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Abstract
Because tunnels generally have tubular shapes, the distribution of tie points between adja-

cent scans is usually limited to a narrow region, which makes the problem of registration

error accumulation inevitable. In this paper, a global registration method is proposed based

on an augmented extended Kalman filter and a central-axis constraint. The point cloud reg-

istration is regarded as a stochastic system, and the global registration is considered to be a

process that recursively estimates the rigid transformation parameters between each pair of

adjacent scans. Therefore, the augmented extended Kalman filter (AEKF) is used to accu-

rately estimate the rigid transformation parameters by eliminating the error accumulation

caused by the pair-wise registration. Moreover, because the scanning range of a terrestrial

laser scanner can reach hundreds of meters, a single scan can cover a tunnel segment with

a length of more than one hundred meters, which means that the central axis extracted from

the scan can be employed to control the registration of multiple scans. Therefore, the central

axis of the subway tunnel is first determined through the 2D projection of the tunnel point

cloud and curve fitting using the RANSAC (RANdom SAmple Consensus) algorithm. Be-

cause the extraction of the central axis by quadratic curve fitting may suffer from noise in the

tunnel points and from variations in the tunnel, we present a global extraction algorithm that

is based on segment-wise quadratic curve fitting. We then derive the central-axis constraint

as an additional observation model of AEKF to optimize the registration parameters be-

tween each pair of adjacent scans. The proposed approach is tested on terrestrial point

clouds that were acquired in a subway tunnel. The results show that the proposed algorithm

is capable of improving the accuracy of aligning multiple scans by 48%.

Introduction
Because underground structures, such as tunnels, require routine inspections and maintenance
for their optimal use, efficient and accurate tunnel inspections are mandatory. The construction
of 3Dmodels of tunnels is important for such applications. Applications of laser technology are
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rapidly expanding with decreased costs and increased accuracy. Therefore, 3D laser scanners
make it possible to obtain point clouds with high accuracy and high spatial resolution for 3D tun-
nel model construction. However, one of the biggest problems that are encountered when pro-
cessing these scans is terrestrial point cloud registration, in which rigid transformation
parameters (RTPs) are used to align one dataset with another. Because tunnels generally have tu-
bular shapes, the distribution of the tie points between adjacent scans is usually limited to a nar-
row region. Therefore, the problem of registration error accumulation becomes inevitable when
multiple scans must be registered. Bergevin et al. [1] presented an algorithm that considers the
network of views as a whole and minimizes the registration errors of all views simultaneously. In-
spired by that work, Benjemaa and Schmitt [2] extended pair-wise registration based on a multi-
z-buffer technique to a global registration. They applied rigid transformations to transform each
moving surface immediately after its rigid transformation had been estimated. Similarly, Sharp
et al. [3] proposed an analytical method to solve for global registration parameters that involves
building a graph to describe the relationship between neighboring views. This approach then de-
composes the graph into basis cycles so the nonlinear optimization problem can be solved over
each basis cycle in a closed form. Hu et al. [4] built a topological graph to determine the best regis-
tration path for all range scans. Stoddart and Hilton [5] identified pair-wise correspondences be-
tween points in all views and then iteratively minimized the correspondence errors over all views
using a descent algorithm. This basic technique was extended by Neugebauer [6] and Eggert et al.
[7] using a multiresolution framework, surface normal processing, and boundary point process-
ing. Williams and Bennamoun [8] suggested a further refinement by including individual covari-
ance weights for each point. There is currently no consensus as to the best approach for solving
the global registration problem. Kang et al. [9] proposed a global registration method that mini-
mizes the self-closure errors across all scans through simultaneous least-squares adjustments. Ad-
ditional sensors, such as Global Navigation Satellite System (GNSS), compasses, and tilt sensors,
are often combined with TLS instruments to help solve or reduce the global registration problem.

In recent years, optimization algorithms that use a series of measurements observed over
time have been introduced in point cloud registration. Ma and Ellis [10] proposed the unscent-
ed particle filter (UPF) algorithm [11] to register two point data sets in the presence of isotropic
Gaussian noise. Moghari and Abolmaesumi [12] proposed a registration algorithm, the un-
scented Kalman filter (UKF) [13], which is based on the continuous assessment of point cloud
registration parameters of two rigid bodies. In this paper, we regard the point cloud registration
as a stochastic system and the global registration as a process that recursively estimates the
rigid transformation parameters of each scan. The augmented extended Kalman filter (AEKF)
is utilized to produce accurate estimates of rigid transformation parameters by eliminating the
error accumulation that is caused by the pair-wise registration. Because the central axis ex-
tracted from a single scan predictably controls more than the tie points, it is employed to re-
duce the error accumulation for the registration of multiple scans. Therefore, the central-axis
constraints are derived as the control condition of the AEKF, so the registration parameters be-
tween each pair of adjacent scans will be globally optimized.

We begin by proposing the global registration method based on the augmented extended
Kalman filter in Section 2. Section 3 optimizes the AEKF by introducing the central-axis con-
straint as an additional observation model. Section 4 discusses the test results, and we offer
conclusions and suggestions for further research in Section 5.

Global Registration Using an Augmented Extended Kalman Filter
The Kalman filter, which is also known as linear quadratic estimation (LQE), is an algorithm
that uses a series of measurements observed over time, which contain noise (random
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variations) and other inaccuracies, and produces estimates of unknown variables that tend to
be more precise than those that are based on a single measurement.

