lemma

statement is satisfied. Hence, consider the case where the prefix of

v1 is lonely.

We prove by an induction over the size of R that v1; . . . ; va exist

and satisfy the conditions stated in the Lemma. For the base case, let

R be of size 2. We will prove that the prefix of v1 is not lonely.

Assume for the sake of contradiction that it is. Applying Lemmas 6

and 5 again yields that the prefix of v1 is the suffix of another string

w. Given that R is of size 2, w must be u. Hence, u and v1 have iden-

tical k-mers extremities, they therefore spelled an isolated cycle in

the input de Bruijn graph. This contradicts our assumption that U is

free of circular unitigs, and concludes the base case.

Assume that the inductive hypothesis holds for sets of size strictly

smaller than of R. Applying the hypothesis to v1 in Rnfug, there

exists v2; . . . ; va such that sufkðviÞ ¼ prekðvi�1Þ for 1 < i 	 a and

va has a non-lonely prefix. Furthermore, y ¼ sufkðv2Þ ¼ prekðv1Þ
and x ¼ sufkðv1Þ ¼ prekðuÞ. In addition, all strings u; v1; . . . ; va must

be distinct, else duplicates will yield circular unitigs. h

Next we analyze the effect that Reunite has on the k and kþ1

spectrums. Let G be the final output of the algorithm.

LEMMA 8. Let x 2 K be a doubled k-mer. Then x appears only

once in G, either internal to a string or as a non-lonely end.

PROOF. By Lemma 5, x appears as a lonely suffix of some string u1

2 B and as a lonely prefix of another string u2 2 B. As a conse-

quence of the UF data structure, u1 and u2 belong to the same parti-

tion P at line 6 of Algorithm 3. We will show that u1 and u2 are

consecutively selected at line 10 of the Reunite algorithm. Observe

that in Reunite, strings selected at line 10 have a lonely prefix (as a

consequence of Lemma 5), and strings selected at line 7 do not.

If u1 not does have a lonely prefix, u1 must be selected at line 7

of Reunite. Then, u2 is selected at the next execution of line 10.

Now, assume that u1 has a lonely prefix. Then by Lemma 7, there
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exists strings v1; . . . ; va such that sufkðviÞ ¼ prekðvi�1Þ for 0 < i

	 a and va has a non-lonely prefix. Then, since va does not have a

lonely prefix, va is selected at line 7 of Reunite, and it follows that

va�1; . . . ; v1; u1; u2 are consecutively selected at the following execu-

tions of line 10.

We conclude that Glueðu1;u2Þ is performed in all cases. The ac-

tion of Glue reduces the multiplicity of x from 2 to 1, and further-

more x becomes either an internal k-mer or a non-lonely end of a

string in G. h

Let Rfinal be the set of strings that might remain in R at the end

of the algorithm.

LEMMA 9. spkðGÞ has only single elements, and is equal to Set(B).

PROOF. The only difference between B and G [ Rfinal is caused by

executing the Glue function, which only affects the k-spectrum by

changing the multiplicity of k-mer from 2 to 1. By Lemma 8, all k-

mers will have multiplicity one in G [ Rfinal, and hence spkðG
[RfinalÞ has only single elements and is equal to Set(B). It remains to

show that Rfinal is empty.

All strings in Rfinal have at least one lonely end, otherwise they

would have been output at line 7 of CompactBucket(). By Lemma 6,

such a lonely end must be a doubled k-mer. However, by Lemma 8,

all doubled k-mers are either internal or non-lonely ends in G.

Therefore, Rfinal must be empty. h

Finally, we are ready to prove the correctness of BCALM 2.

THEOREM 1. BCALM 2 outputs U.