In this paper, the point cloud registration is regarded as a stochastic system, and the global
registration is the process that recursively estimates the rigid transformation parameters of
each scans. Therefore, a Kalman filter is used to produce accurate estimates of the rigid trans-
formation parameters by eliminating the error accumulation that is caused by the pair-
wise registration.

Because the rigid transformation model is nonlinear, we utilize the extended Kalman filter
(EKF) [14], which is the nonlinear version of the Kalman filter and is the de facto standard in
the theory of nonlinear state estimation, navigation systems and GPS, to estimate the six rigid
transformation parameters (three for the translation and three for the rotation). As a global
registration process, the RTPs that are acquired by pair-wise registrations should be globally
optimized. Therefore, the system state is augmented to contain the RTPs of all pair-wise regis-
trations that have been completed, so the optimized RTPs in the global reference frame are esti-
mated in terms of the RTPs of the new registration and its preceding registration. This paper
presents a design for an augmented extended Kalman filter (AEKF) for the global registration
of tunnel point clouds.

Suppose that N scans of 3D point cloud data are expressed as: {V1, V2,. . ., VN}. The i-th
scan Vi is represented as {vij = (xij, yij, zij) | j = 1,2,. . .,Mi}, and Mi represents the point number
of the i-th scan.

For a scale factor of 1, the rigid transformation between adjacent scans is parameterized as
follows:
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where (X, Y, Z) and (X’, Y’, Z’) are the coordinates of the corresponding points in the analyzed
and fixed scans, respectively, R is the rotation matrix computed by three rotations around the
coordinate axes φ,ω,κ, and (TX, TY, TZ) is the translation vector.

Therefore, each transformation has six degrees of freedom (6DOF): TX,TY,TZ,φ,ω,κ.

State space and systemmodels
When using the Kalman filter to estimate the RTPs, the system state model, observation model
and extended model should be defined first.

System state space. The augmented system state comprises the RTPs of all of the complet-
ed pair-wise registrations. The system state at time tk is defined as X(k):
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where n represents the number of completed pair-wise registrations, and Xi(k) denotes the
RTPs of the i-th pair-wise registration.
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The system covariance matrix is a symmetric matrix that is expressed as

PðkÞ ¼
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..
. . .

. ..
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2
664

3
775 ð3Þ

where pij (k) is a block matrix that represents the covariance matrix between Xi(k) and Xj(k).
System status model. Because the RTPs of each pair-wise registration are static, the sys-

tem state transition equation becomes

Xðkþ 1Þ ¼ f ðXðkÞÞ ¼ XðkÞ ð4Þ

where f(.) is the state-transition model. The state-transition model is a unit matrix I, which can
be ignored.

System augmented model
During the global registration process, when a new pair-wise registration is considered at time
tk, its RTPs are added to the system state vector. The RTPs in the global reference frame are es-
timated in terms of the RTPs of the new registration and its preceding registration using Eq
(5).

XnewðkÞ ¼ gðXrðk� 1Þ;TMÞ þ oðkÞ ð5Þ

where Xnew(k) represents the augmented RTPs of the currently considered registration, Xr(k
−1) denotes the RTPs of the preceding registration, g(.) is a system-augmented function, the
RTPs of the new pair-wise registration are TM = [ΔTX ΔTY ΔTZ Δφ Δω Δκ], and ω(k) describes
a variety of uncertainties in the pair-wise registration and modeling process, which is assumed
to comply with the Gaussian distribution and is thus expressed as a white noise vector N (0,
Q).

Observation model
An observation model is established to optimize the RTPs of all of the pair-wise registrations
by minimizing the differences between the corresponding 3D point pairs transformed into the
common reference frame. Therefore, the observation value Z is the difference between a corre-
sponding point pair, so the observation model is derived as

ZP ¼ hPðXmðkÞ; . . . ;XnðkÞÞ þ uðkÞ ¼
Xif
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where (Xif, Yif, Zif) and (Xia0, Yia0,Zia0) are the coordinates of the corresponding point pair i in
the fixed and analyzed scans, respectively, transformed into the common reference frame, h(.)
is the observation model, and υ(k) denotes a variety of uncertainties in the scanning measure-
ment and the transformation of coordinates, which is assumed to comply with the Gaussian
distribution and is thus expressed as a white noise vector N (0, R).
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The coordinates (Xia0, Yia0,Zia0) are computed as follows:
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where (Xia, Yia, Zia) are the coordinates of the point in the analyzed scan, (Ti,X, Ti,Y, Ti,Z) repre-
sent the translation from scan i+1 to i, and Ri is the rotation from i+1 to i.

Eq (6) is linearized as

ZP ¼ hP
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whererhP is the Jacobian matrix derived from Eqs (6) and (7).
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Status augmentation
When a new pair-wise registration is completed, Xnew(k) is added to the system state vector.
The system state vector and the system covariance matrices are then augmented as follows:
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XnewðkÞ

" #

P�ðkÞ ¼
Pþðk� 1Þ ðrg � Pþðk� 1ÞÞT

rg � Pþðk� 1Þrg � Pþðk� 1Þ � rgT þ Q

2
4

3
5g ð10Þ

where Xnew denotes the augmented RTPs of the new pair-wise registration, X+ and P+ represent
the a posteriori system state estimation, X- and P- represent the a priori system state estimation,
rg is the Jacobian matrix of the system augmented model, and Q is the covariance matrix of
the system noise.