PROOF. We will show that the conditions of Lemma 1 are satisfied

for G and U. The glue operation does not change the ðkþ 1Þ-spec-

trum, and Rfinal ¼1, so spkþ1ðBÞ ¼ spkþ1ðG [ RfinalÞ ¼ spkþ1ðGÞ.
Combining this with Lemma 3 and Lemma 4, we get that spkþ1ðGÞ
¼ spkþ1ðBÞ ¼ A ¼ spkþ1ðUÞ and that, because A is duplicate free by

definition, these spectrums do not contain duplicates. Combining

Lemma 4 and Lemma 9, we also get that spkðGÞ ¼ K and by Lemma

2, spkðUÞ ¼ K. h

6 Optimizations and implementation

In this section, we describe some of the optimizations and important

implementation details that we used to implement the pseudocode

of Section 4.

For the sake of brevity, we have only described the algorithm for

the directed de Bruijn graph. In our implementation, we extend the

algorithm to the bidirected graph model (Kececioglu, 1992;

Medvedev et al., 2007), in the natural way, to handle the double-

stranded nature of DNA.

To compute minimizers, we do not use a lexicographical order-

ing of ‘-mers, as this has been previously shown to lead to unbal-

anced bucket files and increased memory usage (Chikhi et al., 2014;

Deorowicz et al., 2014). Deorowicz et al. (2014) proposed to use

the lexicographic order but to forbid certain well known frequent

‘-mers from being minimizers (e.g. the poly-A). We use frequency

based minimizers, which we proposed in an earlier work (Chikhi

et al., 2014). In this approach, an initial ‘-mer counting step is per-

formed on the data and ‘-mers are ordered by increasing frequency.

Because ‘ is small, the time and memory for this step is negligible.

Buckets are organized into groups, in order to introduce natural

checkpoints in BCALM 2 in between parallel sections. BCALM 2 iterates

sequentially through the groups, but parallelizes the processing

within a group. The For loop at line 1 of Algorithm 1 is executed in

parallel within a group, with each thread given a subset of K. k-mers

are distributed only to those buckets that are in the group, with

other buckets being ignored. Bucket files are implemented as thread-

safe queues, as opposed to physical files on disk. The statements at

lines 2 and 4 of Algorithm 1 enqueue x into the appropriate queue,

and Algorithm 2 dequeues them at line 1, instead of reading them

from disk. After the k-mers are distributed, buckets from a group

are compacted in parallel. The CompactBucket routines are inde-

pendent of each other, and hence we run CompactBucket(i) in paral-

lel using all available processors. After a BCALM 2 finishes processing

a group, it moves on to the next group.

To reduce memory of the UF data structure, we created a min-

imal perfect hash function (MPHF) (Cormen, 2009) of all distinct

k-mer extremities in the Reunite file (denote their number as d). The

UF structure is therefore implemented as a vector v of MPHF indi-

ces, of total size dlogd. The UF class of a given k-mer is therefore

v½x�, where x is the MPHF index of the k-mer.

The BCALM 2 algorithm takes as input a set of distinct k-mers.

However, in our implementation, BCALM 2 is developed using the

GATB library (Drezen et al., 2014), allowing it to seamlessly inte-

grate GATB’s k-mer counter. Therefore, the BCALM 2 software takes

reads as input, and executes this k-mer counter prior to compaction.

This is a disk-based algorithm inspired by KMC2 (Deorowicz et al.,

2014) and DSK (Rizk et al., 2013). In this k-mer counter, k-mers are

divided into partitions according to their minimizer, then each parti-

tion is counted independently. We modified the GATB k-mer count-

ing algorithm so that partition files correspond exactly to bucket

groups. We obtained further optimizations by representing strings

using two bits per character.

7 Experimental results

We evaluated the scalability of BCALM 2, and how it compares to

other tools for compacting the de Bruijn graph. Experiments were

run on a single machine equipped with an Intel Xeon CPU with 32

cores clocked at 2.76 GHz and 512 GB of memory. We used two

human sequencing datasets from the GAGE benchmark (Salzberg

et al., 2011) and from and two larger datasets from the spruce and

pine sequencing projects (Birol et al., 2013; Zimin et al., 2014).