Observation updates
In terms of the observation model and the augmented system state vector, the new information
_(k), the new information variance S(k) and the Kalman gainW are computed as follows:

_ðkÞ ¼ 0� ðhðX�
i ðkÞ;X�

j ðkÞÞ þ uðkÞÞ
SðkÞ ¼ rh � P�ðkÞ � rhT þ R

W ¼ P�ðkÞ � rhT � SðkÞ�1
g ð11Þ

The state vector and covariance matrix of the system are updated as

XþðkÞ ¼ X�ðkÞ þW � _ðkÞ
PþðkÞ ¼ P�ðkÞ �W � SðkÞ �WT g ð12Þ
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where X+ and P+ represent the a posteriori system state estimation, and X- and P- represent the
a priori system state estimation.

AEKF with Central-Axis Constraint
Because tunnels generally have tubular shapes, the distribution of tie points between adjacent
scans is usually limited to a narrow region. As a result, the registration of point clouds is prone
to error accumulation. The central axis that is extracted from a single scan can be more than
100 meters long, while the shift between adjacent scans in a tunnel has to be short (e.g., 20 me-
ters) because long shifts between adjacent scans will lead to large differences between the corre-
sponding scanning angles of incidence to the same object point, which will affect the accuracy
of the identification of tie points for the registration. Therefore, the overlap between the fitted
axes is expected to be much larger than that between the tie points (Fig 1), from which a con-
straint can be derived to control the error accumulation.

First, we propose a global extraction algorithm that is based on segment-wise quadratic
curve fitting to extract the central axis of the subway tunnel. The central-axis constraint is then
derived as an additional observation model of the AEKF to optimize the registration parame-
ters between each pair of adjacent scans.

Determination of the central axis of a tunnel based on 2D projections
The central axis of a tunnel is continuously extracted using a 2D projection of the point cloud
and curve fitting using the RANSAC algorithm, and the axis is optimized using a global extrac-
tion strategy that is based on segment-wise fitting.

Estimation of the boundary points. The tunnel point clouds are projected onto the XOY
plane, from which we extract the boundary points of both sides of the tunnel. Therefore, the
shape of the tunnel does not influence the extraction of the two parallel bounding lines on the
XOY plane. An algorithm for boundary point extraction is proposed using a moving window.
Fig 2 shows a circular window with a predefined radius that is centered at the point of interest
P. All of the points within the window are considered as the neighboring points of point P. The
polar angles of the neighboring points are computed relative to point P (e.g., α1). We then cal-
culate the differences between consecutive polar angles. If point P is a boundary point, the dif-
ference Δαi + 1,i between boundary points Pi and Pi + 1 is much larger than the difference Δαi,i
− 1 between boundary point Pi and interior point Pi − 1. Therefore, once the difference is greater
than a predefined threshold, point P is labeled as a boundary point.

Fitting of the bounding lines. The bounding lines of a tunnel usually contain segments
that are straight lines, curves and transition curves, which are parameterized as follows:

Straight line model:

X ¼ aY þ b ð13Þ
Transition curve model:

X ¼ cY3 þ dY2 þ eY þ f ð14Þ
Curve model:

X ¼ gY2 þ hY þ k ð15Þ
where a and b are the parameters of a straight line, c, d, e, and f are the parameters of a transi-
tion curve, and g, h, and k are the parameters of a curve.

The bounding line fitting process includes the estimation of multiple models. To ensure the
robustness of the fit, the RANSAC algorithm [15] is used to estimate the parameters of the
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three models. Instead of using as much data as possible to obtain an initial solution and at-
tempting to eliminate the invalid data points, RANSAC uses as small an initial data set as is fea-
sible and enlarges this set using consistent data when possible. The RANSAC paradigm
contains three unspecified parameters: (1) the error tolerance, which is used to determine

Fig 1. Overlaps of the central axes. The overlap between the fitted axes is much larger than that between the tie points.

doi:10.1371/journal.pone.0126862.g001

Fig 2. Extraction of boundary points using amoving window. All of the points within the moving window are considered to be neighboring points of point
P. The polar angles of the neighboring points are computed relative to point P (e.g., α1). If point P is a boundary point, the difference between the consecutive
polar angles of boundary points Pi and Pi + 1 is much greater than the difference between the polar angles of point Pi and interior point Pi − 1. Therefore, once
the difference is greater than a predefined threshold, point P is labeled as a boundary point.

doi:10.1371/journal.pone.0126862.g002
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whether a point is compatible with the model; (2) the number of subsets to attempt; and (3) the
threshold t, which is the number of compatible points and is used to determine that the correct
model has been found. The determination of these three parameters is discussed in the intro-
duction to RANSAC [15].

A statistical testing algorithm is proposed to implement a hypothesis testing process and au-
tomatically detect the initial models from the extracted boundary points to ensure that the
proper model will be selected to fit each segment of the bounding line. The statistical test is im-
plemented using the straight line, transition curve and curve models.

Because the mathematical models of the bounding line segments to be fitted are determi-
nate, their parameters that are calculated by consecutive inlier sets are expected to converge in
the direction of the optimal solution. Therefore, our strategy is based on a histogram to dynam-
ically evaluate the convergence of the hypothesis models during the hypothesis testing process.
Different convergent clusters of the hypothesis models will be presented in the histogram. We
select the oldest model parameter set as the reference point for each convergent cluster of
model parameter sets. The more the hypothesis models converge to a cluster, the more possible
it is that the reference model of the cluster is correct. Therefore, we use the degree of conver-
gence of a cluster to detect the initial models. The degree of convergence is a percentage that
describes the number of models that converge to a model cluster. It is calculated by dividing
the number of hypothesis models in the cluster by the total number of hypothesis models.

To determine the convergence of a newly computed model to a model cluster, we need to
evaluate the deviation between the new model and the reference model of the cluster. We con-
struct vectors with two (straight line), four (transition curve) and three (curve) dimensions for
each set of model parameters. The Euclidian distances between different vectors are computed
to describe the deviation between the new model and the reference model of the cluster. If the
deviation is smaller than the predefined threshold, the number of FMs in the cluster is in-
creased by one, and the degree of convergence is updated accordingly. If the new hypothesis
model does not converge to any existing cluster, it will be regarded as a new cluster in
the histogram.

In this method, the histogram of the candidate model parameter sets is updated during each
iteration using the newly calculated hypothesis model parameter set. When the degree of con-
vergence of a candidate model parameter set reaches a predefined threshold, the candidate
model parameter set is detected as an initial model to fit the bounding line segment. If the de-
gree of convergence fails to reach the threshold after a predefined number of iterations, we in-
terpret that there is no such model.

To visualize the statistical results, we illustrate them as a histogram (Fig 3). The horizontal
axis denotes the mean value of the model parameters, and the vertical axis represents the de-
gree of convergence of each cell. A high degree of convergence for a parameter reflects a high
probability of finding the initial model.

After the initial model is detected, RANSAC is used to robustly estimate the optimized
model parameters. Two, four, and three points are used to estimate the model parameters to fit
a straight line, a transition curve and a curve, respectively. The criterion that is used to identify
outliers is based on the deviations of the tested points from the fitted model. The inlier bound-
ing points of a certain model are classified as a segment that is used in the following global opti-
mization. The final optimal parameters are computed by a least-squares adjustment using the
obtained inlier points.

Fitting of the central axis. After fitting the bounding lines, the boundary points are evenly
resampled. To extract the central axis of the tunnel, the normal vector Vl of the left bounding
curve at boundary point Pl is determined (Fig 4). A straight line orthogonal to the normal vec-
tor reaches the right bounding curve from Pl and generates point Pl'. Theoretically, the radial
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line from point Pl' that is orthogonal to Vl' reaches the left bounding curve at point Pl, so the ex-
tracted central-axis point is the midpoint of the line Pl Pl'. However, because the bounding
curves are subject to errors that are generated from the fitting processes, the radial orthogonal
to Vl' produces point Pl" instead of point Pl. Fig 4 shows thatMl' andMl" are the midpoints of
Pl Pl' and Pl' Pl", respectively. The extracted central-axis point is determined asMl, which is the
average of pointsMl' andMl". The same process is implemented from boundary point Pr on
the right bounding curve to extract the point on the central axis as pointMr. The presented
strategy to fit a bounding line is used to generate the central axis based on the extracted cen-
tral-axis points. Because the extraction of the central axis is implemented on the XOY plane,
the height of the central axis is determined as the mid-height of the tunnel points.

Global adjustment of the central axis using segment-wise fitting
Because the extraction of the segments of the bounding lines and the central axis on the XOY
plane using the three models may be affected by noise in the tunnel points, there may be devia-
tions in the overlapping parts of adjacent fitted models (Fig 5). Therefore, we propose a global
extraction algorithm to minimize the deviations.

To maintain consistency between adjacent fitted models, the divided segments overlap each
other by a small amount, and a global least-squares adjustment is developed to implement the
multiple model fitting of all of the segments together by minimizing the deviations in the over-
lapping parts of adjacent fitted models. Using Eqs (13)–(15), the constraints are derived be-
tween a straight line, a transition curve and a curve, respectively, and are added to the
adjustment model. For example, Eq (16) parameterizes the constraint between a straight line
and a transition curve:

aiY þ bi ¼ ðcjY3 þ djY
2 þ ejY þ fjÞ ¼ 0 ð16Þ

where ai and bi are the line parameters of segment i, cj, dj, ej, and fj are the transition curve pa-
rameters of segment j, and Y is the Y coordinate of a point in the overlap region between seg-
ments i and j.

Fig 3. Histogram of hypothesis model parameters. The horizontal axis denotes the mean value of the model parameters, and the vertical axis represents
the degree of convergence of each cell. A high degree of convergence for a parameter reflects a high probability of finding the initial model.

doi:10.1371/journal.pone.0126862.g003
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Eq (16) describes the constraint that the X coordinates computed by any Y coordinate in the
overlap region between segments i and j using the model parameters of segments i and j are
theoretically equal.

The coefficient matrix of the observation and constraint equations of the global least-
squares adjustment is derived in Eq (17):

B ¼

Bl

Btc

Bc

C

2
66664

3
77775 ð17Þ

Fig 4. Determination of the central-axis point. To extract the central axis of the tunnel, the normal vector Vl of the left bounding curve at boundary point Pl

is determined. A straight line orthogonal to the normal vector reaches the right bounding curve from Pl and generates point Pl'. Theoretically, the radial line
from point Pl' that is orthogonal to Vl' reaches the left bounding curve at point Pl, so the extracted central-axis point is the midpoint of line Pl Pl'. However,
because the bounding curves are subject to errors that are generated from the fitting process, the radial that is orthogonal to Vl' produces point Pl" instead of
point Pl.Ml' andMl" are the midpoints of Pl Pl' and Pl' Pl", respectively. The extracted central-axis point is determined asMl, which is the average of pointsMl'
andMl". The same process is implemented from boundary point Pr on the right bounding curve to extract the point on the central axis as pointMr. Based on
the extracted central-axis points, the presented strategy to fit a bounding line is used to generate the central axis.

doi:10.1371/journal.pone.0126862.g004
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where
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which are derived from Eqs (13)–(15) for segment i,m denotes the number of the points on
segment i, n = n1 + n2 + n3, and
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. ..