7.1 Human datasets
The first dataset is Illumina reads from a human chromosome 14

(36 million, 155 bp each, 2.9 GB compressed FASTQ). The second

dataset is Illumina reads from the whole human genome NA18507

(1.4 billion, 100 bp each, 54 GB compressed FASTQ, SRA

SRX016231).

(a) (b)

Fig. 2. BCALM 2 wall-clock running times with respect to (a) parameters ‘ and k

(using 4 cores) and (b) number of cores (using k¼55 and ‘ ¼ 8), on the

chromosome 14 dataset
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We first evaluate how BCALM 2 is affected by changes in the par-

ameters k (k-mer size) and ‘ (minimizer length). Figure 2(a) shows

that BCALM 2 has nearly identical running times for 6 	 ‘ 	 10, and

across all tested k values. Shorter minimizers sizes such as ‘ ¼ 4 cre-

ate fewer buckets, hence limit parallel speedups. Second, we evalu-

ate how well BCALM 2 scales with multiple processors. Figure 2(b)

shows that compaction and Reunite steps scale almost linearly with

the number of threads. There remains overheads related to disk I/O.

We compare the performance of BCALM 2 to other available im-

plementation of compaction algorithms: (i) our own previous serial

compaction algorithm BCALM (Chikhi et al., 2014), (ii) the parallel

ABYSS-P step of the ABySS assembler (version 1.9.0), excluding

bubble removal (Simpson et al., 2009), (iii) the parallel compaction

step of the Meraculous 2 assembler (version 2.0.5), executed from

the mergraph to the contigs step (Georganas et al., 2014) and (iv)

the single-threaded unitig construction step of the Minia assembler

(version 2.0.3) (Chikhi and Rizk, 2012). There are other promising

stand-alone tools that implement parallel de Bruijn graph compac-

tion, but we found them to either not be publicly available (Jackson

et al., 2010) or unable to run on real mammalian data because of an

upper bound of 31 on the k-mer size (Liu et al., 2011; Meng et al.,

2014). For BCALM, the datasets were first processed using the DSK k-

mer counting software (Rizk et al., 2013) to generate the set of k-

mers.

In addition to the results shown in Table 1, Minia took 27 h and

7 GB of memory on the whole human dataset (using identical k and

abundance cutoff as in the table). For ABySS-P, the shown numbers

include the k-mer counting step, which could not be extricated from

the software. For the purposes of comparison, the k-mer counting

step to generate the input for BCALM 2 completed in 46 mins and

2 GB of memory for the whole human dataset.

Table 1 shows that BCALM 2 outperforms existing techniques in

terms of running time. Since multiple graph compactions are done in

parallel, BCALM 2 requires more memory than BCALM, however it is

more memory-efficient than Meraculous 2.

7.2 Pine and spruce datasets
We further evaluated BCALM 2 on two very large sequencing datasets:

Illumina reads from the 20 Gbp Picea glauca genome (8.5 billion

reads, 152–300 bp each, 1.1 TB compressed FASTQ, SRA056234)

(Birol et al., 2013), and Illumina paired-end reads from the 22 Gbp

Pinus taeda genome (9.4 billion reads, 128–154 bp each, 1.2 TB

compressed FASTQ, SRX016231). The k-mer counting step took

around a day and<40 GB of memory for each dataset.

Table 2 shows the performance of BCALM 2 on these two datasets,

as well as unitigs statistics. Graph construction of the spruce dataset

previously required 4.3 TB of memory and 2 days on a 1380-core

cluster (Birol et al., 2013), while the assembly of the pine dataset

previously required 800 GB of memory and 3 months on a single

machine (Zimin et al., 2014). Another execution of BCALM2 on the

same datasets using a value of k¼61 shows similar performance, see

Supplemental Table 1.

Although we used the same sequencing datasets, several param-

eters differ between these previous reports and our results (e.g. k value,

abundance cutoff, and whether reads were error-corrected). Hence

run time, memory usage, and unitigs statistics cannot be directly com-

pared. However, it seems reasonable to infer that BCALM 2 would re-

main 1–2 orders of magnitude more efficient in time and memory.

In addition, we tested the robustness of BCALM 2 to an even larger

number of erroneous k-mers by reducing the k-mer abundance cut-

off to 2. The k-mer counting and compactions steps completed also

within 2 days and 40 GB of memory. The resulting unitig file was

much larger (resp. 67 GB and 107 GB). This is expected, due to a

large number of sequencing errors resulting in erroneous k-mers

being incorporated into the graph (roughly 2 billion k-mers in both

cases, i.e. 
2k� 109 ¼ 62 Gbp of new unitigs). A non-negligible

amount of sequencing errors is also likely present in the data pre-

sented in Table 2.

8 Discussion

In this paper, we present BCALM 2, an open-source parallel and low-

memory tool for the compaction of de Bruijn graphs. BCALM 2 con-

structed the compacted de Bruijn graph of a human genome sequenc-

ing dataset in 76 mins and 3 GB of memory. Furthermore, k-mer

counting and graph compaction using BCALM 2 of the 20 Gbp white

spruce and the 22 Gbp loblolly pine sequencing datasets required only

2 days and 40GB of memory each.

BCALM 2 is different from previous approaches in several regards.

First, it is a separate module for compaction, with the goal that it

can be used as part of any other tools that build the de Bruijn graph.

While parallel genome assemblers offer impressive performance,

there are many situations where differences in data require the de-

velopment of a new assembler, and hence it is desirable to build

Table 1. Running times (wall-clock) and memory usage of compac-

tion algorithms for the human datasets.

Dataset BCALM 2 BCALM ABySS-P Meraculous 2

Chr 14 5 mins 15 mins 11 mins 62 mins

400 MB 19 MB 11 GB 2.35 GB

Whole human 1.2 h 12 h 6.5 h 16 h�

2.8 GB 43 MB 89 GB unreported�

For BCALM 2 and BCALM we used k¼ 55, and ‘ ¼ 8 and ‘ ¼ 10, respectively;

abundance cutoffs were set to 5 for Chr 14 and 3 for whole human. We used

16 cores for the parallel algorithms ABySS, Meraculous 2 and BCALM 2.

Meraculous 2 aborted with a validation failure due to insufficient peak k-mer

depth when we ran it with abundance cutoffs of 5. We were able to execute it

on chromosome 14 with a cutoff of 8, but not for the whole genome. (�)For

the whole genome, we show the running times given in Georganas et al.

(2014). The exact memory usage was unreported there but is less than <1 TB.

Meraculous 2 was executed with 32 prefix blocks.

Table 2. Performance of BCALM 2 on the loblolly pine and white

spruce datasets.

Dataset Loblolly pine White spruce

Distinct k-mers (�109) 10.7 13.0

Num threads 8 16

CompactBucket() time 4 h 40 m 3 h 47 m

CompactBucket() mem 6.5 GB 6 GB

Reunite file size 85 GB 140 GB

Reunite() time 4 h 32 m 3 h 08 m

Reunite() memory 31 GB 39 GB

Total time 9 h 12 m 6 h 55 m

Total max memory 31 GB 39 GB

Unitigs (�106) 721 1200

Total length 32.3 Gbp 49.0 Gbp

Longest unitig 11.2 kbp 9.0 kbp

The k-mer size was 31 and the abundance cutoff for k-mer counting was 7.
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modular components. Second, we do not aim at a method that can

be distributed on a cluster over thousands of nodes. While clearly

powerful, such machines are not usually accessible to a biology lab,

and we believe that a tool that uses a shared memory multi-core ma-

chine is more applicable. Methods that are designed for multi-node

clusters will often consume a prohibitive amount of memory when

run on multiple threads of a shared memory machine.
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