. ..
.

..

. ..
. ..

. . .
.

0 0 0
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3
77777775

ð19Þ

Fig 5. Segment-wise fitting. To maintain consistency between adjacent fitted models, the divided segments overlap each other slightly, and a global least-
squares adjustment is developed to implement the multiple model fittings of all of the segments together by minimizing the deviations in the overlapping parts
of adjacent fitted models.

doi:10.1371/journal.pone.0126862.g005
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where

Cij ¼

y2i1;jðjþ1Þ yi1;jðjþ1Þ 1

y2i2;jðjþ1Þ yi2;jðjþ1Þ 1

..

. ..
. ..

.

y2ik;jðjþ1Þ yik;jðjþ1Þ 1

2
666666664

3
777777775
; orCij ¼

y3i1;jðjþ1Þ y3i1;jðjþ1Þ yi1;jðjþ1Þ 1

y3i2;jðjþ1Þ y2i1;jðjþ1Þ yi2;jðjþ1Þ 1

..

. ..
. ..

. ..
.

y3ik;jðjþ1Þ y2ik;jðjþ1Þ yik;jðjþ1Þ 1

2
666666664

3
777777775
; or

Cij ¼

yi1;jðjþ1Þ 1

yi2;jðjþ1Þ 1

..

.
1

yik;jðjþ1Þ 1

2
666666664

3
777777775
; andCiðjþ1Þ ¼ �Cij

ð20Þ

which are derived from Eq (17) for the overlap region between segment j and segment j + 1.
The form of Cij depends on the models of the two overlapping segments. In the proposed global
least-squares adjustment system, Eq (16) is used as a constraint equation and is weighted with
a large value (e.g., 10) instead of with 1, as occurs in an observation equation. Based on the co-
efficient matrix B, we calculate the optimized parameters of the bounding line segments by fol-
lowing the least-squares strategy. After the bounding lines are fitted, the method presented in
Section 3.1 is implemented to extract the central-axis points, which we use to generate the glob-
ally optimized central axis using the proposed global least-squares adjustment system.

Observation model derived from the central-axis constraint
The extracted central axis comprises multiple segments that can be parameterized using Eqs
(13)–(15). We derive the central-axis constraint by adding an additional observation model
into the AEKF system.

The observation model is established to minimize the deviation that describes how the
point on the axis segment in the analyzed scan does not fit the corresponding axis segment
model that was determined in the fixed scan (Fig 6), when the point is transformed into the
global reference frame. Therefore, the observation value Z is computed as (for the straight line
model):

ZA ¼ hAðXmðkÞ; . . .;XnðkÞÞ þ uAðkÞ ¼
1 �a 0

0 0 1

" # Xia
0

Yia
0

Zia
0

2
64

3
75� b

Zmid

" #
þ uðkÞ ð21Þ

where (a, b) represent the linear parameters, Zmid denotes the middle height of the tunnel
points in the overlap, h(.) is the observation model, and υ(k) denotes a variety of uncertainties
in the scanning measurement and the transformation of coordinates, which is supposed to
comply with the Gaussian distribution and is thus expressed as a white noise vector N (0, R)

Xia
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0
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0

2
64

3
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The observation model is linearized as:

ZA ¼ hA
0ðXmðkÞ; . . .;XnðkÞÞ þ rhA �

DXmðkÞ
..
.

DXnðkÞ

2
664

3
775þ uðkÞ ð23Þ

whererhA is the Jacobian matrix derived from Eqs (21) and (22)).
Because the observation model is established to minimize the deviation that describes how

the point on the axis segment in the analyzed scan does not fit the corresponding axis segment
model that was determined in the fixed scan, the selection of the number of observation equa-
tions is flexible in the proposed algorithm. The more observation equations that are added to
the AEKF system, the greater the contribution that the constraint has on the registration. Thus,
a constraint that is derived from a low-quality central-axis segment is assigned a small number
of observation equations in our algorithm.

Therefore, the observation model of the AEKF system is modified as:

Z ¼ ZP

ZA

" #
ð24Þ

The RTPs of all of the pair-wise registrations are then optimized by minimizing both the dif-
ferences between the corresponding 3D point pairs and the point-to-model deviation, which is
expected to improve the robustness and accuracy of the proposed global registration approach.
The improvement can be attributed to the multiple overlaps of the central axis among the
scans, while we are most likely able to find the tie points only from the overlaps between two
consecutive scans.

Fig 6. Central-axis constraint.We derive the central-axis constraint by adding an additional observation model to the AEKF system. The observation model
is established to minimize the deviation that describes how the point on the axis segment in the analyzed scan does not fit the corresponding axis segment
model that was determined in the fixed scan when the point is transformed into the global reference frame.

doi:10.1371/journal.pone.0126862.g006
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Experimental Results
The proposed approach was tested on real datasets (Fig 7) that were acquired by a RIEGL LMS
VZ-400 laser scanner in a subway tunnel in Shanghai, China. Twelve scans were captured with
an average shift of 10 m between the scanning centers. The scans cover tunnel segments with
different shapes for a distance of 450 m. The scan’s angular resolution was 0.046°, and the
range accuracy was ±5 mm.

Pair-wise registration
Fig 8 shows the tie points (high-reflectivity targets) between consecutive scans. Based on these
tie points, the pair-wise registrations were implemented using RiSCAN PRO from RIEGL.
Table 1 lists the accuracies of the pair-wise registrations; the average accuracy is 0.021 m.

As shown in Fig 7, the tunnel has a tubular shape, so the average length of the areas covered
by the tie points is only 30 m, while the mean length of the tunnel segment that is captured by
one scan is 150 m. Therefore, the accumulation of registration error is inevitable (Fig 9a). To
estimate the error accumulation, Fig 9b–9g illustrate cross sections that were extracted at the
same position from scans 1 and 4, scans 2 and 5, scans 3 and 6, scans 7 and 10, scans 8 and 11,
scans 8 and 12, respectively, which were transformed into the same coordinate system using
the pair-wise registration results. The distinct deviations between the two cross sections in Fig
9b–9g are due to the accumulation of the pair-wise registration errors.

Twenty check point pairs were selected from the two cross sections in Fig 9b–9g. Table 2 list
the differences. The average deviation is 0.0463 m, which is larger than the average value of
0.022 m in Table 1.

As proposed in Section 2, we implemented the augmented extended Kalman filter to elimi-
nate the error accumulation that was caused by the pair-wise registration to accurately estimate
the rigid transformation parameters.

Global registration using the augmented extended Kalman filter
The pair-wise registration results were used to construct the augmented extended Kalman filter
system with which the global registration was implemented. To compare the registration accu-
racies, cross sections were also extracted at the same positions from scans 1 and 4, scans 2 and

Fig 7. Experimental dataset. The proposed approach was tested on real datasets that were acquired by a RIEGL LMS VZ-400 laser scanner in a subway
tunnel in Shanghai, China. Twelve scans were captured; the scans had an average shift of 10 m between their centers and cover tunnel segments with
different shapes for a distance of 450 m.

doi:10.1371/journal.pone.0126862.g007
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Fig 8. Tie points selected for registration. (a) Tie points (7 pairs) between Scans 1 and 2; (b) Tie points (8 pairs) between Scans 2 and 3; (c) Tie points (7
pairs) between Scans 3 and 4; (d) Tie points (7 pairs) between Scans 4 and 5; (e) Tie points (6 pairs) between Scans 5 and 6; (f) Tie points (7 pairs) between
Scans 6 and 7; (g) Tie points (8 pairs) between Scans 7 and 8; (h) Tie points (6 pairs) between Scans 8 and 9; (i) Tie points (9 pairs) between Scans 9 and
10; (j) Tie points (8 pairs) between Scans 10 and 11; (k) Tie points (6 pairs) between Scans 11 and 12.

doi:10.1371/journal.pone.0126862.g008
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Table 1. Accuracies of the pair-wise registrations.

Registration Number of tie points Accuracy/m Registration Number of tie points Accuracy/m

1–2 7 0.0259 7–8 8 0.0174

2–3 8 0.0182 8–9 6 0.0208

3–4 7 0.0154 9–10 9 0.0237

4–5 7 0.0292 10–11 8 0.0170

5–6 6 0.0183 11–12 6 0.0249

6–7 7 0.0184

doi:10.1371/journal.pone.0126862.t001

Fig 9. Error accumulation of pair-wise registration. (a) Overview; (b) Scans 1 and 4; (c) Scans 2 and 5; (d) Scans 3 and 6; (e) Scans 7 and 10; (f) Scans 8
and 11; (g) Scans 9 and 12.

doi:10.1371/journal.pone.0126862.g009
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5, scans 3 and 6, scans 7 and 10, scans 8 and 11, and scans 8 and 12 (Fig 10). Fig 10 shows that
the deviations between the two cross sections are less than the deviations shown in Fig 9; the
average deviation computed from the results in Table 3 decreases to 0.0301 m.

Although the accumulation of errors of the pair-wise registration was reduced somewhat,
the AEKF system was still implemented based on tie points that were shown to have a limited
distribution. Therefore, as presented in Section 3, the constraint derived from the overlapping
axes was introduced into the AEKF system to globally optimize the transformation parameters.

Table 2. Deviations between check point pairs (Scans 1 and 4 to Scans 9 and 12).

ID Deviation/m ID Deviation/m ID Deviation/m ID Deviation/m

Scans 1 and 4 1 0.025 6 0.033 11 0.027 16 0.026

2 0.031 7 0.019 12 0.044 17 0.009

3 0.033 8 0.018 13 0.055 18 0.018

4 0.025 9 0.061 14 0.039 19 0.031

5 0.024 10 0.029 15 0.027 20 0.018

RMSE/m 0.032

Scans 2 and 5 1 0.032 6 0.02 11 0.038 16 0.016

2 0.034 7 0.013 12 0.032 17 0.033

3 0.036 8 0.034 13 0.035 18 0.019

4 0.039 9 0.04 14 0.037 19 0.047

5 0.035 10 0.035 15 0.0036 20 0.043

RMSE/m 0.0328

Scans 3 and 6 1 0.072 6 0.071 11 0.044 16 0.024

2 0.067 7 0.057 12 0.039 17 0.034

3 0.064 8 0.053 13 0.013 18 0.035

4 0.066 9 0.038 14 0.039 19 0.019

5 0.059 10 0.01 15 0.042 20 0.019

RMSE/m 0.0473

Scans 7 and 10 1 0.069 6 0.061 11 0.015 16 0.046

2 0.06 7 0.048 12 0.042 17 0.037

3 0.071 8 0.037 13 0.076 18 0.03

4 0.065 9 0.027 14 0.049 19 0.026

5 0.061 10 0.008 15 0.04 20 0.034

RMSE/m 0.0487

Scans 8 and 11 1 0.074 6 0.082 11 0.048 16 0.1

2 0.078 7 0.063 12 0.059 17 0.046

3 0.077 8 0.044 13 0.072 18 0.079

4 0.115 9 0.05 14 0.092 19 0.038

5 0.099 10 0.035 15 0.067 20 0.034

RMSE/m 0.0713

Scans 9 and 12 1 0.093 6 0.081 11 0.046 16 0.0720

2 0.082 7 0.086 12 0.038 17 0.0900

3 0.075 8 0.077 13 0.018 18 0.0750

4 0.073 9 0.08 14 0.064 19 0.0770

5 0.02 10 0.074 15 0.08 20 0.0710

RMSE/m 0.0717

doi:10.1371/journal.pone.0126862.t002
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Augmented extended Kalman filter with the central-axis constraint
To derive the central-axis constraint, the central-axis segments were first extracted from the
twelve scans.

Fitting of the central axis based on the 2D projection. As proposed in Section 3.1, the
tunnel points of the dataset (e.g., scans 1 and 12) were projected onto the XOY plane as shown

Fig 10. Global registration results (AEKF). (a) Overview; (b) Scans 1 and 4; (c) Scans 2 and 5; (d) Scans 3 and 6; (e) Scans 7 and 10; (f) Scans 8 and 11;
(g) Scans 9 and 12.

doi:10.1371/journal.pone.0126862.g010
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in Fig 11. The boundary points were extracted and are shown by the dark dots. Fig 11a shows
that noise points are present due to the supplementary structures near the subway station.

The bounding lines of a tunnel may comprise segments of straight lines, curves and transi-
tion curves. The proposed statistical testing algorithm was implemented using the three models
to automatically detect the corresponding initial model from the extracted boundary points.
Fig 12 shows the peaks in the histograms for the straight lines, transition curves and curves of
the extracted boundary points that were fit using the three models.

Based on the detected initial models (e.g., the straight line and transition curve), we fit the
bounding lines using RANSAC (Fig 13a and 13c). In Fig 13c, the noise points shown in Fig

Table 3. Deviations between check point pairs (AEKF).

ID Deviation/m ID Deviation/m ID Deviation/m ID Deviation/m

Scans 1 and 4 1 0.038 6 0.028 11 0.03 16 0.0290

2 0.041 7 0.026 12 0.026 17 0.0080

3 0.038 8 0.031 13 0.027 18 0.0300

4 0.027 9 0.027 14 0.027 19 0.0300

5 0.025 10 0.027 15 0.017 20 0.0290

0.0289

Scans 2 and 5 1 0.035 6 0.006 11 0.006 16 0.0090

2 0.024 7 0.02 12 0.014 17 0.0110

3 0.038 8 0.027 13 0.09 18 0.0040

4 0.015 9 0.014 14 0.01 19 0.0200

5 0.044 10 0.015 15 0.014 20 0.0230

0.0290

Scans 3 and 6 1 0.05 6 0.029 11 0.028 16 0.0120

2 0.013 7 0.032 12 0.036 17 0.0060

3 0.016 8 0.015 13 0.022 18 0.0410

4 0.041 9 0.027 14 0.026 19 0.0300

5 0.03 10 0.017 15 0.026 20 0.0170

0.0279

Scans 7 and 10 1 0.051 6 0.048 11 0.02 16 0.0370

2 0.039 7 0.032 12 0.066 17 0.0290

3 0.031 8 0.03 13 0.043 18 0.0320

4 0.026 9 0.022 14 0.025 19 0.0070

5 0.038 10 0.023 15 0.045 20 0.0150

0.0355

Scans 8 and 11 1 0.031 6 0.008 11 0.014 16 0.0260

2 0.042 7 0.025 12 0.015 17 0.0390

3 0.023 8 0.032 13 0.033 18 0.0400

4 0.047 9 0.022 14 0.034 19 0.0310

5 0.036 10 0.019 15 0.049 20 0.0230

0.0314

Scans 9 and 12 1 0.021 6 0.034 11 0.012 16 0.0230

2 0.024 7 0.027 12 0.059 17 0.0250

3 0.022 8 0.03 13 0.028 18 0.0210

4 0.024 9 0.041 14 0.032 19 0.0330

5 0.034 10 0.03 15 0.013 20 0.0230

0.0295

doi:10.1371/journal.pone.0126862.t003
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11a were eliminated (highlighted in green) by RANSAC. The boundary points were evenly re-
sampled in terms of the fitted model parameters. The method presented in Section 3.1 was
implemented using these fitted parameters to extract the central-axis points (Fig 13a and
13c). Fig 13b and 13d show 3D views of the central axes that were generated from the central-
axis points.

As shown in Fig 14, the central axis that was fit from the tunnel points consists of three seg-
ments. The yellow box on the left highlights the overlap between the curve and the transition
curve, while the box on the right shows the overlap between the transition curve and the
straight line. To test the fitting accuracy, we set 24 Y coordinates along the central axis within
the overlap zones highlighted in the two yellow boxes and computed their corresponding
points on the two adjacent segments. The deviations between the corresponding points were
then calculated and are shown in Table 4. Large deviations with an RMSE of 26 mm (detailed
views) are present within the overlap zones between the segments due to the noise in the tunnel
point dataset.

Global extraction of the central axis using segment-wise fitting. To optimize the extrac-
tion results, the global least squares adjustment proposed in Section 3.2 was implemented to

Fig 11. 2D projections of the tunnel points onto the XOY plane (Scans 1 and 12). (a) 2D projection of Scan 1; (b) 2D projection of Scan 12.

doi:10.1371/journal.pone.0126862.g011
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Fig 12. Statistical test results of the optimized BaySAC algorithm. (a) Straight line; (b) Transition curve;
(c) Curve.

doi:10.1371/journal.pone.0126862.g012
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Fig 13. Fitting of the tunnel axis (straight line and transition curve). (a) Central-axis extraction (Scan 12); (b) extracted 3D central axis (Scan 12); (c)
central-axis extraction (Scan 1); (d) extracted 3D central axis (Scan 1).

doi:10.1371/journal.pone.0126862.g013
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minimize the deviations in the overlap zones between the adjacent fitted models. Fig 15 shows
that the differences in Fig 14 were reduced considerably, and a globally optimized central axis
was extracted.

To test the fitting accuracy, we set 24 Y coordinates along the central axis within the overlap
zones highlighted in the two yellow boxes. Their corresponding points on the two adjacent seg-
ments were computed. The deviations between the corresponding points were then calculated
and are shown in Table 4. The RMSE of the deviations was reduced from 26 mm to 2 mm by
the global extraction process.

Fig 14. Extracted central axis. The central axis that was fit from the tunnel points consists of three segments. The yellow box on the left highlights the
overlap between the curve and the transition curve, while the box on the right shows the overlap between the transition curve and the straight line. To test the
fitting accuracy, we set 24 Y coordinates along the central axis within the overlap zones highlighted in the two yellow boxes. Their corresponding points on
the two adjacent segments were computed. Large deviations with an RMSE of 26 mm (detailed views) are present within the overlap zones between the
segments due to the noise in the tunnel point dataset.

doi:10.1371/journal.pone.0126862.g014

Table 4. Comparison of the fitting accuracies.

ID Deviations after Global
Extraction (m)

Deviations before Global
Extraction(m)

ID Deviations after Global
Extraction (m)

Deviations before Global
Extraction (m)

1 0.005 0.035 13 0.001 0.056

2 −0.003 −0.026 14 0.004 0.039

3 0.002 0.019 15 −0.005 0.022

4 0.003 0.016 16 0.003 0.047

5 −0.005 0.002 17 0.001 −0.032

6 0.001 0.001 18 0.004 0.03

7 −0.003 −0.007 19 0.001 0.038

8 0.002 0.003 20 −0.007 −0.015

9 −0.001 0.008 21 −0.001 0.035

10 −0.003 0.004 22 0.003 0.002

11 0.0013 0.01 23 0.001 −0.025

12 −0.002 −0.035 24 0.002 0.015

RMSE 0.002 0.026

doi:10.1371/journal.pone.0126862.t004
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Augmented extended Kalman filter with segment-wise axes. As presented in Section 3.2,
the central axes were extracted by a global extraction strategy using segment-wise fitting, which
produced many axis segments. Those segments were employed to construct an additional ob-
servation model according to Section 3.3 to control the error accumulation. Fig 16 shows that
the deviations between the two cross sections are less than those shown in Fig 10. The average
deviation computed from the results in Table 5 decreases to 0.024 m, which is only half of the
mean value of 0.0463 m that is calculated from Table 2.

Conclusions
In this paper, we proposed a global registration approach that is based on an augmented ex-
tended Kalman filter and central-axis constraints. The point cloud registration was regarded as
a stochastic system, so we utilized AEKF to produce accurate estimates of the rigid transforma-
tion parameters by eliminating the error accumulation caused by the pair-wise registration.
Moreover, the central axis that was extracted from the scan was used to control the registration
of multiple scans. The central axis of the subway tunnel was determined through a global ex-
traction algorithm based on segment-wise quadratic curve fitting. We then derived the central-
axis constraint as an additional observation model of AEKF to optimize the registration param-
eters between each pair of adjacent scans.

The proposed algorithm was implemented using a terrestrial laser scanning dataset that was
acquired in a subway tunnel. The experimental results show that when multiple scans are
aligned into a common coordinate frame, the consecutive implementation of pair-wise registra-
tion causes error accumulation (from 0.022 m to 0.046 m). The results also illustrate that the ap-
plication of the global registration based on AEKF can reduce the error accumulation (from
0.046 m to 0.030 m). The proposed algorithm of global extraction based on segment-wise fitting
was implemented on the experimental point clouds to impose the central-axis constraint and

Fig 15. Central-axis fitting with global least squares adjustment. To optimize the extraction results, the proposed global least squares adjustment was
implemented to minimize the deviations in the overlap zones between the adjacent fitted models. Fig 15 shows that the differences shown in Fig 14 were
reduced significantly, and a globally optimized central axis was extracted.

doi:10.1371/journal.pone.0126862.g015
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achieved an accuracy of 2 mm. The presented AEKF with the segment-wise axis constraint was
shown to improve the accuracy of aligning multiple scans by 48% (0.024 m versus 0.046 m).

Because the extraction of the central axis is important to the global registration method, fu-
ture work will focus on improving the robustness and applicability of our algorithm for the ex-
traction of the tunnel’s central axis. Moreover, tunnels with more complex shapes and sharper
curves will be considered in future work.

Fig 16. Global registration results (AEKF + Central-axis constraint). (a) Overview; (b) Scans 1 and 4; (c) Scans 2 and 5; (d) Scans 3 and 6; (e) Scans 7
and 10; (f) Scans 8 and 11; (g) Scans 9 and 12.

doi:10.1371/journal.pone.0126862.g016
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